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The Sequence Space BVI
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Abstract. In this article we introduce the sequence space BVI
σ(p) for p = (pk), a sequence of positive real

numbers and study the topological properties and some inclusion relations on this space.

1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively. We write

ω = {x = (xk) : xk ∈ R or C },

the space of all real or complex sequences.

Let `∞, c and c0 denote the Banach spaces of bounded, convergent and null sequences respectively normed
by ||x||∞ = sup

k
|xk|.

The following subspaces of ω were first introduced and discussed by Maddox[6-7].
`(p) = {x ∈ ω :

∑
k
|xk|

pk < ∞},

`∞(p) = {x ∈ ω : sup
k
|xk|

pk < ∞},

c(p) := {x ∈ ω : lim
k
|xk − l|pk = 0, for some l ∈ C },

c0(p) := {x ∈ ω : lim
k
|xk|

pk = 0, },

where p = (pk) is a sequence of striclty positive real numbers.

After then Lascarides[2-3] defined the following sequence spaces
`∞{p} = {x ∈ ω : there exists r > 0 such that sup

k
|xkr|pk tk < ∞},

c0{p} = {x ∈ ω : there exists r > 0 such that lim
k
|xkr|pk tk = 0, },

`{p} = {x ∈ ω : there exists r > 0 such that
∞∑

k=1
|xkr|pk tk < ∞},

Where tk = p−1
k , for all k ∈ N.
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Let v denote the space of sequences of bounded variation, that is

v = {x = (xk) :
∞∑

k=0

|xk − xk−1| < ∞, x−1 = 0}.

v is a Banach space normed by

||x|| =
∞∑

k=0

|xk − xk−1|(See[15]).

Let σ be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear
functional φ on `∞ is said to be an invariant mean or σ-mean if and only if

(1) φ(x) ≥ 0 where the sequence x = (xk) has xk ≥ 0 for all k,
(2) φ(e) = 1, where e = {1, 1, 1, ....}, and
(3) φ(xσ(n)) = φ(x) for all x ∈ `∞.

In case σ is the translation mapping n→n+1, a σ-mean is often called a Banach limit(See[20]) and Vσ, the set
of bounded sequences all of whose invariant means are equal, is the set of almost convergent sequences.
If x = (xk), set Tx = {Txk} = {xσ(n)}.

It can be shown that

Vσ = {x = (xk) : lim
m→∞

tm,k(x) = L uniformly in k, L = σ − lim x} [1]

where m ≥ 0, k > 0

tm,k(x) =
xk + xσ(k) + ..... + xσm(k)

m + 1
, and t−1,k = 0.(See[4]).

where σm(k) denotes the mth iterate of σ at k. The special case of [1] in which σ(n)=n+1 was given by
(Lorentz[4,Theorem.1.]), and that the general result can be proved in a similar way. It is familiar that a
Banach limit extends the limit functional on c.

Theorem.1.1 (See[15,Theorem.1.1]) A σ-mean extends the limit functional on c in the sense that φ(x) = lim x
for all x ∈ c if and only if σ has no finite orbits, that is to say, if and only if, for all k ≥ 0, j ≥ 1.

σ j(k) , k

. Put
φm,k(x) = tm,k(x) − tm−1,k(x),

assuming that t−1,k = 0. A straight forward calculation shows (See[14]) that

φm,k(x) =


1

m(m+1)

m∑
j=1

J(xσ j(k) − xσ j−1(k)) (m≥1)

xk, (m = 0)

For any sequence x, y and scalar λ we have

φm,k(x + y) = φm,k(x) + φm,k(y) and φm,k(λx) = λφm,k(x).

Definition.1.2. A sequence x ∈ `∞ is of σ- bounded variation if and only if

(1)
∞∑

m=0
|φm,k(x)| converges uniformly in k, and
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(2) lim
m→∞

tm,k(x), which must exist, should take the same value for all k.

Mursaleen [15] defined the sequence space BVσ, the space of all sequences of σ-bounded variation

BVσ = {x ∈ `∞ :
∑

m

|φm,k(x)| < ∞,uniformly in k}.

Theorem.1.3.(See[15,Theorem.2.2]). BVσ is a Banach space normed by

||x|| = sup
k

∞∑
m=0

|φm,k(x)|.

The concept of statistical convergence was first introduced by Fast[5] and also independently by Buck[19]
and Schoenberg [8] for real and complex sequences.Further this concept was studied by Connor[9-10], Con-
nor, Fridy and Kline [11]and many others. Statistical convergence is a generalization of the usual notion of
convergence that parallels the usual theory of convergence.

A sequence x = (xk) is said to be Statistically convergent to L if for a given ε > 0

lim
k

1
k
|{i : |xi − L| ≥ ε, i ≤ k}| = 0.

The notion of I-convergence is a generalization of the statistical convergence. At the initial stage it was
studied by Kostyrko, Šalát, Wilczyński[16]. Later on it was studied by Šalát, Tripathy, Ziman[22-23] and
Demirci[13]. Recentlly further it was studied by Tripathy and Hazarika[1], Khan and Ebadullah[25-26].

Here we give some preliminaries about the notion of I-convergence.

Let X be a non empty set. Then a family of sets I ⊆ 2X(2X denoting the power set of X) is said to be an ideal
if I is additive i.e A,B ∈ I⇒ A ∪ B ∈ I and hereditary i.e A ∈ I,B ⊆ A⇒ B ∈ I.

A non-empty family of sets f (I) ⊆ 2X is said to be filter on X if and only if φ < f (I), for A,B ∈ f (I) we have
A ∩ B ∈ f (I) and for each A ∈ f (I) and A ⊆ B implies B ∈ f (I).

An Ideal I ⊆ 2X is called non-trivial if I , 2X.
A non-trivial ideal I ⊆ 2X is called admissible if

{{x} : x ∈ X} ⊆ I.

A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J , I containing I as a subset. For
each ideal I, there is a filter f (I) corresponding to I. i.e

f (I) = {K ⊆ N : Kc
∈ I},

where
Kc = N − K.

Definition 1.4. A sequence (xk) ∈ ω is said to be I-convergent to a number L if for every ε > 0,

{k ∈ N : |xk − L| ≥ ε} ∈ I.

In this case we write I − lim xk = L.
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The space cI of all I-convergent sequences to L is given by

cI = {(xk) ∈ ω : {k ∈ N : |xk − L| ≥ ε} ∈ I, for someL ∈ C }.

Definition 1.5. A sequence (xk) ∈ ω is said to be I-null if L = 0 .In this case we write I − lim xk = 0.

Definition 1.6. A sequence (xk) ∈ ω is said to be I-cauchy if for every ε > 0 there exists a number m = m(ε)
such that

{k ∈ N : |xk − xm| ≥ ε} ∈ I.

Definition 1.7. A sequence (xk) ∈ ω is said to be I-bounded if there exists M > 0 such that

{k ∈ N : |xk| > M} ∈ I.

Definition 1.8. For any set E of sequences the space of multipliers of E, denoted by M(E) is given by

M(E) = {a ∈ ω : ax ∈ E for all x ∈ E}(see[21]).

Definition 1.9. A map ~ defined on a domain D ⊂ X i.e ~ : D ⊂ X→ R is said to satisfy Lipschitz condition if
|~(x)− ~(y)| ≤ K|x− y|where Kis known as the Lipschitz constant.The class of K-Lipschitz functions defined
on D is denoted by ~ ∈ (D,K).(see[25]).

Definition 1.10. A convergence field of I-covergence is a set

F(I) = {x = (xk) ∈ `∞ : there exists I − lim x ∈ R}.

The convergence field F(I) is a closed linear subspace of `∞ with respect to the supremum norm, F(I) =
`∞ ∩ cI(See[22,23]).

Define a function ~ : F(I) → R such that ~(x) = I − lim x, for all x ∈ F(I), then the function ~ : F(I) → R is a
Lipschitz function (see[22,23,25])(c.f.[9],[12],[17],[18],[21],[24],[27]).

Recently khan, Ebadullah and Suantai[26] defined the following sequence space

BVI
σ = {(xk) ∈ ω : {k ∈ N : |φm,k(x) − L| ≥ ε} ∈ I, for some L∈ C }.

Main Results.

In this article we introduce the sequence space.

BVI
σ(p) = {(xk) ∈ ω : {k ∈ N : |φm,k(x) − L|pk ≥ ε} ∈ I, for some L∈ C }.

Theorem 2.1. BVI
σ(p) is a linear space.

Proof. Let (xk), (yk) ∈ BVI
σ(p) and let α, β be scalars. Then for a given ε > 0.

we have
{k ∈ N : |φm,k(x) − L1|

pk ≥
ε

2M1
, for some L1 ∈ C} ∈ I

{k ∈ N : |φm,k(y) − L2|
pk ≥

ε
2M2

, for some L2 ∈ C} ∈ I

where
M1 = D.max{1, sup

k
|α|pk }
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M2 = D.max{1, sup
k
|β|pk }

and
D = max{1, 2H−1

} where H = sup
k

pk ≥ 0.

Let
A1 = {k ∈ N : |φm,k(x) − L1|

pk <
ε

2M1
, for some L1 ∈ C} ∈ f (I)

A2 = {k ∈ N : |φm,k(y) − L2|
pk <

ε
2M2

, for some L2 ∈ C} ∈ f (I)

be such that Ac
1, Ac

2 ∈ I. Then

A3 = {k ∈ N : |(αφm,k(x) + βφm,k(y) − (αL1 + βL2)|pk ) < ε}

⊇ {k ∈ N : |α|pk |φm,k(x) − L1|
pk <

ε
2M1
|α|pk .D}

∩{k ∈ N : |β|pk |φm,k(y) − L2|
pk <

ε
2M2
|β|pk .D}.

Thus
Ac

3 = Ac
1 ∩ Ac

2 ∈ I.

Hence
(αφm,k(x) + βφm,k(y)) ∈ BVI

σ(p).

Hence BVI
σ(p) is a linear space.

Theorem 2.2. Let (pk) ∈ `∞. Then BVI
σ(p) is a paranormed space, paranormed by ||x||∗ = sup

k
|φm,k(x)|

pk
M where

M = max{1, sup
k

pk}.

Proof. Let x = (xk), y = (yk) ∈ BVI
σ(p).

(1) Clearly, ||x||∗ = 0 if and only if x = 0.
(2) ||x||∗ = || − x||∗ is obvious.
(3) Since pk

M ≤ 1 and M > 1, using Minkowski’s inequality we have

sup
k
|φm,k(x) + φm,k(y)|

pk
M ≤ sup

k
|φm,k(x)|

pk
M + sup

k
|φm,k(y)|

pk
M .

(4) Now for any complex λ we have (λk) such that λk → λ, (k→∞).
Let (xk) ∈ BVI

σ(p) such that |φm,k(x) − L|pk ≥ ε.
Therefore, ||φm,k(x) − L||∗ = sup

k
|φm,k(x) − L|

pk
M ≤ sup

k
|φm,k(x)|

pk
M + sup

k
|L|

pk
M .

Hence ||λnφm,k(x) − λL)||∗ ≤ ||λnφm,k(x)||∗ + ||λL||∗ = λn||φm,k(x)||∗ + λ||L||∗ as (k→∞).
Hence BVI

σ(p) is a paranormed space.

Theorem 2.3. BVI
σ(p) is a closed subspace of `∞(p).

Proof. Let (x(n)
k ) be a cauchy sequence in BVI

σ(p) such that x(n)
→ x.

We show that x ∈ BVI
σ(p).

Since (x(n)
k ) ∈ BVI

σ(p), then there exists an such that

{k ∈ N : |φm,k(x(n)) − an|
pk ≥ ε} ∈ I.

We need to show that
(1) (an) converges to a.
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(2) If U = {k ∈ N : |xk − a|pk < ε}, then Uc
∈ I.

(1) Since (x(n)
k ) is a cauchy sequence in BVI

σ(p) then for a given ε > 0, there exists k0 ∈ N such that

sup
k
|φm,k(x(n)

k ) − φm,k(x(i)
k )|

pk
M <

ε
3
, for all n,i ≥ k0

For a given ε > 0, we have

Bni = {k ∈ N : |φm,k(x(n)
k ) − φm,k(x(i)

k )|pk < (
ε
3

)M
}

Bi = {k ∈ N : |φm,k(x(i)
k ) − ai|

pk < (
ε
3

)M
}

Bn = {k ∈ N : |φm,k(x(n)
k ) − an|

pk < (
ε
3

)M
}

Then Bc
ni,B

c
i ,B

c
n ∈ I. Let

Bc = Bc
ni ∩ Bc

i ∩ Bc
n,

where
B = {k ∈ N : |ai − an|

pk < ε} ∈ f (I).

Then Bc
∈ I. We choose k0 ∈ Bc,then for each n, i ≥ k0, we have

{k ∈ N : |ai − an|
pk < ε} ⊇ {k ∈ N : |φm,k(x(i)

k ) − ai|
pk < (

ε
3

)M
}

∩ {k ∈ N : |φm,k(x(n)
k ) − φm,k(x(i)

k )|pk < (
ε
3

)M
}

∩ {k ∈ N : |φm,k(x(n)
k ) − an|

pk < (
ε
3

)M
}

Then (an) is a cauchy sequence of scalars in C, so there exists a scalar a ∈ C such that (an)→ a, as n→∞.

(2) Let 0 < δ < 1 be given. Then we show that if

U = {k ∈ N : |φm,k(x) − a|pk < δ},

then Uc
∈ I. Since φm,k(x(n))→ φm,k(x), then there exists q0 ∈ N such that

P = {k ∈ N : |φm,k(x(q0)
− φm,k(x)|pk < (

δ
3D

)M
} [2]

which implies that Pc
∈ I.

The number q0 can be so choosen that together with [2], we have

Q = {k ∈ N : |aq0 − a|pk <
δ

3D
}

such that Qc
∈ I. Since

{k ∈ N : |φm,k(x(q0)
k ) − aq0 |

pk ≥ δ} ∈ I.

Then we have a subset S of N such that Sc
∈ I, where

S = {k ∈ N : |φm,k(x(q0)
k ) − aq0 |

pk < (
δ

3D
)M
}.

Let Uc = Pc
∩Qc

∩ Sc, where
U = {k ∈ N : |φm,k(x) − a|pk < δ}.
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Therefore for each k ∈ Uc, we have

{k ∈ N : |φm,k(x) − a|pk < δ} ⊇ {k ∈ N : |φm,k(x(q0)
− φm,k(x)|pk < (

δ
3D

)M
}

∩ {k ∈ N : |φm,k(x(q0)
k ) − aq0 |

pk < (
δ

3D
)M
}

∩ {k ∈ N : |aq0 − a|pk < (
δ
3

)M
}.

Then the result follows.
Since the inclusion BVI

σ(p) ⊂ `I
∞(p) is strict so in view of Theorem 2.3 we have the following result.

Theorem 2.4. The space BVI
σ(p) is nowhere dense subset of `∞(p).

Theorem 2.5. The space BVI
σ(p) is not seperable.

Proof. Let M = {m1 < m2 < m3 < .......} be an infinite subset of N such that M ∈ I.
Let

pk =

{
1, if k∈M,

2, otherwise.

Let
P0 = {(xk) : φm,k(x) = 0 or 1, for k = m j, j ∈ N and φm,k(x) = 0, otherwise}.

Since M is infinite, so P0 is uncountable. Consider the class of open balls

B1 = {B(z,
1
2

) : z ∈ P0}.

Let C1 be an open cover of BVI
σ(p) containing B1. Since B1 is uncountable, so C1 cannot be reduced to a

countable subcover for BVI
σ(p).Thus BVI

σ(p) is not seperable.

Theorem 2.6. The function ~ : BVI
σ(p)→ R is the Lipschitz function and is uniformly continuous.

Proof. Let x, y ∈ BVI
σ(p) and x , y.Then the sets

Ax = {k ∈ N : |φm,k(x) − ~(x)|pk ≥ ||x − y||∗} ∈ I,

Ay = {k ∈ N : |φm,k(y) − ~(y)|pk ≥ ||x − y||∗} ∈ I.

Thus the sets,
Bx = {k ∈ N : |φm,k(x) − ~(x)|pk < ||x − y||∗} ∈ f (I),

By = {k ∈ N : |φm,k(y) − ~(y)|pk < ||x − y||∗} ∈ f (I).

Hence also
B = Bx ∩ By ∈ f (I),

so that B , φ.Now taking k ∈ B,

|~(x) − ~(y)|pk ≤ |~(x) − φm,k(x)|pk + |φm,k(x) − φm,k(y)|pk + |φm,k(y) − ~(y)|pk

≤ 3||x − y||∗.

Thus ~ is a Lipschitz function.
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Theorem 2.7. cI
0(p) ⊂ BVI

σ(p) ⊂ `I
∞(p).

Proof. Let (xk) ∈ cI
0(p).

Then we have
{k ∈ N : |xk|

pk ≥ ε} ∈ I.

Since c0 ⊂ BVσ. (xk) ∈ BVI
σ(p) implies

{k ∈ N : |φm,k(x)|pk ≥ ε} ∈ I.

Now let
A1 = {k ∈ N : |xk|

pk < ε} ∈ f (I).

A2 = {k ∈ N : |φm,k(x)|pk < ε} ∈ f (I).

be such that Ac
1,A

c
2 ∈ I. As

`∞(p) = {x = (xk) : sup
k
|xk|

pk < ∞},

taking supremum over k we get Ac
1 ⊂ Ac

2. Hence

cI
0(p) ⊂ BVI

σ(p) ⊂ `I
∞(p).

Theorem 2.8. cI(p) ⊂ BVI
σ(p) ⊂ `I

∞(p).

Proof. Let (xk) ∈ cI(p). Then we have

{k ∈ N : |xk − L|pk ≥ ε} ∈ I.

Since c ⊂ BVσ ⊂ `∞
(xk) ∈ BVI

σ(p) implies
{k ∈ N : |φm,k(x) − L|pk ≥ ε} ∈ I.

Now let
B1 = {k ∈ N : |φk − L|pk < ε} ∈ f (I).

B2 = {k ∈ N : |φm,k(x) − L|pk < ε} ∈ f (I).

be such that Bc
1,B

c
2 ∈ I. As

`∞(p) = {x = (xk) : sup
k
|xk|

pk < ∞},

taking supremum over k we get Bc
1 ⊂ Bc

2. Hence

cI(p) ⊂ BVI
σ(p) ⊂ `I

∞(p).

Theorem 2.9. If H = sup
k

pk < ∞, then we have `I
∞ ⊂M(BVI

σ(p)), where the inclusion may be proper.

Proof. Let a ∈ `I
∞.This implies that sup

k
|ak| < 1 + K. for some K > 0 and all k.

Therefore x ∈ BVI
σ(p) implies

sup
k

(|akφm,k(x)|pk ) ≤ (1 + K)H sup
k

(|φm,k(x)|pk ) < ∞.
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which gives `I
∞ ⊂M(BVI

σ(p)).
To show that the inclusion may be proper, consider the case when pk = 1

k for all k. Take ak = k for all
k.Therefore x ∈ BVI

σ(p) implies

sup
k

(|akφm,k(x)|pk ) ≤ sup
k

(|k|
1
k ) sup

k
(|φm,k(x)|pk ) < ∞.

Thus in this case a = (ak) ∈M(BVI
σ(p)) while a < `I

∞.

Theorem 2.10. Let (pk) and (qk) be two sequences of positive real numbers. Then BVI
σ(p) ⊇ BVI

σ(q) if and
only if lim

k∈K
inf pk

qk
> 0, where Kc

⊆ N such that K ∈ I.

Proof. Let lim
k∈K

inf pk
qk
> 0 and (xk) ∈ BVI

σ(q).

Then there exists β > 0 such that pk > βqk, for all sufficiently large k ∈ K.
Since (xk) ∈ BVI

σ(q) for a given ε > 0, we have

B0 = {k ∈ N : |φm,k(x) − L|qk ≥ ε} ∈ I

Let G0 = Kc
∪ B0 Then G0 ∈ I.

Then for all sufficiently large k ∈ G0,

{k ∈ N : |φm,k(x) − L|pk ) ≥ ε} ⊆ {k ∈ N : |φm,k(x) − L|βqk ) ≥ ε} ∈ I.

Therefore (xk) ∈ BVI
σ(p).

The converse part of the result follows obviously.

Theorem 2.11. Let (pk) and (qk) be two sequences of positive real numbers. Then BVI
σ(q) ⊇ BVI

σ(p) if and
only if lim

k∈K
inf qk

pk
> 0, where Kc

⊆ N such that K ∈ I.

Proof. The proof follows similarly as the proof of Theorem 2.8.

Theorem 2.12. Let (pk) and (qk) be two sequences of positive real numbers. Then BVI
σ(p) = BVI

σ(q) if and
only if lim

k∈K
inf pk

qk
> 0, and lim

k∈K
inf qk

pk
> 0, where K ⊆ N such that Kc

∈ I.

Proof. On combining Theorem 2.10 and 2.11 we get the required result.
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[23] T.Šalát, B.C.Tripathy, M.Ziman. On I-convergence field, Ital.J.Pure Appl. Math.,17: 45-54(2005).
[24] V.A.Khan, K.Ebadullah, On a new difference sequence space of invariant means defined by Orlicz functions.Bull.Allahabad

Math. Soc.26(2)(2011)259-272.
[25] V.A.Khan and K.Ebadullah, On some I-Convergent sequence spaces defined by a modulus function,Theory Appl. Math. Comp.

Sci.1(2)22-30,(2011).
[26] V.A.Khan, K.Ebadullah, S.Suantai, On a new I-convergent sequence space,Analysis 32,199-208(2012).
[27] Z.U.Ahmad, M.Mursaleen, An application of Banach limits, Proc.Amer. Math. soc. 103,244-246,(1983).


