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Abstract. An ideal I is a family of subsets of positive integers N which is closed under taking finite
unions and subsets of its elements. In this paper, we introduce the concepts of ideal τ-convergence, ideal
τ-Cauchy and ideal τ-bounded sequence in locally solid Riesz space endowed with the topology τ. Some
basic properties of these concepts has been investigated. We also examine the ideal τ-continuity of a
mapping defined on locally solid Riesz space.

1. Introduction

The notion of statistical convergence was introduced by Fast [10] and Steinhaus [32] independently
in the same year 1951. Actually the idea of statistical convergence was formerly given under the name
”almost convergence” by Zygmund in the first edition of his celebrated monograph published in Warsaw
in 1935 [37]. The concept was formally introduced by Fast [10] and later was reintroduced by Schoenberg
[31], and also independently by Buck [4]. Over the years and under different names statistical convergence
has been discussed in the theory of Fourier analysis, ergodic theory and number theory. Later on it was
further investigated from various points of view. For example, statistical convergence has been investigated
in summability theory by (Boos [3], Fridy [11], S̆alát [27], topological groups (Çakalli [5, 6]), topological
spaces (Di Maio and Koc̆inac [22]), function spaces (Caserta and Koc̆inac [7], Caserta, Di Maio and Koc̆inac
[8]), locally convex spaces (Maddox[21]), measure theory (Cheng et al., [9], Millar[23]), fuzzy mathematics
(Nuray and Savaş [24], Savaş [30]).

The notion of I-convergence(I denotes the ideal of subsets of N) was initially introduced by Kostyrko
et al. [18] as a generalization of statistical convergence. More applications of ideals can be seen in ([12–14],
[15, 16, 28, 29, 33, 35]).

A family of sets I ⊂ P(N) (power sets of N) is called an ideal if and only if for each A,B ∈ I, we have
A ∪ B ∈ I and for each A ∈ I and each B ⊂ A, we have B ∈ I. A non-empty family of sets F ⊂ P(N) is a
filter onN if and only if φ < F , for each A,B ∈ F , we have A ∩ B ∈ F and each A ∈ F and each B ⊃ A, we
have B ∈ F . An ideal I is called non-trivial ideal if I , φ andN < I. Clearly I ⊂ P(N) is a non-trivial ideal

2010 Mathematics Subject Classification. 40A35; 40G15; 46A40
Keywords. ideal convergence; ideal Cauchy; ideal continuity; locally solid Riesz space.
Received: 21 May 2013; Accepted: 11 October 2013
Communicated by Hari M. Srivastava
Email address: bh_rgu@yahoo.co.in (Bipan Hazarika)



Bipan Hazarika / Filomat 28:4 (2014), 797–809 798

if and only if F = F (I) = {N − A : A ∈ I} is a filter onN. A non-trivial ideal I ⊂ P(N) is called admissible if
and only if {{x} : x ∈N} ⊂ I. A non-trivial ideal I is maximal if there cannot exists any non-trivial ideal J , I
containing I as a subset. Further details on ideals of P(N) can be found in Kostyrko, et.al [18].

If we take I = I f = {A ⊆ N : A is a finite subset }. Then I f is a non-trivial admissible ideal ofN and the
corresponding convergence coincide with the usual convergence. If we take I = Iδ = {A ⊆ N : δ(A) = 0}
where δ(A) denote the asyptotic density of the set A. Then Iδ is a non-trivial admissible ideal ofN and the
corresponding convergence coincide with the statistical convergence.

A Riesz space is an ordered vector space which is a lattice at the same time. It was first introduced by F.
Riesz [25] in 1928. Riesz spaces have many applications in measure theory, operator theory and optimiza-
tion. They have also some applications in economics (see [2]), and we refer to ([1, 17, 20, 36]) for more details.

Now we recall some of the basic concepts related to statistical convergence and ideal convergence.

Let E ⊆N. Then the natural density of E is denoted by δ(E) and is defined by

δ(E) = lim
n→∞
|{k ∈ E : k ≤ n}|,

where the vertical bar denotes the cardinality of the respective set.

Definition 1.1.([22]) A sequence x = (xk) in a topological space X is said to be statistically convergent to
x0 if for every neighbourhood V of x0

δ ({k ∈N : xk < V}) = 0.

In this case, we write S−lim x = x0 or (xk) S
−→ x0 and S denotes the set of all statistically convergent sequences.

Definition 1.2.([19]) A sequence x = (xk) in a topological space X is said to be I- convergent to x0 if for
every neighbourhood V of x0

{k ∈N : xk < V} ∈ I.

In this case, we write I − lim x = x0 or (xk) I
−→ x0 and I denotes the set of all ideally convergent sequences.

2. Preleminaries

Let X be a real vector space and ≤ be a partial order on this space. Then X is said to be an ordered vector
space if it satifies the following properties:

(i) if x, y ∈ X and y ≤ x, then y + z ≤ x + z for each z ∈ X.
(ii) if x, y ∈ X and y ≤ x, then ay ≤ ax for each a ≥ 0.

If, in addition, X is a lattice with respect to the partially ordered, then X is said to be a Riesz space (or a
vector lattice)(see[36]), if for each pair of elements x, y ∈ X the supremum and infimum of the set {x, y} both
exist in X.

We shall write

x ∨ y = sup{x, y} and x ∧ y = inf{x, y}.

For an element x of a Risez space X, the positive part of x is defined by x+ = x ∨ θ, the negative part of x
by x− = −x ∨ θ and the absolute value of x by |x| = x ∨ (−x), where θ is the zero element of X.
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A subset S of a Riesz space X is said to be solid if y ∈ S and |y| ≤ |x| implies x ∈ S.
A topological vector space (X, τ) is a vector space X which has a topology (linear ) τ, such that the algebraic

operations of addition and scalar multiplication in X are continuous. Continuity of addition means that
the function f : X × X → X defined by f (x, y) = x + y is continuous on X × X, and cnotinuity of scalar
multiplication means that the function f : C × X→ X defined by f (a, x) = ax is continuous on C × X.

Every linear topology τ on a vector space X has a base N for the neighborhoods of θ satisfying the
following properties:

(1) Each Y ∈ N is a balanced set, that is, ax ∈ Y holds for all x ∈ Y and for every a ∈ R with |a| ≤ 1.
(2) Each Y ∈ N is an absorbing set , that is , for every x ∈ X, there exists a > 0 such that ax ∈ Y.
(3) For each Y ∈ N there exists some E ∈ N with E + E ⊆ Y.

A linear topology τ on a Riesz space X is said to be locally solid (see[26]) if τ has a base at zero consisting
of solid sets. A locally solid Riesz space (X, τ) is a Riesz space equipped with a locally solid topology τ.

Recall that a first countable space is a topological space satisfying the ”first axiom of countability”.
Specifically , a space X is said to be first countable if each point has a countable neighbourhood basis(local
base). That is, for each point x in X there exists a sequence V1,V2, ... of open neighbourhoods of x such that
for any open neighbourhood V of x there exists an integer j with V j cointained in V.

The purpose of this article is to give certain characterizations of ideal convergent sequences in locally
solid Riesz spaces and investigate some basic properties of the notions ideal τ-convergence, ideal τ-Cauchy,
ideal τ-bounded sequence and ideal τ-continuity of a mapping in locally solid Riesz spaces. Finally we
prove a Tauberian theorem to the locally solid Riesz spaces.

Throughout the article, the symbol Nsol we will denote any base at zero consistiong of solid sets and
satisfying the conditions (1), (2) and (3) in a locally solid topology. Also we assume I is a non-trivial
admissible ideal ofN.

3. Ideal topological convergence in locally solid Riesz spaces

Throughout the article X will denote the Hausdorff locally solid Riesz space, which satisfies the first
axiom of countability.

Recently, in [1], Albayrak and Pehlivan introduced the notion of statiatical convergence in locally solid
Riesz spaces as follows:

Definition 3.1.([1]) Let (X, τ) be a locally solid Riesz space. A sequence (xk) of points in X is said to be
S(τ)-convergent to an element x0 of X if for each τ-neighbourhood V of zero,

δ({k ∈N : xk − x0 < V}) = 0

i.e.,

lim
m

1
m
|{k ≤ m : xk − x0 < V}| = 0.

In this case, we write S(τ) − limk→∞ xk = x0 or (xk)
S(τ)
−→ x0.

Now we give the definitions of I(τ)-convergence and I(τ)-bounded in locally solid Riesz spaces.

Definition 3.2. Let (X, τ) be a locally solid Riesz space. A sequence (xk) of points in X is said to be
I(τ)-convergent to an element x0 of X if for each τ-neighbourhood V of zero,

{k ∈N : xk − x0 < V} ∈ I.
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i.e.,

{k ∈N : xk − x0 ∈ V} ∈ F .

In this case, we write I(τ) − limk→∞ xk = x0 or (xk)
I(τ)
−→ x0.

Example 3.1. Let us consider the locally solid Riesz space (R2, ||.||) with the Euclidean norm ||.|| and
coordinatewise ordering. In this space, let us define a sequence (xk) by

xk =

{
(1 + 1

k+1 , 2 + 5
k+1 ), if k , n2;

(4, 4), if k = n2.

for each n ∈N.The family Nsol of all Uε defined by

Uε = {x ∈ R2 : ||x|| < ε},

where 0 < ε ∈ R constitutes a base at zero (θ = (0, 0)). For x0 = (1, 2), we have

xk − x0 =

{
( 1

k+1 ,
5

k+1 ), if k , n2;
(3, 2), if k = n2.

For each τ-neighbourhood V of zero, there exists some Uε ∈ Nsol, ε > 0 such that Uε ⊆ V and

{k ∈N : xk − x0 < Uε} ⊆ K ∪ {1, 4, 9, 16, ...,n2, ...},

where K is a finite set. Then, we have

{k ∈N : xk − x0 < V} ⊆ {k ∈N : xk − x0 < Uε}

i.e.{k ∈N : xk − x0 < V} ⊆ K ∪ {1, 4, 9, 16, ...,n2, ...}.

Since I is admissible, so we have

{k ∈N : xk − x0 < V} ∈ I.

Hence I(τ) − limk xk = (1, 2).

Definition 3.3. Let (X, τ) be a locally solid Riesz space. A sequence (xk) of points in X is said to be
I(τ)-bounded in X if for each τ-neighbourhood V of zero, there is some a > 0,

{k ∈N : axk < V} ∈ I.

Theorem 3.1. Let (X, τ) be a locally solid Riesz space. Every I(τ)-convergent sequences in X has only one limit.

Proof. Suppose that x = (xk) is a sequence in X such that I(τ)-limk xk = x0 and I(τ)-limk xk = y0.

Let V be any τ-neighbourhood of zero. Also for each τ-neighbourhood V of zero there exists Y ∈ Nsol
such that Y ⊆ V. Choose any W ∈ Nsol such that W + W ⊆ Y. We define the following sets:

A1 = {k ∈N : xk − x0 ∈W}

A2 = {k ∈N : xk − y0 ∈W}.

Since I(τ) − lim xk = x0 and I(τ) − lim xk = y0, we get A1,A2 ∈ F .
Now, let A = A1 ∩ A2. Then we have

x0 − y0 = x0 − xk + xk − y0 ∈W + W ⊆ Y ⊆ V.
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Hence for each τ-neighbourhood V of zero we have x0 − y0 ∈ V. Since (X, τ) is Hausdorff, the intersection of
all τ-neighbourhoods V of zero is the singleton set {θ}. Thus we get x0 − y0 = 0 i.e., x0 = y0.

Theorem 3.2. Let (X, τ) be a locally solid Riesz space and let (xk) and (yk) be two sequences of points in X. Then
the following hold:

(i) If I(τ)-limk xk = x0 and I(τ)-limk yk = y0 then I(τ)-limk(xk + yk) = x0 + y0.

(ii) If I(τ)-limk xk = x0 then I(τ)-limk axk = ax0 for a ∈ R.

Proof. Let V be an arbitrary τ-neighbourhood of zero. Then there exists Y ∈ Nsol such that Y ⊆ V.Choose
W ∈ Nsol such that W + W ⊆ Y. Since I(τ)-limk xk = x0 and I(τ)-limk yk = y0. We write

B1 = {k ∈N : xk − x0 ∈W}

B2 = {k ∈N : yk − y0 ∈W}.

Then we have B1,B2 ∈ F .

Let B = B1 ∩ B2. Hence we have B ∈ F and

(xk + yk) − (x0 + y0) = (xk − x0) + (yk − y0) ∈W + W ⊆ Y ⊆ V.

Therefore

{k ∈N : (xk + yk) − (x0 + y0) ∈ V} ∈ F .

Since V is arbitary, we have I(τ) − lim(xk + yk) = x0 + y0.

(ii) Let V be an arbitrary τ-neighbourhood of zero and I(τ)-limk xk = x0. Then there exists Y ∈ Nsol such
that Y ⊆ V and we have

{k ∈N : xk − x0 ∈ Y} ∈ F .

Since Y is balanced, xk − x0 ∈ Y implies that a(xk − x0) ∈ Y for every a ∈ R with |a| ≤ 1. Hence

{k ∈N : xk − x0 ∈ Y} ⊆ {k ∈N : axk − ax0 ∈ Y} ⊆ {k ∈N : xk − x0 ∈ V}.

Thus, we have

{k ∈N : xk − x0 ∈ V} ∈ F

for each τ-neighbourhood V of zero. Noew let |a| > 1 and [|a|] be the smallest integer greater than or equal
to |a|. Then there exists W ∈ Nsol such that [|a|]W ⊆ Y. Since I(τ)-limk xk = x0 we have the set

K = {k ∈N : xk − x0 ∈W} ∈ F .

Therefore

|axk − ax0| = |a||xk − x0| ≤ [|a|]|xk − x0| ∈ [|a|]W ⊆ Y ⊆ V.

Since Y is solid, we have axk − ax0 ∈ Y. This implies that axk − ax0 ∈ V. Thus,

{k ∈N : axk − ax0 ∈ V} ∈ F ,

for each τ-neighbourhood V of zero. Hence I(τ)-limk axk = ax0. This completes the proof of the theorem.
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Theorem 3.3. Let (X, τ) be a locally solid Riesz space. If a sequence (xk) in X is I(τ)-convergent, then it is
I(τ)-bounded.

Proof. Suppose that (xk) is I(τ)-convergent to a point x0 in X. Let V be an arbitrary τ-neighbourhood of
zero, there exists Y ∈ Nsol such that Y ⊆ V.We choose W ∈ Nsol such that W+W ⊆ Y. Since I(τ)-limk→∞ xk = x0,
the set

A = {k ∈N : xk − x0 <W} ∈ I.

Since W is absorbing, there exists a > 0 such thatax0 ∈ W. Let b be such that |b| ≤ 1 and b ≤ a. Since W is
solid and |bx0| ≤ |ax0|, we have bx0 ∈ W. Also, since W is balanced, xk − x0 ∈ W implies b(xk − x0) ∈ W. Then
we have

bxk = b(xk − x0) + bx0 ∈W + W ⊆ V, for each k ∈N − A.

Thus

{k ∈N : bxk <W} ∈ I.

Hence (xk) is I(τ)-bounded.

Theorem 3.4. Let (X, τ) be a locally solid Riesz space and let (xk), (yk) and (zk) be three sequences of points in X
such that

(i) xk ≤ yk ≤ zk, for all k ∈N,

(ii) I(τ)-limk xk = x0 = I(τ)-limk zk,
then I(τ)-limk yk = x0.

Proof. Let V be an arbitrary τ-neighbourhood of zero, there exists Y ∈ Nsol such that Y ⊆ V. We choose
W ∈ Nsol such that W + W ⊆ Y. From given condition (ii), we have P,Q ∈ F, where

P = {k ∈N : xk − x0 ∈W}

and

Q = {k ∈N : zk − x0 ∈W}.

Also from the given condition (i), we have

xk − x0 ≤ yk − x0 ≤ zk − x0

⇒ |yk − x0| ≤ |xk − x0| + |zk − x0| ∈W + W ⊆ Y.

Since Y is solid, we have yk − x0 ∈ Y ⊆ V. Thus,

{k ∈N : yk − x0 ∈ V} ∈ F ,

for each τ-neighbourhood V of zero. Hence I(τ)-limk yk = x0. This completes the proof of the theorem.

4. I(τ)-Cauchy and I∗(τ)-convergence in locally solid Riesz spaces

Definition 4.1. Let (X, τ) be a locally solid Riesz space. A sequence (xk) of points in X is said to be
I(τ)-Cauchy in X if for each τ-neighbourhood V of zero, there is an integer n ∈N,

{k ∈N : xk − xn < V} ∈ I.
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Theorem 4.1. Let (X, τ) be a locally solid Riesz space. A sequence (xk) is I(τ)-convergent to x0 in X if and only if
for each τ-neighbourhood V of zero there exists a subsequence (xk′(r)) of (xk) such that limr→∞ xk′(r) = x0 and

{k ∈N : xk − xk′(r) < V} ∈ I.

Proof. Let x = (xk) be a sequence in X such that I(τ) − limk→∞ xk = x0. Let V be an arbitrary τ-
neighbourhood of zero. Let {Vn} be a sequence of nested base of τ-neighbourhoods of zero. We write

E(i) = {k ∈N : xk − x0 < Vi},

for any positive integer i. Then for each i,we have E(i+1)
⊂ E(i) and E(i)

∈ F.Choose n(1) such that r > n(1), then
E(1) , φ. Then for each positive integer r such that n(1) ≤ r < n(2), choose k′(r) ∈ E(i) i.e. xk′(r) − x0 ∈ V1. In
general, choose n(p+1) > n(p) such that r > n(p+1), then E(p+1) , φ.Then for all r satisfying n(p) ≤ r < n(p+1),
choose k′(r) ∈ E(p) i.e. xk′(r) − x0 ∈ Vp. Hence it follows that limr xk′(r) = x0.

Since V is an arbitrary τ-neighbourhood of zero, there exists Y ∈ Nsol such that Y ⊆ V. Choose W ∈ Nsol
such that W + W ⊆ Y. Now we have

xk − xk′(r) = xk − x0 + xk′(r) − x0 ∈W + W ⊆ Y ⊆ V.

Since I(τ) − limk→∞ xk = x0 and limr→∞ xk′(r) = x0 implies that

{k ∈N : xk − xk′(r) < V} ∈ I.

Next suppose for an arbitrary τ-neighbourhood V of zero there exists a subsequence (xk′(r)) of (xk) such that
limr→∞ xk′(r) = x0 and

{k ∈N : xk − xk′(r) < V} ∈ I.

Since V is any τ-neighbourhood of zero, we choose W ∈ Nsol such that W + W ⊆ V. Then we have

xk − x0 = xk − xk′(r) + xk′(r) − x0 ∈W + W ⊆ V.

i.e.

{k ∈N : xk − x0 < V} ⊆ {k ∈N : xk − xk′(r) <W} ∪ {r ∈N : xk′(r) − x0 <W}.

Therefore

{k ∈N : xk − x0 < V} ∈ I.

This completes the proof of the theorem.

Theorem 4.2. If limk→∞ xk = x0 and I(τ) − limk→∞ yk = 0, then I(τ) − limk→∞(xk + yk) = limk→∞ xk.

Proof. Let V be any τ-neighbourhood of 0. Then there exists Y ∈ Nsol such that Y ⊆ V. Choose W ∈ Nsol
such that W + W ⊆ Y. Since limk→∞ xk = x0, then there exists an integer n0 such that k ≥ n0 implies that
xk − x0 ∈W. Hence

{k ∈N : xk − x0 <W} ⊆N − {n0}.

By assumption I(τ) − limk→∞ yk = 0, then we have {k ∈N : yk <W} ∈ I. Thus

{k ∈N : (xk − x0) + yk < V} ⊆ {k ∈N : xk − x0 <W} ∪ {k ∈N : yk <W}.

i.e.

{k ∈N : (xk − x0) + yk < V} ∈ I.
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This implies that I(τ) − limk→∞(xk + yk) = limk→∞ xk.

Theorem 4.3. Let (X, τ) be a locally solid Riesz space and let x = (xk) be a sequence in X. If there is a I(τ)-
convergent sequence y = (yk) in X such that {k ∈N : yk , xk < V} ∈ I then x is also I(τ)-convergent.

Proof. Suppose that {k ∈N : yk , xk < V} ∈ I and I(τ)−limk yk = x0.Then for an arbitrary τ-neighborhood
V of zero, we have

{k ∈N : yk − x0 < V} ∈ I.

Now,

{k ∈N : xk − x0 < V} ⊆ {k ∈N : yk , xk < V} ∪ {k ∈N : yk − x0 < V}.

Therefore we have

{k ∈N : xk − x0 < V} ∈ I.

This completes the proof of the theorem.

Definition 4.2. Let (X, τ) be a locally solid Riesz space. A sequence x = (xk) in X is said to be I∗(τ)-
convergent to x0 if there exists a set K = {k1 < k2 < · · · < kr < . . . } ⊆ N with K ∈ F suh that limk xk = x0. In
this case we write I∗(τ)-limk xk = x0.

Theorem 4.4. Let (X, τ) be a locally solid Riesz space. A sequence x = (xk) in X is I(τ)-convergent to x0 if and
only if it is I∗(τ)-convergent to x0.

Proof. Suppose that I∗(τ)-limk xk = x0. Let V be an arbitrary τ-neighbourhood V of zero. Since I∗(τ)-
limk xk = x0, there is a set K = {k1 < k2 < ...} ⊂ N with K ∈ F and n ∈ N such that k ≥ n and k ∈ K imply
xk − x0 ∈ V. Then

K1 = {k ∈N : xk − x0 < V} ⊆N − {kn+1, kn+2, ...}.

Therefore

K1 ∈ I.

Hence x is I(τ)-convergent to x0.

Next suppose that x is I(τ)-convergent to x0. For a fix countable local base V1 ⊃ V2 ⊃ ..... at x0. For each
j ∈N, we put

K j = {k ∈N : xk − x0 < V j}

and

M j = {k ∈N : xk − x0 ∈ V j}.

Then K j ∈ I and

M1 ⊃M2 ⊃ ... ⊃M j ⊃M j+1 ⊃ ... (1)

and

M j ∈ F, j = 1, 2, 3.... (2)
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Now we show that for k ∈M j, (xk) is convergent to x0. Suppose that (xk) is not convergent to x0. Therefore
xk − x0 < V j for infinitely many terms. Let

Mi = {k ∈N : xk − x0 ∈ Vi} (i > j).

Then Mi ∈ I, by using (1) we get M j ⊂ Mi. Hence M j ∈ I which contardicts (2). Therefore (xk) is convergent
to x0. Hence x is I∗(τ)-convergent to x0. This completes the proof of the theorem.

Theorem 4.5. The sequential method I(τ) is regular, i.e. if τ − lim xk = x0 then I(τ) − lim xk = x0.

Proof. Proof of the theorem is straightforward.

Theorem 4.6. The sequential method I(τ) is subsequential.

Proof. Proof of the theorem follows from the Theorem 4.4.

5. I-sequentially continuous in locally solid Riesz spaces

Definition 5.1. Let (X1, τ1) and (X2, τ2) be locally solid Riesz spaces and S ⊂ X1. A function f : S → X2

is said to be I-sequentially continuous at a point x0 ∈ S, if xk
I(τ1)
→ x0 in S implies that f (xk)

I(τ2)
→ f (x0) in X2.

Theorem 5.1. Let (X, τ) be a locally solid Riesz space. Any I-sequentially continuous function at a point x0 is
τ-continuous at x0.

Proof. Let f be any I-sequentially continuous function at a point x0. Since any proper admissible ideal
is a regular subsequential method by Theorem 4.5 and 4.6, it follows that f is τ-continuous.

Corollary 5.2. Let (X, τ) be a locally solid Riesz space. Any I-sequentially continuous function at a point x0 is
I-continuous at x0.

As statistical limit is an I-sequential method we get:

Corollary 5.3. Let (X, τ) be a locally solid Riesz space. A function is statistically continuous at a point x0 if and
only if it is τ-continuous at x0.

Theorem 5.4. Let (X1, τ1) and (X2, τ2) be locally solid Riesz spaces. If a function f : X1 → X2 is uniformly
continuous, then f is I-continuous.

Proof. Let the function f : X1 → X2 be uniformly continuous and xk
I(τ1)
→ x0 holds in X1. Let us denote

the zeros of X1 and X2 by θ1 and θ2, respectively. Let V be an arbitrary τ2-neighbourhood of θ2. Since f is
uniformly continuous, there exists some τ1-neighborhood W of θ1 such that

x − y ∈W ⇒ f (x) − f (y) ∈ V for all x, y ∈ X1. (3)

Since xk
I(τ1)
→ x0, we have A ∈ F , where A = {k ∈N : xk − x0 ∈W}. Using (3) we have

f (xk) − f (x0) ∈ V for each k ∈ A.

Then we get

A ⊆ {k ∈N : f (xk) − f (x0) ∈ V},
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and hence

{k ∈N : f (xk) − f (x0) ∈ V} ∈ F .

Thus f (xk)
I(τ2)
→ f (x0). This shows that f is I-continuous.

Theorem 5.5. Let (X, τ) be a locally solid Riesz space. Then the following mappings
(i) (X, τ) × (X, τ)→ (X, τ) : (x, y) 7−→ x ∨ y,
(ii) (X, τ) × (X, τ)→ (X, τ) : (x, y) 7−→ x ∧ y,
(iii) (X, τ)→ (X, τ) : (x, y) 7−→ |x|,
(iv) (X, τ)→ (X, τ) : (x, y) 7−→ x−,
(v) (X, τ)→ (X, τ) : (x, y) 7−→ x+

are all I-continuous.

Proof. (i) Let I(τ×τ)− lim(xk, yk) = (x, y) and V be an arbitrary τ-neighbourhood of zero in X. Then there
exists a Y ∈ Nsol such that Y ⊆ V.Let us choose W ∈ Nsol such that W+W ⊆ Y. Since I(τ×τ)−lim(xk, yk) = (x, y),
we have

A = {k ∈N : (xk − x, yk − y) ∈W ×W} ∈ F .

Also we have

|xk ∨ yk − x ∨ y| ≤ |xk − x| + |yk − y| ∈W + W ⊆ Y for each k ∈ A.

Since Y is solid, we have

xk ∨ yk − x ∨ y ∈ Y, for each k ∈ A.

Then we get

A ⊆ {k ∈N : xk ∨ yn − x ∨ y ∈ V}

and hence

{k ∈N : xn ∨ yk − x ∨ y ∈ V} ∈ F .

Therefore we have I(τ) − lim(xk ∨ yk) = (x ∨ y).

(ii) Let V be an arbitrary τ-neighbourhood of zero in X. Then there exists a Y ∈ Nsol such that Y ⊆ V. Let
us choose W ∈ Nsol such that W + W ⊆ Y. Let I(τ × τ) − lim(xk, yk) = (x, y). Then we have

A = {k ∈N : (xk − x, yn − y) ∈W ×W} ∈ F .

Also we have

|xk ∧ yk − x ∧ y| = | − [(−xk) ∨ (−yk)] + [(−x) ∨ (−y)]|

≤ |(−x) − (−xk)| + |(−y) − (−yk)|

= |xk − x| + |yk − y| ∈W + W ⊆ Y for each k ∈ A.

Since Y is solid, we have

xk ∧ yk − x ∧ y ∈ Y, for each k ∈ A.

Then we get

A ⊆ {k ∈N : xk ∧ yk − x ∧ y ∈ V}
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and hence

{k ∈N : xk ∧ yk − x ∧ y ∈ V} ∈ F .

Therefore we have I(τ) − lim(xk ∧ yk) = (x ∧ y).

(iii) Let V be an arbitrary τ-neighbourhood of zero in X. Then there exists a Y ∈ Nsol such that Y ⊆ V. Let
us choose W ∈ Nsol such that W + W ⊆ Y. Let I(τ) − lim xk = x. Then we have

A = {k ∈N : xk − x ∈W} ∈ F .

Also we have

|xk| − |x| = |[xk ∨ (−xk)] − [x ∨ (−x)]|

≤ |xk − x| + |(−xk) − (−x)| ∈W + W ⊆ Y for each k ∈ A.

Since Y is solid, we have

|xk| − |x| ∈ Y, for each k ∈ A.

Then we get

A ⊆ {k ∈N : |xk| − |x| ∈ V}

and hence

{k ∈N : |xk| − |x| ∈ V} ∈ F .

Therefore we have I(τ) − lim |xk| = |x|.

(iv) Let V be an arbitrary τ-neighbourhood of zero in X. Then there exists a Y ∈ Nsol such that Y ⊆ V. Let
us choose W ∈ Nsol such that W + W ⊆ Y. Let I(τ) − lim xk = x. Then we have

A = {k ∈N : xk − x ∈W} ∈ F .

Also we have

|x−k − x−| = |[(−xk) ∨ 0] − [(−x) ∨ 0]|

≤ |(−xk) − (−x)| + |0 + 0| = |xk − x| ∈W ⊆ Y for each k ∈ A.

Since Y is solid, we have

x−k − x− ∈ Y, for each k ∈ A.

Then we get

A ⊆ {k ∈N : x−k − x− ∈ V}

and hence

{k ∈N : x−k − x− ∈ V} ∈ F .

Therefore we have I(τ) − lim x−k = x−.
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(v) Let V be an arbitrary τ-neighbourhood of zero in X. Then there exists a Y ∈ Nsol such that Y ⊆ V. Let
us choose W ∈ Nsol such that W + W ⊆ Y. Let I(τ) − lim xk = x. Then we have

A = {k ∈N : xk − x ∈W} ∈ F .

Also we have

|x+
k − x+

| = |(xk ∨ 0) − (x ∨ 0)|

≤ |xk − x| + |0 + 0| = |xk − x| ∈W ⊆ Y for each k ∈ A.

Since Y is solid, we have

x+
k − x+

∈ Y, for each k ∈ A.

Then we get

A ⊆ {k ∈N : x+
k − x+

∈ V}

and hence

{k ∈N : x+
k − x+

∈ V} ∈ F .

Therefore we have I(τ) − lim x+
k = x+.

Definition 5.2. Let (X, τ) be a locally solid Riesz space. A sequence (xk) in X is called slowly oscil-
lating if , for each τ-neighbourhood V of zero, there exists a positive integer n0 and δ > 0 such that if
n0 ≤ k ≤ n ≤ (1 + δ)k, then xk − xn ∈ V.

Now we give a Tauberian theorem.
Theorem 5.6. Let (X, τ) be a locally solid Riesz space. If (xk) is statistically convergent and slowly oscillating,

then it is convergent.

Proof. Let S(τ) − lim xk = x0. Then we have a subsequence (im) with 1 ≤ i1 ≤ i2 ≤ ... ≤ im ≤ ... of those
indices n for which yn = xn. Since

lim
k→∞

1
k
|{n ≤ k : xn , yn}| = 0.

Then we have

lim
m→∞

1
im
|{n ≤ im : xn = yn}| = lim

m→∞

m
im

= 1.

Consequently, it follows that

lim
m→∞

im+1

im
= lim

m→∞

im+1

m + 1
.
m + 1

m
.
m
im

= 1. (4)

By the definition of (im), we get

lim
m→∞

xim = lim
m→∞

yim = x0. (5)

By (4) and (5) we conclude that for each closed τ-neighbourhood V of zero, there exists a positive integer
n0 such that if m > n0 then (xk − xim ) ∈ V whenever im < k < im+1. Since V is arbitrary, it follows that

lim
m→∞

(xm − xim ) = 0.

By (5.3), we have (xm) is convergent to x0. This completes the proof of the theorem.
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