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Bounding the Paired-Domination Number of a Tree in
Terms of its Annihilation Number
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Abstract. A paired-dominating set of a graph G = (V, E) with no isolated vertex is a dominating set of
vertices whose induced subgraph has a perfect matching. The paired-domination number of G, denoted
by 7,+(G), is the minimum cardinality of a paired-dominating set of G. The annihilation number a(G) is the
largest integer k such that the sum of the first k terms of the non-decreasing degree sequence of G is at most
the number of edges in G. In this paper, we prove that for any tree T of order n > 2, y,,(T) < w
characterize the trees achieving this bound.

and we

1. Introduction

In this paper, G is a simple graph with vertex set V = V(G) and edge set E = E(G). The order |V]
of G is denoted by n = n(G). For every vertex v € V(G), the open neighborhood Ng(v) = N(v) is the set
{u € V(G) | uv € E(G)} and the closed neighborhood of v is the set Ng[v] = N[v] = N(v) U {v}. The degree of a
vertex v € V is deg(v) = deg(v) = IN(v)|. The minimum and maximum degree of a graph G are denoted by
0 = 0(G) and A = A(G), respectively. For a subset S C V(G), we let

Z(s, G) = Z deg,(v).

veS

A leaf of a tree T is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support
vertex is a vertex adjacent to at least two leaves. For a vertex v in a rooted tree T, let C(v) denote the set of
children of v. Let D(v) denote the set of descendants of v and D[v] = D(v) U {v}. The maximal subtree at v is
the subtree of T induced by D[v], and is denoted by T,. We write P, for a path of order n.

A paired-dominating set, abbreviated PDS, of a graph G is a set S of vertices of G such that every vertex is
adjacent to some vertex in S and the subgraph G[S] induced by S contains a perfect matching (not necessary
induced). Every graph without isolated vertices has a PDS since the end-vertices of any maximal matching
form such a set. The paired-domination number of G, denoted by y,,(G), is the minimum cardinality of a
PDS. A PDS of cardinality y,,(G) is called a y,,(G)-set. Paired-domination was introduced by Haynes and
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Slater (1995, 1998) as a model for assigning backups to guards for security purposes, since this time many
results have been obtained on this parameter (see for instance [2-5, 7-11].

Letd; <d, < ... <d, be the degree sequence of a graph G. Pepper [13] defined the annihilation number
of G, denoted a(G), to be the largest integer k such that the sum of the first k terms of the degree sequence
is at most half the sum of the degrees in the sequence. Equivalently, the annihilation number is the largest
integer k such that
k n

d; < Z d;.
=1

i=k+1

1

We observe that if G has m edges and annihilation number k, then Zle d; < m. As animmediate consequence
of the definition of the annihilation number, we observe that

a(G) > LgJ- (1)

The relation between annihilation number and some graph parameters have been studied by several
authors (see for example [1, 6, 12]).

If G is a connected graph of order n > 6 with 5(G) > 2, then it is known ([8]) that y,,,(G) < %” Hence if G
is a connected graph of order n > 6 with minimum degree at least 2, then

4a(G) +2
ylG) < 2

Our purpose in this paper is to establish the above upper bound on the paired-domination number for
trees.
We make use of the following results in this paper.

Proposition A. ([8]) Forn > 3,
n
Vpr(Pn) =2 ’VZ-‘ .

Proposition B. Forn > 2,

we=[1].

Corollary 1.1. Forn > 3,
4a(Pn)

Vpr(Pn) <

with equality if and only if T = Ps or Ps.

2. Main result

A subdivision of an edge uv is obtained by replacing the edge uv with a path uwv, where w is a new vertex.
The subdivision graph S(G) is the graph obtained from G by subdividing each edge of G. The subdivision
star S(Ky ) for t > 2, is called a healthy spider S;. A wounded spider S; is the graph formed by subdividing at
most t — 1 of the edges of a star K; for t > 2. Note that stars are wounded spiders. A spider is a healthy or
wounded spider.

Lemma 2.1. If T is a spider, then y,,(T) < W# with equality if and only if T is a healthy spider S, where

t is odd.
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Proof. First let T = S; be a healthy spider for some ¢ > 2. Then obviously y,,(T) = 2t. If t is even, then

a(T) = t+§ and hencey,,(T) = 2t = 4“T(T) < w. Iftisodd, thena(T) = t+% and hence y,,(T) = 2t = %.

Now let T be a wounded spider obtained from K;j; (t > 2) by subdividing 0 < s < t —1 edges. If

s = 0, then T is a star and we have y,,(T) = 2 and a(T) = t. Hence y,,/(T) =2 < @. Suppose s > 0. If
(t,s) = (2,1), then T = P, and the result follows from Corollary 1.1. If (¢,s) # (2,1), then y,,(T) = 2s and

a(T) =t + [ 3]. It follows that y,,,(T) = 2s < %. This completes the proof. [J

Theorem 2.2. If T is a tree of order n > 2, then

4a(T) + 2

yPr(T) < 3

This bound is sharp for healthy spider S;, where ¢ is odd.

Proof. The proof is by induction on #n. The statement holds for all trees of order n = 2,3, 4. For the inductive
hypothesis, let n > 5 and suppose that for every nontrivial tree T of order less than n the result is true. Let
T be a tree of order n. We may assume that T is not a path for otherwise the result follows by Corollary 1.1.
If diam(T) = 2, then T is a star and so y,,(T) < W# by Lemma 2.1. If diam(T) = 3, then T is a double star
S(r,s). In this case, a(T) = r +s = 3 and y,,(T) = 2, implying that y,.(T) < w. Hence we may assume
that diam(T) > 4.

In what follows, we will consider trees T formed from T by removing a set of vertices. For such a tree
T’ of order n’, let d,d’, ..., d;, be the non-decreasing degree sequence of T’, and let S’ be a set of vertices
corresponding to the first a(T”) terms in the degree sequence of T’. We denote the size of T” by m’. We
proceed further with a series of claims that we may assume satisfied by the tree.

Claim 1. T has no strong support vertex such as u that the graph obtained from T by removing u and the
leaves adjacent to u is connected.

Let T have a strong support vertex u such that the graph obtained from T by removing u and the leaves
adjacent to u is connected. Suppose w is a vertex in T with maximum distance from u. Root T at w and
let v be the parent of u. Assume T = T —T,. It is easy to see that y,(T) < y,(T") +2. If v ¢ S, then
28, T)=2(8,T)andifv e S, then (S, T) = }.(S', T')+ 1. Thus, }.(S', T) < X(S", T")+1<m'+1 <m-2.
Let z1, 2, be two leaves adjacent to 1 and assume S = 5’ U {z3,z5}. Then } (S, T) = Y.(S', T) + 2 < m implying
that a(T) > a(T”) + 2. By inductive hypothesis, we obtain

ylD) < yp(1) +2s X2 4 SHODZD22,, D22

as desired. (m)

Let v10;...vp be a diametral path in T and root T at vp. If diam(T) = 4, then T is a spider by Claim 1,
and the result follows by Lemma 2.1. Assume diam(T) > 5. It follows from Claim 1 that T,, is a spider.
Claim 2. deg(v3) < 3.

Let deg(v3) > 4. We consider three cases.

Case 2.1 T, is a healthy spider S;, where ¢ is even.

Assume T = T — T,. Then obviously y,,(T) < y,,(T") +2t. As above, we have }.(5,T) < ¥.(S', T") +1. Let S
be the set obtained from S’ by adding all the leaves and half of the support vertices of Ty,,. Then } (S, T) < m.
Therefore, a(T) > |S| = |S'| + % =a(T") + % By inductive hypothesis, we obtain

da(m)+2 A - I+2

4a(T) +2
Ypr(T) < ypr(T") + 26 < ———= 2t_f+2t:M.

3

Case 2.2 T, is a healthy spider S;, where ¢ is odd.
First let deg(vy) = 2. In this case, assume T = T — Ty,. Then obviously y,,(T) < y,/(T") + 2t. As above,
we have ) (5, T) < Y.(S',T") + 1. Let S be the set obtained from S’ by adding all the leaves and % of the
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support vertices of Tp,. Then Y,(S,T) < m and hence a(T) > |S| = |S'| + % =a(T") + % It follows from
inductive hypothesis that

! 4a(T) - 3Ly +2
Yor(D) < ype(T7) + 2E < WI)*+2 o < «h-%) por QM +2
3 3 3
Now let deg(vs) > 3. Assume T’ = T — T,. Then ,,(T) < y,(T’) +2t. Tf v, ¢ S, then let S be the set

obtained from S’ by adding all the leaves and 5 of the support vertices of Ts,. If v, € ', then let S be the

set obtained from S’ — {04} by adding all the leaves and %2 of the support vertices of T,,. Then Y(S,T) < m

and hence a(T) > |S| = |S'| + 2L = a(T”) + 3. By inductive hypothesis, we obtain y,,(T) < %.

Case 2.3 T,, is a wounded spider obtained from K;; by subdividing 1 <s <t —1 edges.
As in Lemma 2.1, we can see that y,,(T) < y,(T") + 2s and a(T) > a(T’) + t + [ 5]. It follows from inductive
hypothesis that

4a(T') + 2
am)+2

Y1) € yp(T) +25 € === 425 < fa@-t-lph+2 o0 4D +2

3 3 C)

Claim 3. deg(v3) = 2.

Assume that deg(v;) = 3. First let v3 is adjacent to a support vertex z, # v,. Suppose z; is the leaf
adjacent to zo and let T" = T — T,,. Then every y,,(I")-set can be extended to a PDS of T by adding
v1, V2,21, %2, implying that y,,(T) < y,(T') +4. If vy ¢ §’, then }(S',T) = }.(S',T’) and if vy, € S, then
Y(5,T) = Y(5,T")+ 1. Thus, Y(S',T) < Y(S,T)+1 <m +1=m—4. Let S = § U{v1,v5,z1}. Then
Y5 T) =Y(5,T)+deg(v1) + deg(v2) + degy(z1) < m. Therefore, a(T) > |S| = |S'| + 3 = a(T") + 3. It follows
from inductive hypothesis that

4a(T') + 2 4(a(T) - 2 4a(T) + 2
pr(T) < ypr(T) +4 < % ya< 2 )3 N2, ;Jr .
Now let v3 is adjacent to a leaf w. Suppose T" = T — T,,. Then every y,,(T")-set can be extended to a PDS

of T by adding v3 and v,, implying that y,,(T) < y,,(T") + 2. Now let S = §" U {v1,v2}. Then we have
Y5 T) = Y.(S,T) + deg(v1) + deg(v2) < m’ +4 = m, which implies that a(T) > a(T") + 2. By inductive
hypothesis,

() < () +2 < 4a(T3) +2 4(a(T)3 242 4a(T3) 2
Claim 4. deg(vs) = 2.

Assume that deg(vy) > 3. Let T" = T — Ty,,. Then every y,,(T’)-set can be extended to a PDS of T by
adding v, and v3. Thus yp(T) < yp(T") + 2. Suppose that v, ¢ S’. Then }\(S',T) = (5, T’). In this
case, let S = S" U {vy,v2}. Then Y(5,T) = Y.(S,T) + deg(v1) + deg(v2) < m’ + 3 = m, implying that
a(T) 2 1S = |S'| + 2 = a(T") + 2. Applying inductive hypothesis we obtain

Yor(T) < ypl(T) +2 < % y2< 2@ - %2 5. 4“(2 2

as desired. Now we may assume v4 € S'. In this case, let 5 = (S’ — {v4}) U {v1,v2,73}. Since deg (v3) =
2 < degy.(v4), we have } (S, T) = Y.(S',T) — degy, (v4) + degyr(v1) + degp(v2) + deg(v3) < m. Therefore,
a(T) 2 1S| = 1S’ + 2 = a(T’) + 2. It follows from inductive hypothesis that

(1) < yn(T) 42 < 4a(T3) +2 o 4(a(T);2) *2 4a(T3) +2

as desired. (m)
We now return to the proof of theorem. Let T" = T — T,,, and hence m’ = m — 4. Every y,,(T")-set can
be extended to a PDS of T by adding v3, v, which implies that y,,(T) < y,(T") + 2. Let S = §" U {01, 02}
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Then }(S5,T) = (', T) + deg(v1) + deg (v2) < m’ +4 = m, implying that a(T) > |S| = |S'| + 2 = a(T") + 2.
Applying inductive hypothesis,

YD) < yp(1) 42 < X2 LHMZDE2 ) A)22)

as desired. This completes the proof. [

To characterize all trees achieving the bound in Theorem 2.2 we start with the following propositions.

Proposition 2.3. Let T be a tree of order 1 > 2 with diam(T) < 4. Then y,,(T) = 22*2 if and only if T = P,
or T is a healthy spider S;, where t is odd.

Proof. If T = P, then obviously y,,(T) = 2 and a(T) = 1. Hence, y,,(T) = w. If T is a healthy spider S;
where t is odd, then the result follows by Lemma 2.1.

Conversely, let y,,(T) = W%. If diam(T) = 1, then T = P, and we are done. If diam(T) = 2, then T is

a star and it follows from Lemma 2.1 that y,,(T) < 4”“;”, a contradiction. Suppose diam(T) = 3. Then T

is a double star S(r,s). In this case, a(T) = r + s and y,(T) = 2. If r +s = 2, then T = P,, which leads to a

contradiction by Corollary 1.1. If  + s > 3, then we have y,,(T) < %, which is a contradiction again.

Finally, let diam(T) = 4. By the proof of Claim 1 in Theorem 2.2, we may assume that the degree of each

4a(T)+2
3

support vertex on a diametral path of T is two and hence T is a spider. Since y,,(T) = , it follows from

Lemma 2.1 that T is a healthy spider S;, where t is odd. This completes the proof. [J

4a(T)+2

Proposition 2.4. If T is a tree of order n with diam(T) = 5, then y,,/(T) < =5

Proof. Let v1v;...vs be a diametral path in T and root T at vs (at v1, respectively). By a closer look at the
proof of Theorem 2.2 we may assume T, and T, are spiders S; (if the root is vs) and S, (if the root is v;) for

some even integers f and r, respectively. It is easy to see that y,,(T) = 2t + 2r and a(T) = % + ¥ and hence

yr(T) < 2D < 22 o5 desired. [

Proposition 2.5. If T is a tree of order n with diam(T) = 6, then y,,(T) < w

Proof. Let v1v;...v;7 be a diametral path in T and root T at vy (at v;, respectively). As in Proposition 2.4,
we may assume T, and T,, are healthy spider S; (if the root is v7) and S, (if the root is v;) for some even
integers t and r, respectively. Let u; (w), respectively) be the leaves of T, (Ty;, respectively) and u] (w},
respectively) be the support vertices of T, (T, respectively). If deg(vs) = 2, then obviously y,,(T) = 2t + 2r

and a(T) = % + % + 1 and hence y,(T) < 4“T(T). If deg(vs) > 4, then let T" = T — (Ty, U Ty,). Clearly
Vor(D) < ypr(T) +2t+2r. Let S =S U({u; [ 1 <i < Ul [1<i< E+ T U{w; | 1<) < nulw; [1<i<3))if
v4¢S’andS=(S’—{v4})U({u,-|1Sist}u{ul’.llsis§+1}U{wj|1$j$r}u{w;.|1$js§+1})when
vy € §'. It is easy to see that Y(S, T) < m, implying that a(T) > a(T’) + 3 + 2 + 1. It follows from Theorem
2.2 that

IA

4—”(2)” +2r+2s

Vpr(T) Vpr(T') + 2r + 23 <

Ha(T)-3-%-1)+2 4(a(T)+2
e —

< 3 +2r+2s <

Now let deg(vy) = 3. If v4 is adjacent to a leaf, a support vertex whose all neighbors are leaves except vy,
or there is a path v4z125z3 in T such that all neighbors of z; except vy and z, are leaves, then obviously
yp(T) = 2r+2s+ 2 and a(T) > ¥ + ¥ +2. Hence y,(T) < W;i. Thus as above, we may assume T,
is a healthy spider S; for some even integer k. In this case, we can see that y,,(T) = 2t + 2r + 2k and
a(T) = w + 1 implying that y,,(T) < %. This completes the proof. [

Proposition 2.6. If T is a tree of order n with diam(T) > 7, then y,,,(T) < %
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Proof. Letv1v;...vp be a diametral path in T and root T at vp (at v1, respectively). As in Proposition 2.4 we
may assume Ty, and T,, , are spiders S; (if the root is vp) and S, (if the root is v1) for some even integers ¢
and 7, respectively. Suppose u; (1 < i < t) are the leaves of T,, and u] is the support vertex of u; in T, for
each i. Similarly, assume w; (1 < j < r) are the leaves of T;,, , and w is the support vertex of w; in Ty, , for
each j.

First let deg(vy) = deg(vp-3) = 2. If diam(T) = 7, then vp_3 = v5 and it is easy to see that y,,(T) = 2t + 2r
and a(T) = 3(”7) + 1. Hence, y,(T) < w. If diam(T) = 8 and deg(vs) = 3 or diam(T) > 9, then let
T =T— (T, U Typ,_,)- Itis easy to check that y,,(T) < y,,(T") + 2t + 2r and a(T) > a(T") + 3(”7 + 1. It follows
from Theorem 2.2 that y,,(T) < ‘M Assume now that diam(T) = 8 and deg(vs) = 2. Then one can see
that y,,(T) = 2t + 2r + 2 and a(T) = 3(”7) +2and s0 y,(T) < 4“(T 2

Now let deg(vs) > 3 and deg(vD 3) = 2 (the case deg(v4) 2 and deg(vp-3) > 3 is similar). Let
T"=T~-(Ty, U Typ_,). Itis easy to see that y,(T) < yp(T") + 2t +2r. If vy € S, thenlet S = " U ({u; [ 1 <i <
ttu{u) |1<i< §+1}U{wj|1Ser}U{w;llsjs ). Ifog, €S, thenlet S = (8" —{vg)) U ({u; |1 <i <
ttufu; |1<i< é +1U{w;|1<j<rtu {w;. |1 <j<5+1}). Ineach case, we have }(5, T) < m, implying

thata(T) > a(T") + @ + 1, hence by Theorem 2.2, y,,(T) < M(gﬁ.

D-2

Finally, let min{deg(v;), deg(vp-3)} = 3. Consider two cases.

Case1l. Assume thatt > 4 (the case r > 4 is similar).

Let T" = T — (Ty, U Typ,). Then every y,,(T")-set can be extended to a PDS of T by adding all leaves
and their support vertices of Ty, U Ty, hence y,(T) < y,(T') + 2t + 2r. If vy,vp3 ¢ S, then let S =
SURui |1 <i<tu{u [1<i< §+1}U{wj [ 1 Ser}U{w;. |1 <j< 3} Ifo,ops €S, then let
S=("-{ogopsh)U(ui |1 <i<tUful [1<i< §+2}U{wj|1 Ser}U{w;, |1<j<35+1}). Finally,
ifvy € S and vp_3 ¢ S’ (the case vy ¢ S’ and vp_3 € S’ is similar), thenlet S = (8" —{vs) U({u; | 1 < i <
tufu |1<i< i +2}U{w;|1<j<ru {w;. |1 <j<5}). Inall cases, we have } (S, T) < m, implying that

a(T) > a(T") + 252 Hr) + 1. By Theorem 2.2, we have

’ 4a(T) -0 1)+ 2
4”(T)+2+2t+2rs(() 5 ) wopoy < HDH2

Vor(T) < ype(T') + 2t +2r < 3 3

Case 2. Assume thatt=7r=2.
Consider two subcases.
Subcase 2.1 max{deg(vs), deg(vp-3)} > 4.
LetT' = T—(Ty,UTy,_,)- Thenclearly y,(T) <y, (T')+8. If vg,0p-3 € S’, thenlet S = S"U{uy, up, w1, wo, uj, uj,
wi}. Ifvg,0p3 € §, thenlet S = (S — {vg,vp-3}) U ({vs} U {uq, up, w1, wo, 1, uy, wi, wy}). Finally, if o4 € S’
and vp-3 ¢ S’ (the case vy ¢ S’ and vp_3 € S’ is similar), then let S = (§" — {v4}) U {u;, w;, ul, w! | i = 1,2}.
In all cases, we have ) (S, T) < m, implying that a(T) > a(T’) + t+r) + 7. It follows from Theorem 2.2 that
4a(T)+2
ypr(T) < —=5—.
Subcase 2.2 deg(vs) = deg(vp-3) = 3.
If vy is adjacent to a support vertex or there is a path v4z12z3 in T such that all neighbors of z; except
zp and vy are leaves and deg(z3) = 1, then let T" = T — T,,. It is easy to see that y,(T) < y,(T") + 6
and a(T) = a(T’) + 5. 1t follows from Theorem 2.2 that y,(T) < 22*2. Let z € N(vg) — {vs,vs}. If T
is a spider, then we may assume T, = Ps, for otherwise the result follows as above. Let T" = T — T,,.
Then clearly y,/(T) < yp(T’) + 8 and a(T) = a(T’) + 7, and by Theorem 2.2 we have y,,(T) < w.
Now let z be a leaf. Assume T' = T — (T, U Ty,). Then p,(T) < yp(T') +10. If vp_3 ¢ S, then let
S = §" Uz, uy, up, wy, wa, uy, uj, wi}. Ifvp 3 €8, thenletS = (S — {vp_3}) U {z, Uy, Uy, W1, Wa, Uy, Uy, Wy, Wht
In each case, we have },(S,T) < m, implying that a(T) > a(T”) + 8 and it follows from Theorem 2.2 that
Vpr(T) < 4’1(T)+2 . This completes the proof. [

Next result is an immediate consequence of Lemma 2.1 and Propositions 2.3, 2.4, 2.5 and 2.6.
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Theorem 2.7. Let T be a tree of order n > 2. Then y,(T) = 22 3¢ and only if T is P, or T is a healthy

3
spider S;, where t is odd.
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