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Abstract. Extending the results of Yu, Yu, Wang and Lin [10], we study the local polynomial estimation
of the time-dependent diffusion parameter for time-inhomogeneous diffusion models. Considering the
diffusion parameter being positive, we obtain the local polynomial estimation of the diffusion parameter
by taking the diffusion parameter to be local log-polynomial fitting. The asymptotic bias, asymptotic
variance and asymptotic normal distribution of the volatility function are discussed. A real data analysis is
conducted to show the performance of the estimations proposed.

1. Introduction

The time-dependent parametric models are important tools to explore the dynamic pattern in many
scientific fields, such as finance, economics, medical science and so on. In this paper, we consider the
time-dependent parametric diffusion models on a filtered probability space (Ω,F, (Ft)t≥0,P),

dX(t) =
[
α(t) + β(t)1(Xt)

]
dt + σ(t)[F(Xt)]γdWt, (1)

where α(t) and β(t) are time-dependent parameters of the drift function, σ(t) is time-dependent parameter of
diffusion function, γ is a scalar parameter independent of time t, 1(·) and F(·) are known second-differentiable
functions and Wt is the standard Brownian motion. The model (1) includes these of Ho and Lee [6] (HL),
Hull and White [7] (HW), Black and Karasinski [1] (BK), Black et al. [2] (BDT), Fan et al. [3] (FJZZ) and Yu et
al. [10] (YYWL). The techniques that we employ here are based on the local polynomial fitting. Considering
the diffusion parameter σ(t) being local positive, we take the diffusion parameter to be local log-polynomial.
That is, for a given time point t0, we use the approximation

log σ2(t) ≈ ν0 + ν1(t − t0) + · · · + νp(t − t0)p, (2)

for t in a small neighborhood of t0. Our techniques require selection of the bandwidth. Our bandwidth
selection method is a rather simple rule of thumb (ROT) method similar to that in [9].

2010 Mathematics Subject Classification. Primary 62M05; Secondary 62F12
Keywords. Diffusion model, Time-dependent parameter, Local polynomial estimation, Kernel weighted, Asymptotic normality
Received: 25 April 2013; Revised: 28 February 2014; Accepted: 25 May 2014
Communicated by Miroslav M. Ristić
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The rest of this paper is organized as follows. In Section 2, we propose the local polynomial estimation
for the time-dependent parameter and study its asymptotic bias, variance and normality. Proof of the
results are given in Section 3. In Section 4, a real data analysis is conducted.

Remark 1.1. When 1(Xt) = Xt and F(Xt) = Xt, our model (1) yields to the YYWL model. Therefore, our
model extends that of Yu, Yu, Wang and Lin [10]. A more general model with γ dependent on time t has
been considered by FJZZ.

Remark 1.2. In particular, we obtain the results in Section 3 of Yu, Yu, Wang and Lin [10] by letting p = 1
in (2). Therefore, our results in this paper extends that in Yu, Yu, Wang and Lin [10].

2. Methods and Results of Estimations

Let the data {Xti , i = 1, 2, · · · ,n + 1} be sampled at discrete time points, t1 < t2 < · · · < tn+1. Suppose the
time points are equally spaced. For example, weekly data are sampled at ti = t0 + i/52, i = 1, 2, · · · ,n + 1
when the time unit is a year, where t0 is the initial time point. Denote Yti = Xti+1 − Xti , Zti = Wti+1 −Wti and
∆i = ti+1 − ti. Due to the independent increment property of Brownian motion Wti , the Zti are independent
and normally distributed with mean zero and variance ∆i. Thus the discretized version of the model (1)
can be expressed as

Yti =
[
α(ti) + β(ti)1(Xti )

]
∆i + σ(ti)[F(Xt)]γ

√
∆iεti , (3)

where {εti } are independent and standard normal. Based on the findings in [8] and [5], the first-order
discretized approximation error to the continuous-time model is extremely small, as long as data are
sampled monthly or more frequently. Their findings simplify the estimation procedure.

For estimations of the drift parameters, following the local regression technique (see [4]), α(t) and β(t)
can be estimated via minimizing the locally weighted least-squares function

n∑
i=1

{
Yti

∆i
− a − b1(Xti )

}2

Kh1 (ti − t0) (4)

with respect to a and b, where K(·) is kernel function, Kh1 (ti − t0) = 1
h1

K( ti−t0
h1

) and h1 is a properly selected
bandwidth.

Let â and b̂ be the minimizers of the locally weighted function (4). Denoteθ = (a, b)T, Y =
(

Yt1
∆1
,

Yt1
∆1
, · · · , Ytn

∆n

)T
,

W = dia1(Kh1 (ti − t0)) and

X =


1 1(Xt1 )
1 1(Xt2 )
...

...
1 1(Xtn )

 .
Then, the local estimation of θ is

θ̂ = (â, b̂)T = (XTWX)−1XTWY.

Let α̂(t0) = â, β̂(t0) = b̂, for a given time point t0. To obtain the estimated functions, α̂(t) and β̂(t), we can
evaluate the estimations at hundreds of grid points.

Now we discuss the estimations of the diffusion parameters. An appropriate localized normal log-
likelihood function for model (3) is given by −1 times

n∑
i=0

{
1
∆i

[Yti − (α(ti) + β(ti)1(Xti ))∆i]2

σ2(ti)[F(Xti )]2γ + log(σ2(ti)[F(Xti )]
2γ)

}
Kh(ti − t0). (5)
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Due to the diffusion parameter σ(t) being positive, we take σ2(t) to be locally log-polynomial fitting.
That is, for a given time point t0, we use the approximation

log σ2(t) ≈ ν0 + ν1(t − t0) + · · · + νp(t − t0)p,

for t in a small neighborhood of t0.
Let µ̂(t,Xt) = α̂(t) + β̂(t)1(Xt) stand for the estimated mean function from above, and denote Êti =

(Yti − µ̂(ti,Xti )∆i)/
√

∆i. Then, the local kernel weighted log-likelihood function (5) can be expressed as

n∑
i=0

Ê2
ti

exp

−
p∑

j=0

ν j(ti − t0) j

 [F(Xti )]
−2γ +

p∑
j=0

ν j(ti − t0) j + γ log[F(Xti )]
2

 Kh2 (ti − t0), (6)

where Kh2 (ti − t0) = 1
h2

K( ti−t0
h2

) and h2 is a properly selected bandwidth which will be discussed at the end of
this section. We can minimize (6) with respect to ν0, ν1, · · · , νp and γ as following.

In Step 1, the parameter γ is given. Taking the partial derivatives of (6) with respect to ν0, ν1, · · · , νp
respectively, and setting the partial derivatives to zero, we obtain the estimations of ν0, ν1, · · · , νp.

In Step 2, let ν̂0, ν̂1, · · · , ν̂p be the estimates of the local parameters ν0, ν1, · · · , νp from Step 1, respectively.
We can find the estimate of γ via the global minimization of the following function

n∑
i=0

Ê2
ti

exp

−
p∑

j=0

ν̂ j(ti − t0) j

 [F(Xti )]
−2γ + γ log[F(Xti )]

2

 , (7)

with respect to the parameter γ. Let γ̂ be the minimizer of (7). Then, we obtain the estimation of γ.
Once we have estimations ν̂0, ν̂1, · · · , ν̂p and γ̂, for a given time point t0, we can estimate σ(t) and the

volatility by

σ̂(t) = exp
(
ν̂0(t)

2

)
and σ̂(t,Xt) = exp

(
ν̂0(t)

2

)
[F(Xt)]γ̂,

respectively.
As the following, we discuss the asymptotic properties of the estimating squared volatility. Denote

the drift function µ(t,Xt) = α(t) + β(t)1(Xt), the squared volatility σ2(t,Xt) = σ2(t)[F(Xt)]2γ and σ(t,Xt) =
σ(t)[F(Xt)]γ. Let f (·) be the density function of time, usually a uniform distribution on time interval [a, b].

Now we need the following technical assumptions. Throughout this paper, C denotes a positive generic
constant independent of all other variables.

(A1) The parametric functions α(t), β(t) and σ(t) in model (1) are (p + 1)th continuously differentiable in
t.

(A2) The drift µ(t,Xt) and the volatility σ(t,Xt) are second-differentiable functions.
(A3) The kernel function K(·) is a Lipschitz continuous symmetric density on [−1, 1].
(A4) The bandwidths hi = hi(n)→ 0 and nh2+δ

i →∞ for some δ > 0, i = 1, 2.

Theorem 2.1. Under Assumptions (A1)-(A4), the estimation σ̂2(t,Xt) from (6) satisfies

E
(
σ̂2(t,Xt)

)
− σ2(t,Xt) =

1
2

a2(K)b(t)h2
2(1 + O(h2)),

Var
(
σ̂2(t,Xt)

)
=

2[σ2(t,Xt)]2

nh2 f (t)
R(K)(1 + o(1))

and as n→∞,√
nh2

(
s(σ2(t,Xt))

)−1
[
σ̂2(t,Xt) − σ2(t,Xt) −

1
2

a2(K)b(t)h2
2(1 + O(h2))

]
→D N(0, 1),

where a2(K) =
∫ 1

−1 z2K(z)dz, b(t) = σ2(t,Xt)
∂2 log σ2(t,Xt)

∂t2 ,R(K) =
∫ 1

−1 K2(z)dz and s2(σ2(t,Xt)) =
2[σ2(t,Xt)]2

f (t) R(K). The
symbol→D means convergence in distribution.
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By using the Taylor expansion, we have

√
σ̂2(t,Xt) −

√
σ2(t,Xt) ∼

[
1

2σ(t,Xt)

] (
σ̂2(t,Xt) − σ2(t,Xt)

)
.

Thus, we obtain the following corollary.

Corollary 2.2. If Assumptions (A1)-(A4) hold, as n→∞, we have

√
nh2

(
s∗(σ2(t,Xt))

)−1
[
σ̂(t,Xt) − σ(t,Xt) −

1
2

a2(K)b(t)h2
2(1 + O(h2))

]
→D N(0, 1),

where
[
s∗(σ2(t,Xt))

]2
=

σ2(t,Xt)
2 f (t) R(K).

By applying the likelihood estimation property to the log-likelihood function (7) over parameter γ, we
have the asymptotic properties of the estimation γ̂.

Theorem 2.3. When (7) is a second continuous differentiable function on (0,∞) over γ and n→∞, we have

γ̂→P γ

and
√

n[I(γ)]1/2 (
γ̂ − γ

)
→D N(0, 1),

where

I(γ) = E

−γ n∑
i=1

(
(1/∆i)(Yti/∆i − µ(ti,Xti ))

2

σ2(ti)[F2(Xti )]γ+1 + log[F2(Xti )]
)

2

.

At the end of this section, we select the bandwidth h2. It is well-known that the choice of the bandwidth
parameter is rather crucial. We will select the bandwidth by the method similar to that in [9] and [10].
It is based on minimizing the asymptotic mean integrated squared errors (MISE), using the results from
Theorem in this section. Based on this idea, the bandwidth selector is

h2 =

[
2R(K)V1

a2
2(K)Bn

]1/5

,

where a2(K) and R(K) are defined in Theorem 2.1,

B =
(4

n

) n∑
i=1

(ĉ2 + 3ĉ3ti)
2 exp

{
2
(
ĉ0 + ĉ1t + ĉ2t2 + ĉ3t3

)}
and

V1 =

∫ b

a
exp

{
2
(
ĉ0 + ĉ1t + ĉ2t2 + ĉ3t3

)}
dt,

the latter being obtained numerically, ĉi, (i = 1, 2, 3) is obtained via fitting a cubic function to the log-squared
residuals arising from an initial fitting of drift (see [9] for details).
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3. Proof of Results

Proof of Theorem 2.1. We prove this theorem by using Taylor series expansion of a normalized function of (6)
and the Cramer-Wold rule. Let vector ν = (ν0, ν1, · · · , νp)T and vector ν̂ = (ν̂0, ν̂1, · · · , ν̂p)T, where ν̂minimizes

l(ν) =

n∑
i=0

Ê2
ti

exp

−
p∑

j=0

ν j(ti − t0) j

 [F(Xti )]
−2γ +

p∑
j=0

ν j(ti − t0) j

 Kh2 (ti − t0).

Let

σ̃(t, x) = σ(t) + σ′(t)(x − t) + · · · + σ(p)(t)(x − t)p/p!,

ν∗ =
√

nh2

[
ν0 − σ(t), h2(ν1 − σ

′(t)), · · · , hp(p!νp − σ
(p)(t))

]T

and

zpi =
(
1, (ti − t)/h2, ·, (ti − t)p/hpp!

)T .

Then,

ν0 + ν1(ti − t) + · · · + νp(ti − t)p = σ̃(t, ti) + an(ν∗)Tzpi,

where an = (nh2)−
1
2 .

If ν̂ minimizes l(ν), then ν̂∗ minimizes

n∑
i=0

[
Ê2

ti
exp{−σ̃(t, ti) − an(ν∗)Tzpi}[F(Xti )]

−2γ + (σ̃(t, ti) + an(ν∗)Tzpi)
]

Kh2 (ti − t0)

as a function of ν∗.
To study the asymptotic properties of ν̂∗, consider the normalized function

l(ν∗) =

n∑
i=0

[
Ê2

ti
exp{−σ̃(t, ti) − an(ν∗)Tzpi}

]
[F(Xti )]

−2γKh2 −

n∑
i=0

[
Ê2

ti
exp{−σ̃(t, ti)}

]
[F(Xti )]

−2γKh2

+

n∑
i=0

(σ̃(t, ti) + an(ν∗)T zpi)Kh2 −

n∑
i=0

(σ̃(t, ti)) Kh2 .

Then ν̂∗ minimizes l(ν∗).
Using a Taylor series expansion about σ̃(t, ti),

p(x + h) − p(x0) ≈ h
d

dx
p(x0) +

1
2

h2 d2

dx2 p(x0),

we have

l(ν∗) ≈ −an(ν∗)T

 n∑
i=0

Ê2
ti

exp{−σ̃(t, ti)}zpi[F(Xti )]
−2γKh2

 +
a2

n

2
(ν∗)T

 n∑
i=0

Ê2
ti

exp{−σ̃(t, ti)}zpizT
pi[F(Xti )]

−2γKh2

 ν∗
+an(ν∗)T

 n∑
i=0

zpiKh2

 + 3rd term,

where the 3rd term is the term of smaller order. Firstly, for the term of a2
n
2 of the equation above, let

Cn = a2
n

n∑
i=0

Ê2
ti

exp {−σ̃(t, ti)} zpizT
piKh2 .
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Then from

E
[

(Y1 − µ(t,Xt))2

[F(Xt)2]γ

]
= E

[
(Y1 − µ̂(t,Xt))2

[F(Xt)2]γ

]
+ E

[
(µ̂(t,Xt) − µ(t,Xt))2

[F(Xt)2]γ

]
= exp{σ(t1)} + E

[
(µ̂(t,Xt) − µ(t,Xt))2

[F(Xt)2]γ

]
,

we have

ECn = h−1
2 E

[
exp{σ(t1) − σ̃(t, t1)}

]
Kh2 (t1−t)zp1zT

p1+h−1
2 E

[
(µ̂(t,Xt) − µ(t,Xt))2

[F(Xt)2]γ

]
exp {−σ̃(t, t1)}Kh2 (t1−t)zp1zT

p1+o(h2),

we obtain

(i − 1)!( j − 1)!(ECn)i j = f (t)ωi+ j−2 + h2 f ′(t)ωi+ j−1 + o(hp
2)

and

Var
{
(Cn)i j

}
= O

(
(nh2)−1

)
,

where i, j = 1, 2, · · · , p + 1.
Now let Qp be the (p+1)× (p+1) matrices having (i, j)th entry equal toωi+ j−1 =

∫
zi+ j−1K(z)dz, and define

D = dia1(1, 1/1!, · · · , 1/p!), Et = f (t)DQpD, Ft = f ′(t)DQpD. Then

ECn = Et + h2Ft + o(h2).

Thus,

l(ν∗) = νT
nν
∗
−

1
2

(ν∗)T(Et + h2Ft)ν∗ + op(h2),

where νn = an
∑n

i=0 Yνi with

Yνi =

[
1 −

(Yi − µ(t,Xt))2

[F(Xt)2]γ
exp{−σ̃(t, ti)}

]
zpiKh2 .

Since ν̂∗ minimizes ln(ν∗) and ln(ν∗) is a quadratic form of ν∗, ν̂∗ can be given clearly by

d
dν∗

ln(ν∗) = 0.

Calculations of E(νn) and Var(νn) are outlined below.

E(Yνi) =
−h2

(i − 1)!

∫
[1 − exp{σ(t + h2z)} + (µ(t + h2z) − µ̂(t + h2z))2 exp{−σ̃(t, t + h2z)}]zi−1K(z) f (t + h2z)dz

=
−1

(i − 1)!

(
h2νi−1 f (t) + h2

2νi f ′(t)
)

+
h2

(i − 1)!

∫ [
exp

{
σ(p+1)(t)
(p + 1)!

(h2z)p+1 +
σ(p+2)(t)
(p + 2)!

(h2z)p+2

}
zi−1K(z) f (t + h2z)

]
dz

=
1

(i − 1)!

[
hp+2

2
σ(p+1)(t)
(p + 1)!

f (t)νp+i + hp+3
2
σ(p+2)(t)
(p + 2)!

f (t)νp+i+1 + hp+3
2
σ(p+1)(t)
(p + 1)!

f ′(t)νp+i+1

]
+ o(hp+3

2 ).

Similarly,

Cov(Yνi,Yν j) = h2 f (t) exp{−2σ(t)}Σ2(t)
∫ [

zi+ j−2

(i − 1)!( j − 1)!
K2(z)

]
dz,

where Σ2(t) = E[Y4
|t] and it can be approximated by 2(E[Y2

|t])2 when Y|t is normal. Last, note that
ν̂(t) − ν(t) = exp{σ(t)} (σ̂(t) − σ(t)) and ν(t) = exp{σ(t)}. This completes the proof of Theorem 2.1. �
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4. A Real Data Example

As an illustration, we apply the proposed local log-polynomial methodology to the Shanghai Interbank
Offered Rate(Shibor) data which is calculated, announced and named on the technological platform of
the National Interbank Funding Center in Shanghai. It is a simple, no-guarantee, wholesale interest rate
calculated by arithmetically averaging all the interbank RMB lending rates offered by the price quotation
group of banks with a high credit rating. Currently, the Shibor consists of eight maturities: overnight,
1-week, 2-week, 1-month, 3-month, 6-month, 9-month and 1-year. Here we apply our local log-polynomial
estimations to the 1-year Shibor data, which yields to Hull-White (see [7]) interest rate model with 1(Xt) = Xt

and [F(Xt)]γ =
√

Xt.
The data set contains 499 observations from January 4, 2011 to December 31, 2012. This data can

be downloaded from http://www.shibor.org/shibor/web/DataService.jsp. The 1-year Shibor data and their
changes are plotted in Figure 4.1 and Figure 4.2, respectively. The real volatility of 1-year Shibor data is
measured by Y2

ti
= (Xti+1 −Xti )

2, which is plotted by the real line in Figure 4.3. The real volatility of changes
is clearly time-inhomogeneous. We select the kernel function K(x) = 3

4 (1 − x2)+, which is the Epanechnikov
kernel. By using our local log-polynomial method, the estimation curve of volatility is plotted by the dotted
line in Figure 4.3.
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Figure 4.1. 1−year Shibor data set
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Figure 4.2. The changes of 1−year Shibor data set
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Figure 4.3. The estimation of volatility for 1−year Shibor data set

From Figure 4.3, we can see that our estimation results catch the major trend of volatility well.
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