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Abstract. The Randié¢ index R(G) of a graph G is defined as R(G) = Y. (d(u)d(v)) %, where the summation
uveE
goes over all edges of G. In 1988, Fajtlowicz proposed a conjecture: For all connected graphs G with average

distance ad(G), then R(G) > ad(G). In this paper, we prove that this conjecture is true for unicyclic graphs.

1. Introduction

Let G = (V(G), E(G)) be a simple graph with n = |[V(G)| vertices and m = |E(G)| vertices. A connected
graph is a unicyclic graph if m = n. d(v) (or d,) denotes the degree of a vertex v. A vertex of degree one
is called a leaf. Denote the number of leaves in G by n;. Let 7 (n,n;) and U(n,n1) be the sets of trees and
unicyclic graphs with 1 vertices and #; leaves, respectively. The distance dg(u, v) is the number of edges
in a shortest path from u to v in G. And the average distance ad(G) of graph G is the average value of the
distances between all pairs of vertices in G. Recall that the Wiener index W(G) isequal to }, dg(u,v). Then

u,veV
ad(G) = W(G) / (Z) For terminology and notation not defined here, we refer the readers to [1].

The Randi¢ index is a graph invariant defined as

wze;s\/ 0d@)’

where uv denotes an edge of G.

Recently many researches on extremal aspects of the theory of Randi¢ index have been reported (see
[2]). Some problems are still open. In [3], S. Fajtlowicz proposed the following conjecture:
Conjecture 1.1 [3] For all connected graphs G, R(G) > ad(G).

In [4], Li and Shi have proved that Conjecture 1.1 is true when 6(G) > £ and n > 15. In [5], Cygan,
Pilipczuk and Skrekovski have shown that Conjecture 1.1 holds for trees.
In this paper, we prove that Conjecture 1.1 is true for unicyclic graphs.
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2. Main result

Lemma 2.1 [6] Let G be a unicyclic graph and v1v, be an edge in a cycle of G with d(v1) = dy, d(v2) = da. Then the

1
minimum value for the difference R(G) — R(G — v1v,) is reached when di = dy = nt .

2
1 1 [ 2 [ 2 2
2(”; _2+$)[ n+1 n—l)+n+1
\/E.(n_l)'(\lnj-l_ VnilJJrnil'
Lemma 2.2 The function f(x) = \/E-(x—l)-(\/ ! -4/ ! ]+ 2 is increasing on x > 11. Then
x+1 x-1 x+1

f(x) > —0.23 for x > 6.

Proof. Let%f(x):(x_l).(ﬂxil - w/xil)-i-x\-/?l =m(x)and f =x - 1.

[ 1 1) V2 t V2
Thenm(x):m(1+t):t-( m—\/;)—}-m: t+2—\/¥+m_

It is sufficient to show that f(x) is monotonously increasing in x, i.e., m’(x) > 0 for x > 11. Consider the
d t 2\ dt
first derivative m’(x) = —(— -Vt V2 ) &

+_

dt VE+2 t+2
A/ 1

b+2-t s 1 V2

t+2 24F  (t+2)
t+2 1 V2

(t+2)Vir2 2vE (E+27
Then 2 VE(t + 2)%m’ (x) = (t + 4) VEVE+2 — (t +2)* =2 V2 VE = n(t). 1)
Claim : n(t) = (t+4) VEVE+ 2 = (t+2)2 = 2V2 Vi > 0 for t > 10.
It is sufficient to prove that [(t +4)VEVE+2-2V2 \/fr > (t+2)4 ie.,
283 + 812 — 42t + 4) VE+2 + 8t > 16.

Then it is only needed to prove that 2> + 8t — 4 V2t(t + 4) Vt + 2 > 0, namely, t > 2 V2 Vi + 2.
In fact, t* > 8(t + 2) for t > 10.

Hence from (1), 2 \/Z(t +2)%m’(x) > 0. We have m’(x) > 0 for x > 11.
Note that L\/_ f(x) = m(x). Then f(x) is monotonically increasing for x > 11 and f(x) > f(11) =
2

Thus R(G) — R(G — v1v5)

[\

[\

1 1 2
-(11-1)- - > —0.23. Iti > —0. > —0.
V2. (11-1) \/11+1 = |* 777 2 ~0.23- Itis easy to check that £(10) > ~0.23, f(9) 2 023,
£(8) = —0.22, f(7) = —0.22 and f(6) = —0.21. Then f(x) > —0.23 for x > 6. O

Lemma 2.3 [5] For any tree T with n vertices and ny leaves, the following inequality holds:
R(T) = ad(T) + max{0, \/n1 — 2}.

By using Theorem 5 from [7], Cygan et al. [5] obtained that:
n-—np

5 + 4/n; —0.462.
Let DC(n, a, b) be a double comet obtained from the Path P,_,_; by attaching a4 and b pendent vertices to
two ends of P,_,_, respectively. In [5], Cygan et al. calculated ad(DC(n, a, b)) as:

(Mad(DC(n,a,b) = ab(n — ny + 1) +2(%) +2(0) + (@ + b)(n — m)(n —my + Df2+ (P~ + 1y,
2 2 2 3

Lemma 2.4 Let T be a tree with n vertices and nq leaves, where 3 < ny < n—2. Then R(T) >
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Lemma 2.5 [5] Suppose that T is a tree with n vertices and ny leaves, where 3 < ny < n — 2. There exists a double
comet T' = DC(n,a,b) for some a,b > 1, a + b = ny such that ad(T) < ad(T’).

Proposition 2.6 Let T € T (n,n1). If n > 7 and ny = 3, then R(T) > ad(T) + 0.25.
Proof. By Lemmas 2.4 and 2.5,

R(T) — ad(T) — 0.25 > R(T) — ad(DC(n, a, b)) — 0.25
n-—np

> =5 + Vi ~ 0462 ~ad(DC(n,a,b)) - 0.25
- ; 3+ VB— 0462 — ad(DC(n,1,2)) — 0.25
n-3 2 3 1
=24 V30462 e [2(n 1)+ 500 =3 —2) + 201~ 2)(n =301 - 4)] ~025
_n-3 4 (n—2)(n—3)(3 n—4)
=— V3 - 0.462 s ey 2t e ) 0B
n-3 4 n-2)(n-3) n-4
2 ——+ V3 - 0.462 Rl e B | 5= —025
n 4 (n—2)(n-23)
> 6 3 n—1) + 0.85.
x4 (x=2)(x-23)
Let g(x) = 3 3 -1 + 0.85.
, , L 1 4 42 —12x+6  22(x—1)> — 4832 + 168x — 84
Consider the first derivative g'(x) = 3 + 2z % n Go1f 2= 1) > 0 for
7—=2)7 -
x > 7. Then g(x) is increasing on x > 7 and g(x) > g(7) = i ; - 3% +0.85 = 0.016 > 0.
Hence R(T) — ad(T) — 0.25 > R(T) — ad(DC(n,a, b)) — 0.25 > 0.
The result holds. o

Proposition 2.7 Let T € T (n,n1). If n > 9 and ny = 4, then R(T) > ad(T) + 0.25.
Proof. By Lemma 2.4,
R(T) — ad(T) — 0.25 = R(T) — ad(DC(n, a, b)) — 0.25. There are two cases:
Case 1: DC(n,a,b) = DC(n, 1, 3).

R(T) — ad(T) — 0.25 > 2= 4 \/iy — 0.462 — ad(DC(n,a, b)) — 0.25

n—4

+ V4 — 0462 — ad(DC(n,1,3)) — 0.25

_n-4, \/1—0.462—ﬁ[3(n C3) 464 2(n—3)n—4)+ %(n —3)(n - 4)(n — 5)]—0.25
S0t Viooae-® —2(”_3)(”_4)(2+ ”_5)—0.25
n nn—1) 6
n—4 6 n-3)(n-4) n-5
> — + V4 - 0.462 Y 5~ 025
n 6 (n—-3)(n—-4)
26 - 4 i —1) +0.95.
x 6 (x—3)(x—4)
Let h(x) = ‘3 4 G- + 0.95.
, , L 1 6 632 — 24x +12  x2(x — 1)? — 1082 + 504x — 252
Consider the first derivative h'(x) = 3 + 2 4. 217 = 2= 1) > 0 for
—4)(8 —
x > 8. Then h(x) is increasing on x > 8 and h(x) > h(8) = 2 - g - 4% +0.95~0.1>0.

Case 2: DC(n,a,b) = DC(n, 2, 2).
R(T) — ad(T) - 0.25 > 2= 1 /iy — 0.462 — ad(DC(n, a, b)) — 0.25
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I > 4 VE— 0462 - ad(DC(n,2,2)) — 0.25
— 4 VE-0462— - (nz_ 5 [4(n _3) 44+ 2n—3)(n—4)+ %(n _3)(n— 4)(n - 5)]—0.25
- ”;4 + Vi - 0462 - ii’;:?) - (”;(i)ﬁ_)‘})(u ";5)—0.25
> % + Vi-0462- 222:?; ~ 4 ;(i)(_”l_)‘l) - ”;5 ~025
e s,
- Z 4—”2n_( nz?” J 32 4 0.95.
Let I(x) = % - % +0.95.

1 16x% —64x+32 _ x*(x = 1)> — 96x” + 384x — 192

Consider the first derivative I'(x) = = >0forx>09.

6 2x-12 6x2(x — 1)2
Then I(x) is increasing on x > 9 and I(x) > [(9) = z - % +0.95 > 0.
The result holds. O

Theorem 2.8 Let U € U(n, ny). If 1y = 5, then R(U) > ad(U).

Proof. Let U be a unicyclic graph with n vertices and n; > 5 leaves, and uv an edge in the cycle of U. Then
n > 8. Note that removing the edge uv strictly increases its Wiener index, namely, W(U) — W(U — uv) < 0.

By Lemmas 2.1 and 2.2, R(U) — R(U — uv) — [W(U) - WU - uv)]/( ) > R(U) - R(U - uv) > —-0.23.

By Lemma 2.3, R(U) — W(u)/( )>RU uo) — WU — uv)/() 0.23,

ie., RU) - ad(U) > R(U — uv) —ad(U — uv) — 0.23
> n—2-023
>5-2-023
> 0.
The theorem follows. |

Theorem 2.9 Let U € U(n, ny). If ny = 4, then R(U) = ad(U).
Proof. Let uv be an edge in the cycle of U. Similar to the proof of Theorem 2.8, we have
RU) - ad(U) = R(U - uv) — ad(U — uv) — 0.23.
There are two cases:
Case 1: U — uv has at least 5 leaves.
By Lemma 2.3, R(U — uv) — ad(U — uv) — 0.23 > V5 -2-0.23 > 0.
Then R(U) = ad(U).
Case 2: U — uv has 4 leaves.

Since U and U — uv both have 4 leaves, the cycle of U is C3 or C4. Note that if n > 9, by Proposition 2.7,
then R(U) — ad(U) = R(U — uv) —ad(U — uv) — 0.23 > 0.25 — 0.23 > 0. There remains three subcases:
Subcase 2.1: n = 8. And the cycle of U is Cj.

4 4 1
Then U = U, and R(U;) — ad(Uy) = —= + 2 - 5

V3 3 7
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Figure 1. Unicyclic graphs which have order n < 8 and 4 leaves, and every spanning trees with 4 leaves.

Subcase 2.2: n = 8. And the cycle of U is Cs.
Then U = U; (i =2,3,4).

1 4 1 2 61 5 3 15
By direct calculati R d — = R d = 2 ¥
y direct calculations, R(Uz)—ad(Uy) = > 3+ 6+ 28 > 0; R(U3)—ad(U3) = + + o 7 >
4 4 63
0; R(Uy) —ad(Uy) = = + 7 - % > 0.
Subcase 2.3: n = 4 10
Then U = Us, and R(u5) —ad(Us) = V3 + 357”0
The theorem follows. O

Theorem 2.10 Let U € U(n, n1). If ny = 3, then R(U) > ad(U).
Proof. Similar to the proof of Theorem 2.9, for an edge in the cycle of U, we have
RU) —ad(U) > R(U - uv) — ad(U — uv) — 0.23.
There are three cases:
Case 1: U — uv has 5 leaves.
By Lemma 2.3, R(U) — ad(U) > R(U — uv) — ad(U — uv) — 0.23 > V5-2-023>0.
Case 2: U — uv has 3 leaves.
It remains two subcases.
Subcase2.1: n > 7.
By Proposition 2.6, R(U) — ad(U) = R(U — uv) — ad(U — uv) — 0.23 > 0.25 - 0.23 > 0.
Subcase 2.2: n = 6.
Since U has three 3 leaves, U = U; (i = 6,7, 8).

Us Uy Us

Figure 2. Unicyclic graphs with order n = 6 and 3 leaves.
3 9 1 3 1 26

By direct calculations, R(Us) —ad(Ue) = —+1—-= > 0; RUy)—ad(Uy) =14+ —+ —=+—-—=>0;
s o 1 s V3 22 23 V6 15
R(Ug) — ad(Ug) = 7 + \/—_ E - 5 > 0.

Case 3: U — uv has 4 leaves.
It remains two subcases.
Subcase 3.1: n > 9.
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By Proposition 2.7, R(U) — ad(U) > R(U — uv) — ad(U — uv) — 0.23 > 0.25 — 0.23 > 0.

Subcase 3.2: n =6,7,8.
The cycle of U may be Cs, C4, or Cs. Since U — uv has 4 leaves by deleting any edge uv in the cycle of U,

the cycle of U is Cy.
u u u

AndU=U; (i=9,
Figure 3. Unicyclic graphs which have order # < 8 and 3 leaves, and every spanning trees with 4 leaves.
5 1 1 2 63

U

1 4 33
By direct calculations, R(Uy)—ad(Us) = +V3+ \/_ T > 0; R(Ulo) ad(Uq) = \/_ 2 \/_ \/_ 28
O‘R(LI)—ad(U)—\/§+—+1—§>OR(U)—ad(U) L2 s
; 11 1) = N7 28 12 12 \/_ %V
The theorem follows. O

Theorem 2.11 Let U € U(n, n1). If nq = 2, then R(U) > ad(U).

Proof. There are two cases:

Case 1: The cycle of U has at least 5 vertices.

Then by deleting an edge uv in the cycle such that U — uv has 3 leaves, and using Lemmas 2.1-2.3, and
Proposition 2.6, we have

R(U) —ad(U) = R(U — uv) —ad(U — uv) — 0.23 > 0.25 - 0.23 > 0.

Case 2: The cycle of U has 3 or 4 vertices.

There are three subcases.

Subcase 2.1: n > 7.

Similar to Case 1, we also have R(U) > ad(U).

Subcase 2.2: n = 6.

Then U = U; (i =13,...,18).

Uz Uy Uis Ui Uiy Uisg

Figure 4. Unicyclic graphs with order n = 6 and 2 leaves.

2 2 5 9 1 26
: : _ - , <« 2 _7Z _ 74— =2
By direct calculations, R(U33) — ad(Us3) NG + Ve + 61 5 :>30 Rl(um)l ﬂd;ljm) + N 5>
2 4 28
- T T L A N9 d
R;U15)5 ﬂd(;lls) 28\/_ Ve 15 > 0; R(U16) — aﬂ;(um)g N + Ve t3F NG 5> 0; R(Uy7) — ad(Uy7) =
2 L 28 0 R(Ukg) —ad(Ug) = 14 —— — 2 >0
\/§+6 Ve 50 (Uzs) — ad(Uys) +2\/§ 5>
Subcase 2.3: n = 5.
Then U = U; (i = 19, 20).
Uqo Uy

Figure 5. Unicyclic graphs with order n = 5 and 2 leaves.
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2 2 1 1
By direct calculations, R(Uyg) — ad(Uzq) = G T 3" g > 0; R(Uyo) — ad(Uso) = % @ - ; >0
By this the proof of Theorem 2.11 is completed. o

Theorem 2.12 Let U € U(n, ny). If nq = 1, then R(U) > ad(U).

Proof. If n > 7, by choosing an edge of the cycle of U and deleting uv such that U — uv has 3 leaves, and
using Proposition 2.6, then we have R(U) — ad(U) > R(U — uv) — ad(U — uv) — 0.23 > 0.25 - 0.23 > 0.

It remains three cases.

Case 1: n = 6.

Then U = U; (i = 21,22,23), where Uy, Uy, and Ups are the unicyclic graphs obtained from C;, C4 and

Cs by attaching Py, P3, and P, on the cycle, respectively.

By direct calculations, R(Up1) —ad(Uy) = 1+ — 1 i - E > 0; R(Up)—ad(Uy) =1+ —

1
N ARVARE N ARV A
3 2 1 26
R(Uzs) — ad(Uy) = \/_ \/_ - E >0
Case2: n =5.

Then U = U; (i = 24,25), where Uy and Uys are the unicyclic graphs obtained from C; and C4 by
attaching P3; and P, on the cycle, respectively.

3 29

1 1 3 17 1 2 8
By direct calculations, R(Ups) —ad(Uszy) = — —— >0, R(Ups)—ad(Ups) =1+ —+——-=>0.
Y 2" V2 V6 10 V3 V6 5
Case3: n=4.
Then U = Uy, where Uy is the unicyclic graph obtained from Cs by attaching P, on the cycle.
. . 1 1 2 4
By direct calculation, R(Uys) — ad(Ups) = 5+ \/_ 7 ~3> > 0.
By this the proof of Theorem 2.12 is completed. m]
Theorem 2.13 Let U € U(n, ny) with ny = 0. Then R(U) > ad(U).
1
Proof. For a unicyclic graph with n vertices, if U has no leaves, then U = C, and R(C,;) = 3 Xn = g
X
n? . n+1 .
and ad(C,) = m when n is even; ad(C,) = 1 when 7 is odd. Thus R(C,) > ad(C,,). O

By Theorems 2.8-2.13, we have the main result:
Theorem 2.14 Let U be a unicyclic graph with n vertices. Then R(U) > ad(U).
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