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Exponential Inequality for ρ̃-Mixing Sequences and its Applications

Aiting Shena, Huayan Zhua, Ying Zhanga

aSchool of Mathematical Sciences, Anhui University, Hefei 230601, P.R. China

Abstract. Exponential inequality and complete convergence for ρ̃-mixing sequence are given. By using the
exponential inequality, we study the asymptotic approximation of inverse moments for ρ̃-mixing sequences,
which generalizes the corresponding one for independent sequence.

1. Introduction

Let {Zn,n ≥ 1} be a sequence of independent nonnegative random variables with finite second moments.
Denote

Xn =

n∑
i=1

Zi/Bn and B2
n =

n∑
i=1

VarZi. (1.1)

We will show that under suitable conditions the following equivalence relation holds, namely,

E(a + Xn)−r
∼ (a + EXn)−r, n→∞, (1.2)

where a > 0 and r > 0 are arbitrary real numbers. Here and below, cn ∼ dn means cnd−1
n → 1 as n→∞.

The inverse moments can be applied in many practical applications. For example, they may be applied
in Stein estimation and post-stratification (see Wooff [1] and Pittenger [2]), evaluating risks of estimators
and powers of tests (see Marciniak and Wesolowski [3] and Fujioka [4]). In addition, they also appear in
the reliability (see Gupta and Akman [5]) and life testing (see Mendenhall and Lehman [6]), insruance and
financial mathematics (see Ramsay [7]), complex systems (see Jurlewicz and Weron [8]), and so on.

Under certain asymptotic-normality condition on Xn, relation (1.2) is established in Theorem 2.1 of
Garcia and Palacios [9]. But, unfortunately, that theorem is not true under the suggested assumptions,
as pointed out by Kaluszka and Okolewski [10]. The latter authors established (1.2) by modifying the
assumptions, as follows:

(i) r < 3 (r < 4, in the i.i.d. case);
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(ii) EXn →∞, EZ3
n < ∞;

(iii) (Lc condition)
n∑

i=1
E|Zi − EZi|

c/Bc
n → 0 (c = 3).

Hu et al. [11] considered weaker conditions: EZ2+δ
n < ∞, where Zn satisfies L2+δ condition and 0 < δ ≤ 1.

For more details about the inverse moment, one can refer to Wu et al. [12], Wang et al. [13], Sung [14], Shen
[15], Shen et al. [16], and so forth. The main purpose of the paper is to extend the asymptotic approximation
of inverse moment for independent sequence to the case of ρ̃-mixing sequence. It is easily seen that the key
to the proof of asymptotic approximation of inverse moment is the exponential inequality. So in Section 2,
we first give the exponential inequality for ρ̃-mixing sequence and complete convergence. In Section 3, we
study the asymptotic approximation of inverse moments for ρ̃-mixing sequence by using the exponential
inequality.

Firstly, we will give the definition of ρ̃-mixing sequence and some useful lemmas.
Let {Xn,n ≥ 1} be a random variable sequence defined on a fixed probability space (Ω,F ,P). Let n and

m be positive integers. Write F m
n = σ(Xi,n ≤ i ≤ m) and FS = σ(Xi, i ∈ S ⊂ N). Given σ-algebras B,R in F ,

let

ρ(B,R) = sup
X∈L2(B),Y∈L2(R)

|EXY − EXEY|√
Var(X) · Var(Y)

. (1.3)

Define the ρ-mixing coefficients and ρ̃-mixing coefficients by

ρ(n) = sup
k≥1

ρ(F k
1 ,F

∞

k+n), n ≥ 0, (1.4)

ρ̃(n) = sup{ρ(FS,FT ) : finite subsets S,T ⊂ N, such that dist(S,T) ≥ n}, n ≥ 0. (1.5)

Definition 1.1. A sequence {Xn,n ≥ 1} of random variables is said to be ρ-mixing if ρ(n) ↓ 0 as n→∞. A sequence
{Xn,n ≥ 1} of random variables is said to be ρ̃-mixing if there exists k ∈ N such that ρ̃(k) < 1.

Remark 1.1. We point out that ρ̃-mixing is similar to ρ-mixing, but both are quite different. In fact, ρ̃-
mixing coefficient (1.5) resembles the definition of the so-called maximal correlation coefficient (1.4), which
is defined by (1.5) with index sets restricted to subsets S of [1, k] and subsets T of [n + k,∞), n, k ∈ N.
In addition, in the definition of ρ̃-mixing, ρ̃(k) < 1 for some k ∈ N is needed. While in the definition of
ρ-mixing, ρ(n) ↓ 0 as n→∞ is needed. Bryc and Smolenski [17] pointed out that even in the stationary case,
it may happen that ρ̃(1) < 1 while limk→∞ ρ̃(k) , 0. In this case, ρ̃-mixing is more general than ρ-mixing.
For more details about the difference between ρ-mixing and ρ̃-mixing, one can refer to Bradley [18], Utev
and Peligrad [19], and so on.

The concept of ρ̃-mixing was introduced by Bradley [20]. It is easily seen that ρ̃-mixing sequence
contains independent sequence as a special case. Hence, studying the limiting behavior of ρ̃-mixing is of
great interest. For more details about ρ̃-mixing random variables, one can refer to Utev and Peligrad [19],
Zhu [21], Wu and Jiang [22-24], Wang et al. [25], Zhou et al. [26], Wu [27], and so forth.

The following lemmas are useful.
The first one is the moment inequality for ρ̃-mixing random variables with exponent 2.

Lemma 1.1. Let {Xn,n ≥ 1} be a sequence of ρ̃-mixing random variables with EXn = 0 and EX2
n < ∞ for each n ≥ 1.

Then for any a ≥ 0 and n ≥ 1,

E

 a+n∑
i=a+1

Xi


2

≤

1 + 2
n∑

k=1

ρ̃(k)

 a+n∑
i=a+1

EX2
i . (1.6)
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Proof. It follows from the definition of ρ̃-mixing sequence that

E

 a+n∑
i=a+1

Xi


2

=

a+n∑
i=a+1

EX2
i + 2

∑
a+1≤i< j≤a+n

E(XiX j)

≤

a+n∑
i=a+1

EX2
i + 2

∑
a+1≤i< j≤a+n

ρ̃( j − i)(EX2
i )1/2(EX2

j )
1/2

≤

a+n∑
i=a+1

EX2
i +

n−1∑
k=1

a+n−k∑
i=a+1

ρ̃(k)(EX2
i + EX2

k+i)

≤

a+n∑
i=a+1

EX2
i + 2

n∑
k=1

ρ̃(k)
a+n∑

i=a+1

EX2
i

=

1 + 2
n∑

k=1

ρ̃(k)

 a+n∑
i=a+1

EX2
i .

This completes the proof of the lemma. ]
The next one is the Rosenthal type maximal inequality for ρ̃-mixing random variables, which was

obtained by Utev and Peligrad [18] as follows.
Lemma 1.2. Let {Xn,n ≥ 1} be a sequence of ρ̃-mixing random variables, EXi = 0, E|Xi|

p < ∞ for some p ≥ 2 and
for every i ≥ 1. Then there exists a positive constant C depending only on p such that

E

max
1≤ j≤n

∣∣∣∣∣∣∣
j∑

i=1

Xi

∣∣∣∣∣∣∣
p ≤ C


n∑

i=1

E|Xi|
p +

 n∑
i=1

EX2
i


p/2

 .
Throughout the paper, let {Xn,n ≥ 1} and {Zn,n ≥ 1} be sequences of random variables defined on a fixed

probability space (Ω,F ,P). For random variable X, denote ‖ X ‖r= (E|X|r)1/r, r > 0. C denotes a positive
constant which may be different in various places.

2. Exponential Inequality and Complete Convergence for ρ̃-Mixing Sequence

In this section, denote Sn =
n∑

i=1
Xi and ∆2

n =
n∑

i=1
EX2

i for each n ≥ 1.

Theorem 2.1. Let {Xn,n ≥ 1} be a sequence of ρ̃-mixing random variables with EXn = 0 and |Xn| ≤ d < ∞ a.s. for
each n ≥ 1. Then for any ε > 0 and n ≥ 1,

P(Sn > ε) ≤ C1 exp
{
−

ε2

C2(4∆2
n + ndε)

}
, (2.1)

P(Sn < −ε) ≤ C1 exp
{
−

ε2

C2(4∆2
n + ndε)

}
, (2.2)

P(|Sn| > ε) ≤ 2C1 exp
{
−

ε2

C2(4∆2
n + ndε)

}
, (2.3)

where C1 = exp
{
1 + ρ̃(m + 1) + n−4m

4m

}
, C2 = 8

(
1 + 2

m∑
k=1
ρ̃(k)

)
and 1 ≤ m ≤ n is some positive integer.

Proof. For fixed n ≥ 1, by 1 ≤ m ≤ n we can see that there exists a nonnegative integer l ≤ n such that

2lm ≤ n < 2(l + 1)m. (2.4)
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For random variables X1,X2, · · · ,Xn, we construct the following random variable sequences

Y1 = X1 + X2 + · · · + Xm, Z1 = Xm+1 + Xm+2 + · · · + X2m,

Y2 = X2m+1 + X2m+2 + · · · + X3m, Z2 = X3m+1 + X3m+2 + · · · + X4m,

· · · · · ·

Yl = X2(l−1)m+1 + · · · + X(2l−1)m, Zl = X(2l−1)m+1 + · · · + X2lm.

Yl+1 =

{
0, i f 2lm ≥ n,

X2lm + · · · + Xn, i f 2lm < n.

If 2lm > n, we assume that Xn+1,Xn+2, · · · ,X2lm above are all zero. Obviously,

Sn =

n∑
i=1

Xi =

l+1∑
i=1

Yi +

l∑
i=1

Zi. (2.5)

For any 0 < t ≤ 1
4md , it follows from (2.4) that

|tYl+1| ≤ t(n − 2lm)d ≤ 2tmd < 1 a.s..

By (2.5), Markov’s inequality and Hölder’s inequality, we have

P(Sn > ε) = P(tSn > tε) ≤ exp{−tε}E exp{tSn}

= exp{−tε}E

exp {tYl+1} exp

t
l∑

i=1

Yi

 exp

t
l∑

i=1

Zi




≤ exp{1 − tε}E

exp

t
l∑

i=1

Yi

 exp

t
l∑

i=1

Zi




≤ exp{1 − tε}

E exp

2t
l∑

i=1

Yi




1/2 E exp

2t
l∑

i=1

Zi




1/2

. (2.6)

Denote ti1 = 2(i− 1)m + 1, ti2 = (2i− 1)m and ∆(i) =
ti2∑

j=ti1

EX2
j for i = 1, 2, · · · , l. It follows from Lemma 1.1 that

EY2
i ≤

1 + 2
m∑

k=1

ρ̃(k)

∆(i). (2.7)

By EYi = 0, |4tYi| ≤ 4tmd ≤ 1 a.s. and 1 + x ≤ ex (x ≥ 0), we can see that

E
(
e2tYi

)2
= Ee4tYi = 1 +

∞∑
j=2

E(4tYi) j

j!

≤ 1 +
E(4tYi)2

2!

(
1 +

1
3

+
1

4 × 3
+

1
5 × 4 × 3

+
1

6 × 5 × 4 × 3
+ · · ·

)
≤ 1 +

E(4tYi)2

2!

(
1 +

1
3

+
1
32 +

1
33 +

1
34 + · · ·

)
= 1 +

E(4tYi)2

2!
·

1
1 − 1

3

≤ 1 + 16t2EY2
i

≤ exp
{
16t2EY2

i

}
≤ exp

16t2

1 + 2
m∑

k=1

ρ̃(k)

∆(i)

 ,
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which implies that∥∥∥exp {2tYi}
∥∥∥

2
=

(
E
∣∣∣e2tYi

∣∣∣2)1/2
≤ exp

{
C2t2∆(i)

}
, i = 1, 2, · · · , l. (2.8)

Together with the definition of ρ̃-mixing sequence and 1 + x ≤ ex (x ≥ 0), it follows that

E exp

2t
l∑

i=1

Yi

 = E

exp

2t
l−1∑
i=1

Yi

 exp {2tYl}


≤ E exp

2t
l−1∑
i=1

Yi

 E exp {2tYl} + ρ̃(m + 1)

∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

∥∥∥exp {2tYl}
∥∥∥

2

≤

∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

∥∥∥exp {2tYl}
∥∥∥

2
+ ρ̃(m + 1)

∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

∥∥∥exp {2tYl}
∥∥∥

2

=
(
1 + ρ̃(m + 1)

) ∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

∥∥∥exp {2tYl}
∥∥∥

2

≤
(
1 + ρ̃(m + 1)

)
exp

{
C2t2∆(l)

} ∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

≤ exp
{
ρ̃(m + 1) + C2t2∆(l)

} ∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

.

By the generalized C-S inequality (Kuang [28, p.6]), we can get that∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

≤

l−1∏
i=1

∥∥∥exp 2tYi

∥∥∥
2(l−1)

=

l−1∏
i=1

[
E exp{4(l − 1)tYi}

] 1
2(l−1)

=

l−1∏
i=1

[
E exp{4tYi} exp{4tYi(l − 2)}

] 1
2(l−1)

≤

l−1∏
i=1

[
exp{l − 2}E

(
e2tYi

)2
] 1

2(l−1)

≤

l−1∏
i=1

exp{l − 2} exp

16t2

1 + 2
m∑

k=1

ρ̃(k)

∆(i)




1
2(l−1)

=

l−1∏
i=1

exp
{

l − 2
2(l − 1)

}
exp

 8
l − 1

t2

1 + 2
m∑

k=1

ρ̃(k)

∆(i)


= exp

{
l − 2

2

}
exp

 1
l − 1

C2t2
l−1∑
i=1

∆(i)

 .
Therefore,

E exp

2t
l∑

i=1

Yi

 ≤ exp
{
ρ̃(m + 1) + C2t2∆(l)

} ∥∥∥∥∥∥∥exp

2t
l−1∑
i=1

Yi


∥∥∥∥∥∥∥

2

≤ exp
{
ρ̃(m + 1) +

l − 2
2

+ C2t2∆2
n

}
≤ exp

{
ρ̃(m + 1) +

n − 4m
4m

+ C2t2∆2
n

}
. (2.9)
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Similarly, we also have

E exp

2t
l∑

i=1

Zi

 ≤ exp
{
ρ̃(m + 1) +

n − 4m
4m

+ C2t2∆2
n

}
. (2.10)

It follows from (2.6), (2.9) and (2.10) that

P(Sn > ε) ≤ C1 exp
{
−tε + C2t2∆2

n

}
. (2.11)

Since {−Xn,n ≥ 1} is also a sequence of ρ̃-mixing random variables with E(−Xn) = 0 and | −Xn| ≤ d < ∞ a.s.
for each n ≥ 1, it follows from (2.11) that

P(Sn < −ε) = P(−Sn > ε) ≤ C1 exp
{
−tε + C2t2∆2

n

}
. (2.12)

(2.11) and (2.12) yield that

P(|Sn| > ε) = P(Sn > ε) + P(Sn < −ε) ≤ 2C1 exp
{
−tε + C2t2∆2

n

}
. (2.13)

Take t =
2ε

C2(4∆2
n + ndε)

. It is easy to check that

C2 = 8

1 + 2
m∑

k=1

ρ̃(k)

 ≥ 8, tmd ≤
2ε

C2(4∆2
n + ndε)

nd ≤
1
4
.

Therefore, (2.11) implies that

P (Sn > ε) ≤ C1 exp
{
−

2ε2

C2(4∆2
n + ndε)

+
2ε

C2(4∆2
n + ndε)

·
2C2∆

2
nε

C2(4∆2
n + ndε)

}
≤ C1 exp

{
−

2ε2

C2(4∆2
n + ndε)

[
1 −

2∆2
n

4∆2
n + ndε

]}
≤ C1 exp

{
−

ε2

C2(4∆2
n + ndε)

}
,

which implies (2.1). Similarly, we can get inequality (2.2) and (2.3) from (2.12) and (2.13), respectively. We
complete the proof of the theorem. ]

Theorem 2.2 Let {Xn,n ≥ 1} be a sequence of ρ̃-mixing random variables with EXn = 0 and |Xn| ≤ d < ∞ a.s. for

each n ≥ 1. Assume that
∞∑

n=1
ρ̃(n) < ∞ and

∞∑
n=1

EX2
n < ∞. Then for any r > 1,

n−rSn → 0, completely, (2.14)

and in consequence n−rSn → 0 a.s..
Proof. For any n ≥ 1, we can choose a positive integer m such that n − 4m ≤ 0, which implies that C1 < ∞.
Thus, by Theorem 2.1, for any ε > 0, we obtain

∞∑
n=1

P (|Sn| > nrε) ≤ 2C1

∞∑
n=1

exp
− n2rε2

C2(4
∑n

i=1 EX2
i + ndnrε)


≤ 2C1

∞∑
n=1

exp
− n2rε2

C2(4
∑
∞

i=1 EX2
i + n1+rdε)


≤ C + C

∞∑
n=1

[
exp(−C)

]nr−1
< ∞.

This completes the proof of the theorem. ]
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3. Asymptotic Approximation of Inverse Moments for Nonnegative ρ̃-Mixing Sequence

In this section, we will study the asymptotic approximation of inverse moments for nonnegative ρ̃-
mixing random variables with non-identical distribution. The first one is based on the exponential inequality
that we established in Section 2.

Theorem 3.1. Let {Zn,n ≥ 1} be a nonnegative ρ̃-mixing sequence with
∞∑

n=1
ρ̃(n) < ∞. Suppose that

(i) EZ2
n < ∞, ∀ n ≥ 1;

(ii) EXn →∞, where Xn is defined by (1.1);
(iii) for some η > 0,

Rn(η) := B−2
n

n∑
i=1

E{Z2
i I(Zi > ηBn)} → 0, n→∞;

(iv) f or some t ∈ (0, 1) and any positive constants a, r, C,

lim
n→∞

(a + EXn)r
· exp

{
−C ·

(EXn)t

n

}
= 0.

Then for any a > 0 and r > 0, (1.2) holds
Proof. Firstly, let us decompose Xn as

Xn = Un + Vn, (3.1)

where

Un = B−1
n

n∑
i=1

ZiI(Zi ≤ ηBn), Vn = B−1
n

n∑
i=1

ZiI(Zi > ηBn), (3.2)

and denote

µ̃n = EUn, B̃2
n =

n∑
i=1

Var{ZiI(Zi ≤ ηBn)}. (3.3)

¿From (3.2) and condition (iii), it can be seen that

EVn ≤
1
ηB2

n

n∑
i=1

E{Z2
i I(Zi > ηBn)} → 0, as n→∞. (3.4)

Thus, EXn = EUn + EVn ∼ µ̃n following from condition (ii). Therefore, (1.2) will be proved if we show that

E(a + Xn)−r
∼ (a + µ̃n)−r. (3.5)

By Jensen’s inequality, we have

E(a + Xn)−r
≥ (a + EXn)−r. (3.6)

Therefore

lim inf
n→∞

(a + µ̃n)rE(a + Xn)−r
≥ lim inf

n→∞
(a + µ̃n)r(a + EXn)−r = 1. (3.7)
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It is easily seen that

B̃2
n =

n∑
i=1

{E[ZiI(Zi ≤ ηBn)]2
− [EZiI(Zi ≤ ηBn)]2

}

=

n∑
i=1

{E[Zi − ZiI(Zi > ηBn)]2
− [EZi − ZiI(Zi > ηBn)]2

}

= B2
n + 2

n∑
i=1

EZi · EZiI(Zi > ηBn) − B2
nRn(η) −

n∑
i=1

[EZiI(Zi > ηBn)]2,

hence

|B̃2
nB−2

n − 1| ≤ 2B−2
n

n∑
i=1

EZi · EZiI(Zi > ηBn) + Rn(η) + B−2
n

n∑
i=1

[EZiI(Zi > ηBn)]2. (3.8)

By Jensen’s inequality and condition (iii), we have

B−2
n

n∑
i=1

[EZiI(Zi > ηBn)]2
≤ B−2

n

n∑
i=1

EZ2
i I(Zi > ηBn) = Rn(η)→ 0. (3.9)

By condition (iii) again and (3.4),

B−2
n

n∑
i=1

EZi · EZiI(Zi > ηBn) ≤ B−2
n

n∑
i=1

EZiI(Zi ≤ ηBn) · EZiI(Zi > ηBn) + B−2
n

n∑
i=1

[EZiI(Zi > ηBn)]2

≤ ηB−1
n

n∑
i=1

EZiI(Zi > ηBn) + B−2
n

n∑
i=1

EZ2
i I(Zi > ηBn)

= ηEVn + Rn(η)→ 0, as n→∞. (3.10)

Therefore, B̃2
n ∼ B2

n follows from (3.8)-(3.10) immediately, which implies that B̃n ∼ Bn. For t ∈ (0, 1), where t
is defined in condition (iv), denote

E(a + Xn)−r = Q1 + Q2, (3.11)

where

Q1 = E(a + Xn)−rI(Un < µ̃n − µ̃
t
n), (3.12)

Q2 = E(a + Xn)−rI(Un ≥ µ̃n − µ̃
t
n). (3.13)

Since Xn ≥ Un, it follows that

Q2 ≤ E(a + Xn)−rI(Xn ≥ µ̃n − µ̃
t
n) ≤ (a + µ̃n − µ̃

t
n)−r.

Therefore

lim sup
n→∞

(a + µ̃n)−rQ2 ≤ 1 (3.14)

from the fact that µ̃n →∞ as n→∞. By Xn ≥ 0, we have

Q1 = E(a + Xn)−rI(Un < µ̃n − µ̃
t
n) ≤ a−rEI(Un < µ̃n − µ̃

t
n) = a−rP(Un < µ̃n − µ̃

t
n). (3.15)

In the following, we will estimate the probability P(Un < µ̃n − µ̃t
n). For fixed n ≥ 1, denote

Wi = −ZiI(Zi ≤ ηBn) + EZiI(Zi ≤ ηBn), 1 ≤ i ≤ n,
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then
{W1

Bn
,

W2

Bn
, · · · ,

Wn

Bn

}
are ρ̃-mixing random variables and

P(Un < µ̃n − µ̃
t
n) = P

 n∑
i=1

Wi

Bn
> µ̃t

n

 .
Obviously

C2 = 8

1 + 2
m∑

k=1

ρ̃(k)

 ≤ 8

1 + 2
∞∑

k=1

ρ̃(k)

 < ∞.
For any n ≥ 1, we can choose a positive integer m such that n − 4m ≤ 0, which implies that C1 =

exp
{
1 + ρ̃(m + 1) + n−4m

4m

}
< ∞.

It is easy to check that

n∑
i=1

EW2
i

B2
n

=
B̃2

n

B2
n
→ 1, n→∞,

∣∣∣∣∣Wi

Bn

∣∣∣∣∣ ≤ 2η, 1 ≤ i ≤ n.

By Theorem 2.1, we can get

P(Un < µ̃n − µ̃
t
n) = P

 n∑
i=1

Wi

Bn
> µ̃t

n


≤ C1 exp

− µ̃2t
n

C2

(
4
∑n

i=1 EW2
i /B

2
n + n · 2η · µ̃t

n

)
≤ C1 exp

{
−C ·

µ̃t
n

n

}
for all n sufficiently large.

By condition (iv) and EXn ∼ µ̃n, we have

lim
n→∞

(a + µ̃n)rQ1 ≤ lim
n→∞

C(a + EXn)r exp
{
−C ·

(EXn)t

n

}
= 0. (3.16)

Together with (3.11), (3.14) and (3.16), we obtain

lim sup
n→∞

(a + µ̃n)rE(a + Xn)−r
≤ 1. (3.17)

Combining (3.7) and (3.17), we get (3.5), which implies (1.2). The desired result is obtained. ]
Remark 3.1. If {Z2

n,n ≥ 1} is a nonnegative and uniformly integrable random variables sequence with Zn ≥ 0
and B2

n ≥ Cn, then for any η > 0, Rn(η)→ 0 as n→∞. In fact,

Rn(η) = B−2
n

n∑
i=1

E{Z2
i I(Zi > ηBn)} ≤

n
B2

n
sup
i≥1

EZ2
i I(Zi > ηBn)

≤ C sup
i≥1

EZ2
i I(Zi > ηBn)→ 0, as n→∞.

Remark 3.2. The result of Theorem 3.1 for nonnegative ρ-mixing random variables with non-identical
distribution has been obtained by Shen et al. [16, Theorem 3.1]. Just as Remark 1.1 stated that ρ-mixing
and ρ̃-mixing are similar, but different and ρ̃-mixing is more general than ρ-mixing. Hence, Theorem 3.1
in the paper extends the corresponding one of Shen et al. [16] for ρ-mixing random variables to the case of
ρ̃-mixing random variables.
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Remark 3.3. We point out that there is no any specific meaning for condition (iv) in Theorem 3.1, which is
just a technical condition. If the tool exponential inequality used in Theorem 3.1 is replaced by Rosenthal
type maximal inequality, we will show that (1.2) holds under very mild conditions and the condition (iv) in
Theorem 3.1 can be deleted. The result is as follows.

Theorem 3.2. Let 0 < s < 1 and {Zn,n ≥ 1} be a sequence of nonnegative ρ̃-mixing random variables. Let
{Mn,n ≥ 1} and {an,n ≥ 1} be sequences of positive constants such that an ≥ C for all n sufficiently large, where C is
a positive constant. Denote Xn = M−1

n
∑n

k=1 Zk and µn = EXn. Suppose that the following conditions hold:
(i) EZn < ∞ for all n ≥ 1;
(ii) µn →∞ as n→∞;
(iii) For some positive number η > 0,∑n

k=1 EZkI(Zk > ηMnµs
n/an)∑n

k=1 EZk
→ 0 as n→∞.

Then (1.2) holds for all real numbers a > 0 and r > 0.
Proof. Noting that f (x) = (a + x)−α is a convex function of x on [0,∞), by Jensen’s inequality, we have

E(a + Xn)−α ≥ (a + EXn)−α, (3.18)

which implies that

lim inf
n→∞

(a + EXn)αE(a + Xn)−α ≥ 1. (3.19)

To prove (1.2), it is enough to prove that

lim sup
n→∞

(a + EXn)αE(a + Xn)−α ≤ 1. (3.20)

In order to prove (3.20), we only need to show that for all δ ∈ (0, 1),

lim sup
n→∞

(a + EXn)αE(a + Xn)−α ≤ (1 − δ)−α. (3.21)

By the condition (iii), we can see that for all δ ∈ (0, 1), there exists positive integer n(δ) > 0 such that

n∑
k=1

EZkI(Zk > ηMnµ
s
n/an) ≤

δ
2

n∑
k=1

EZk, n ≥ n(δ). (3.22)

Let

Un = M−1
n

n∑
k=1

ZkI(Zk ≤ ηMnµ
s
n/an) � M−1

n

n∑
k=1

Z
′

nk

and

E(a + Xn)−α = E(a + Xn)−αI(Un ≥ µn − δµn) + E(a + Xn)−αI(Un < µn − δµn)
� Q1 + Q2. (3.23)

For Q1, we have by the fact Xn ≥ Un that

Q1 ≤ E(a + Xn)−αI(Xn ≥ µn − δµn) ≤ (a + µn − δµn)−α, (3.24)

which implies by condition (ii) that

lim sup
n→∞

(a + µn)αQ1 ≤ lim sup
n→∞

(a + µn)α(a + µn − δµn)−α = (1 − δ)−α. (3.25)
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For Q2, we have, by (3.22), that for n ≥ n(δ),∣∣∣µn − EUn

∣∣∣ = M−1
n

n∑
k=1

EZkI(Zk > ηMnµ
s
n/an) ≤ δµn/2. (3.26)

Hence, by (3.26), Markov’s inequality, Lemma 1.2 and Cr inequality, we have for any p ≥ 2 and all n ≥ n(δ)
that,

Q2 ≤ a−αP
(
Un < µn − δµn

)
= a−αP

(
EUn −Un > δµn − (µn − EUn)

)
≤ a−αP

(
EUn −Un > δµn/2

)
≤ a−αP

(
|Un − EUn| > δµn/2

)
≤ Cµ−p

n M−p
n E

∣∣∣∣∣∣∣
n∑

k=1

(
Z
′

nk − EZ
′

nk

)∣∣∣∣∣∣∣
p

≤ Cµ−p
n

M−2
n

n∑
k=1

EZ2
kI(Zk ≤ ηMnµ

s
n/an)


p/2

+ Cµ−p
n M−p

n

n∑
k=1

EZp
kI(Zk ≤ ηMnµ

s
n/an)

≤ Cµ−p
n

M−1
n µ

s
n/an

n∑
k=1

EZkI(Zk ≤ ηMnµ
s
n/an)


p/2

+Cµ−p
n M−1

n µ
s(p−1)
n /ap−1

n

n∑
k=1

EZkI(Zk ≤ ηMnµ
s
n/an)

≤ Cµ−p
n

[(
µs

n/an · µn
)p/2 + µs(p−1)

n /ap−1
n · µn

]
= C

[
µ−(1−s)p/2

n /ap/2
n + µ−(1−s)(p−1)

n /ap−1
n

]
≤ Cµ−(1−s)p/2

n + Cµ−(1−s)(p−1)
n . (3.27)

Taking p > max
{
2, 2α

1−s

}
and noting that p − 1 ≥ p

2 , we have by (3.27) that

lim sup
n→∞

(a + µn)αQ2 ≤ lim sup
n→∞

(a + µn)α
[
Cµ−(1−s)p/2

n + Cµ−(1−s)(p−1)
n

]
= 0. (3.28)

Hence, (3.21) follows from (3.25) and (3.28) immediately. This completes the proof of the theorem. ]

Remark 3.4. When Mn = Bn and an = µs
n, the condition (iii) in Theorem 3.2 is weaker than (iii) in Theorem

3.1. Actually, if for some η > 0,

Rn(η) := B−2
n

n∑
i=1

EZ2
i I(Zi > ηBn)→ 0, n→∞,

then

B−1
n

n∑
i=1

EZiI(Zi > ηBn) ≤ η−1B−2
n

n∑
i=1

EZ2
i I(Zi > ηBn)→ 0, n→∞,

which implies by µn →∞ that

B−1
n

∑n
i=1 EZiI(Zi > ηBn)

µn
=

∑n
i=1 EZiI(Zi > ηBn)∑n

i=1 EZi
→ 0, n→∞,

i.e., condition (iii) in Theorem 3.2 holds.
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