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Abstract. An 8-cycle is said to be squashed if we identify a pair of opposite vertices and name one of them
with the other (and thereby turning the 8-cycle into a pair of 4-cycles with exactly one vertex in common).
The resulting pair of 4-cycles is called a bowtie. We say that we have squashed the 8-cycle into a bowtie.
Evidently an 8-cycle can be squashed into a bowtie in eight different ways. The object of this paper is
the construction, for every n > 8, of a maximum packing of Kn with 8-cycles which can be squashed in a
maximum packing of Kn with 4-cycles.

1. Introduction

Let G be a graph. A G-design of order n is a pair (X,B) where B is a collection of subgraphs (blocks),
each isomorphic to G, which partitions the edge set of the complete undirected graph Kn with vertex set
X. After determining the spectrum for G-designs for different graphs G, many problems have been studied
also recently (for example, see [2]-[6]). A triple (X,B,L), where B is a collection of edge disjoint copies of G
with vertices in X, L is the set (leave) of all edges of Kn not belonging to any subgraph of B and |L| is as small
as possible, is a maximum packing of Kn with copies of G; a G-design of order n is a maximum packing of Kn
with copies of G and L = ∅.

An m-cycle system of order n is a G-design of order n where G is an m-cycle. The necessary and sufficient
conditions for the existence of an m-cycle system are [1, 10]:

(1) n > m, if n > 1;
(2) n is odd; and
(3) n(n − 1)/2m is an integer.

If c = (x1, x2, . . . , xm) is an m-cycle, we will denote by c(2) the collection of edges {xi, xi+2}, i = 1, 2, . . . ,m,
modulo m. The graph c(2) is called the distance 2 graph of c. For example the distance 2 graphs of the
6-cycle (1, 2, 3, 4, 5, 6) and the 8-cycle (1, 2, 3, 4, 5, 6, 7, 8) look like:
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Figure 1

An m-cycle system (X,C) of order n is said to be 2-perfect provided the collection of graphs C(2) = {c(2) |
c ∈ C} covers the edges of Kn. For 6-cycle systems this says that (X,C(2)) is a Steiner triple system and for
8-cycle systems a 4-cycle system. A lot of work has been done on 2-perfect m-cycle systems; and rather than
going into a detailed history of the problem of constructing 2-perfect m-cycle systems the reader is referred
to [7].

Quite recently a new connection between 6-cycle systems and Steiner triple systems was introduced: the
squashing of a 6-cycle system into a Steiner triple system [9]. A definition is in order. Let c be a 6-cycle and x
and y opposite vertices in c. If we rename y with x we obtain a bowtie B; i.e., two 3-cycles with the common
vertex x. We say that we have squashed c into B; see Figure 2.
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Figure 2

Clearly a 6-cycle can be squashed into a bowtie in six different ways.
If it is possible to squash each of the 6-cycles of the 6-cycle system (X,C) into a bowtie so that the resulting

collection S(C) of bowties is a Steiner triple system, we will say that (X,C) is squashed into (X,S(C)). In [9] it
is shown that for every n ≡ 1 or 9 (mod 12) (the spectrum for 6-cycle systems), there exists a 6-cycle system
that can be squashed into a Steiner triple system. This result has been generalized to maximum packings.
Rather than go into details, the reader is referred to [8].

This paper gives a complete solution of the problem of squashing maximum packings of 8-cycle systems
into maximum packings of 4-cycle systems. We begin with some preliminaries.

2. Preliminaries

The following tables give leaves for maximum packings of Kn for both 8-cycles and 4-cycles.
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n even

Kn 8-cycle leave 4-cycle leave

n ≡ 0, 2, 8, 10 (mod 16) 1-factor 1-factor

n ≡ 4, 6, 12, 14 (mod 16) 1-factor

Table 1: n even

n odd

Kn 8-cycle leave 4-cycle leave

n ≡ 1 (mod 16) ∅ ∅

n ≡ 3 (mod 16)

n ≡ 5 (mod 16)

n ≡ 7 (mod 16)

n ≡ 9 (mod 16) ∅

n ≡ 11 (mod 16)

n ≡ 13 (mod 16)

n ≡ 15 (mod 16)

Table 2: n odd

Now let c be an 8-cycle and x and y a pair of opposite vertices in c. If we rename y with x we have two
4-cycles B with the common vertex x. We remark (and this is important) that the two 4-cycles in B have only
the vertex x in common. We will call a pair of 4-cycles with exactly one vertex in common a bowtie.
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Just as with 6-cycles, we say that we have squashed c into B (and also that we have squashed y onto x).
Clearly an 8-cycle can be squashed into a bowtie in eight different ways.

Now let (X,C,L) be a maximum packing of Kn with 8-cycles with leave L exactly as in Tables 1 and 2. We
remark (and this is important) that the leaves for maximum packings are not necessarily unique.

Let S(C) be a squashing of the 8-cycles in C which covers exactly the same edges as C. If L contains
no 4-cycles, then (X,S(C),L) is a maximum packing of Kn with 4-cycles. If L contains a 4-cycle (n ≡
4, 5, 6, 9, 11, 12, 14 or 15 (mod 16)) and we remove a 4-cycle (a, b, c, d) from L, then (X,S(C) ∪ {(a, b, c, d)},L \
{(a, b, c, d)}) is a maximum packing of Kn with 4-cycles. In the cases n ≡ 5, 9, 11 and 15 (mod 16), there is only
one 4-cycle in L. However, in the cases n ≡ 4, 6, 12, 14 there are three 4-cycles that can be removed (all from
K4). We remove just one (any one) to obtain a 1-factor.

Example 2.1. (The squashing of a maximum packing of K11 with 8-cycles into a maximum packing of
K11 with 4-cycles.)

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

C =



(0, 1, 2, 3, 4, 5, 6, 7) (3, 0, 1, 2)(3, 4, 5, 6)
(0, 2, 4, 1, 3, 5, 7, 8) (8, 0, 2, 4)(8, 3, 5, 7)
(0, 3, 6, 1, 8, 9, 2, 10) SQUASH (9, 6, 1, 8)(9, 0, 10, 2)
(0, 4, 10, 7, 9, 6, 2, 5) −→ (0, 4, 10, 7)(0, 5, 2, 6)
(0, 6, 8, 2, 7, 3, 10, 9) (7, 2, 8, 6)(7, 3, 10, 9)
(1, 5, 9, 3, 8, 4, 6, 10) (1, 3, 9, 5)(1, 4, 6, 10)


= S(C).

L =

{
(1, 7, 4, 9) (1, 7, 4, 9)} = L∗

(5, 8, 10) (5, 8, 10)} = L \ L∗.

Then (X,C,L) is a maximum packing of K11 with 8-cycles which has been squashed into the maximum
packing of K11 with 4-cycles (X, S(C) ∪ L∗, L \ L∗). (See Tables 1 and 2.)

In what follows we will write (x1, x2, x3, x4, x5, x6, x7, x8) xi to indicate that the vertex opposite xi (namely,
xi+4) modulo 8 has been squashed onto xi.

3. n ≡ 0, 2, 8 and 10 (mod 16)

We begin with an important lemma.

Lemma 3.1. There exists a decomposition of K4m,4n into 8-cycles that can be squashed into a decomposition of K4m,4n
into 4-cycles.

Proof. Let K4,4 have parts {a, b, c, d} and {a′, b′, c′, d′}. Then the following two 8-cycles can be squashed into
4-cycles.

(a, d′, d, b′, b, a′, c, c′) a SQUASH (a, d′, d, b′)(a, a′, c, c′)
(b, d′, c, b′, a, a′, d, c′) b −→ (b, b′, c, d′)(b, a′, d, c′).
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Let K4m,4n have parts {a, b, c, d} × {1, 2, . . . ,m} and {a′, b′, c′, d′} × {1, 2, 3, . . . ,n}. For each i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . ,n}, define a copy of K4,4 (above) with parts {a, b, c, d} × {i} and {a′, b′, c′, d′} × { j}.

n ≡ 0 or 8 (mod 16)
We need one example.

Example 3.2. (n = 8)

X = {0, 1, 2, 3, 4, 5, 6, 7}

C =


(0, 1, 2, 7, 4, 5, 6, 3) 0
(4, 2, 3, 5, 1, 7, 6, 0) 4
(1, 6, 2, 5, 0, 7, 3, 4) 1

L = {(0, 2), (1, 3), (4, 6), (5, 7)}.

Then (X,C,L) is a maximum packing of K8 with 8-cycles which can be squashed into the maximum packing
of K8 with 4-cycles (X,S(C),L).

Now let Z be a set of size 8 and set X = Z× {1, 2, 3, . . . , k} and define a collection of 8-cycles C as follows:

(1) For each i ∈ {1, 2, 3, . . . , k} define a copy of Example 3.2 on Z × {i} and place these 8-cycles in C.

(2) For each i , j ∈ {1, 2, 3, . . . , k} place a copy of K8,8 (Lemma 3.1) with parts Z × {i} and Z × { j} in C.

If we denote by L the union of the leaves in (1), the result is a maximum packing of K8k (X,C,L) with 8-cycles,
which can be squashed into the maximum packing of K8k (X,S(C),L) with 4-cycles.

n ≡ 2 or 10 (mod 16)
We begin with an example.

Example 3.3. (n = 10)

X = Z10

C =


(0, 2, 1, 3, 4, 6, 5, 7) 3
(0, 3, 5, 1, 4, 8, 6, 9) 8
(0, 4, 2, 7, 1, 9, 5, 8) 7
(0, 5, 2, 8, 7, 9, 3, 6) 2
(1, 6, 2, 9, 4, 7, 3, 8) 3

L = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}}.

Then (X,C,L) is a maximum packing of K10 with 8-cycles which can be squashed into the maximum packing
of K10 with 4-cycles (X,S(C),L).

Let Z be a set of size 8 and set X = {∞1,∞2} ∪ (Z × {1, 2, 3, . . . , k}) and define a collection of 8-cycles C as
follows:

(1) For each i ∈ {1, 2, 3, . . . , k} define a copy of Example 3.3 on {∞1,∞2} ∪ (Z × {i}) and place these 8-cycles
in C. Be sure that {∞1,∞2} is part of the leave.

(2) For each i , j ∈ {1, 2, 3, . . . , k} place a copy of K8,8 (Lemma 3.1) with parts Z × {i} and Z × { j} in C.

Denote by L the union of the leaves in (1). Then (X,C,L) is a maximum packing of K8k+2 with 8-cycles which
can be squashed into the maximum packing of K8k+2 (X,S(C),L) with 4-cycles.

Lemma 3.4. There is a maximum packing of Kn with 8-cycles that can be squashed into a maximum packing of Kn
with 4-cycles for all n ≡ 0, 2, 8 and 10 (mod 16). �
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4. n ≡ 4, 6, 12, 14 (mod 16)

We will need three examples.

Example 4.1. (n = 12)

X = Z12,

C =



(0, 5, 1, 4, 2, 6, 3, 7) 4
(0, 4, 3, 5, 2, 7, 1, 6) 7
(0, 8, 1, 9, 2, 10, 3, 11) 9
(0, 9, 3, 8, 2, 11, 1, 10) 11
(4, 6, 5, 7, 8, 10, 9, 11) 7
(4, 7, 10, 5, 11, 8, 6, 9) 11
(4, 8, 5, 9, 7, 11, 6, 10) 4

L =

{
K4 on {0, 1, 2, 3}
{4, 5}{6, 7}{8, 9}{10, 11}

Then (X,C,L) is a maximum packing of K12 with 8-cycles which can be squashed into the maximum packing
of K12 with 4-cycles (X,S(C) ∪ {(0, 1, 2, 3)}, L \ {(0, 1, 2, 3)}). We remark that L \ {(0, 1, 2, 3)} is a 1-factor.

Example 4.2. (n = 14)

X = Z14,

C =


(0, 5, 1, 4, 2, 6, 3, 7) 4 (0, 4, 3, 5, 2, 7, 1, 6) 7
(0, 8, 1, 9, 2, 10, 3, 11) 9 (0, 9, 3, 8, 2, 11, 1, 10) 11
(0, 12, 4, 6, 5, 7, 8, 13) 4 (1, 12, 5, 8, 4, 9, 6, 13) 5
(2, 12, 6, 10, 4, 11, 5, 13) 6 (3, 12, 11, 7, 10, 5, 9, 13) 11
(4, 7, 9, 11, 8, 12, 10, 13) 8 (6, 8, 10, 9, 12, 7, 13, 11) 9

L =

{
K4 on {0, 1, 2, 3}
{4, 5}{6, 7}{8, 9}{10, 11}{12, 13}

Then (X,C,L) is a maximum packing of K14 with 8-cycles which can be squashed into the maximum packing
of K14 with 4-cycles (X,S(C) ∪ {(0, 1, 2, 3)}, L \ {(0, 1, 2, 3)}). We remark that L \ {(0, 1, 2, 3)} is a 1-factor.

Example 4.3. (Maximum packing of K14 \ K6 with 8-cycles with leave a 1-factor consisting of four edges
whose vertices are contained in V(K14)\V(K6) which can be squashed into a maximum packing of K14 \K6
with 4-cycles (the same leave)).

Let Y and Z be sets of size 4 and 8 and set X = {∞1,∞2} ∪ Y ∪ Z. Define a collection C of 8-cycles as
follows:

(1) Place a copy of Example 3.3 on {∞1,∞2} ∪ Z and make sure that the leave L contains {∞1,∞2}. (L is a
1-factor.)

(2) Partition K4,8 with parts Y and Z into four 8-cycles (which can be squashed into eight 4-cycles (Lemma
3.1)) and place these 8-cycles in C.

Then (K14 \K6,C,L \ {∞1,∞2}) is a maximum packing of K14 \K6 with 8-cycles (K6 is defined on {∞1,∞2}∪Y)
that can be squashed into the maximum packing (K14 \ K6,S(C),L \ {∞1,∞2}) of K14 \ K6 with 4-cycles. (We
remark that V(L \ {∞1,∞2}) is contained in V(K14) \ V(K6).)

With the above three examples in hand we can proceed to the general construction for n ≡ 4, 6, 12, 14
(mod 16).
n ≡ 4 or 12 (mod 16)
Let Z be a set of size 8, ∞ = {∞1,∞2,∞3,∞4}, set X = ∞ ∪ (Z × {1, 2, 3, . . . , k}), and define a collection of
8-cycles C as follows:
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(1) For each i ∈ {1, 2, 3, . . . , k} define a copy of Example 4.1 on∞∪ {Z × {i}}. (Make sure that K4 is defined
on∞.)

(2) For each i , j ∈ {1, 2, 3, . . . , k} place a copy of K8,8 (Lemma 3.1) with parts Z × {i} and Z × { j} in C.

Denote by L the union of the leaves in (1) by considering the K4 on∞ only once. The result is a maximum
packing of K8k+4 (X,C,L) with 8-cycles that can be squashed into the maximum packing of K8k+4 (X,S(C) ∪
{(∞1,∞2,∞3,∞4)}), L \ {(∞1,∞2,∞3,∞4)}) with 4-cycles. (L \ {(∞1,∞2,∞3,∞4)}) is a 1-factor.)

n ≡ 6 or 14 (mod 16)
Let Z be a set of size 8,∞ = {∞1,∞2,∞3,∞4,∞5,∞6}, and set X = ∞∪ (Z× {1, 2, 3, . . . , k}). Define a collection
of 8-cycles C as follows:

(1) Define a copy of Example 4.2 on∞∪ (Z × {1}).
(2) For each i ∈ {2, 3, . . . , k} define a copy of Example 4.3 on∞∪ (Z × {i}). Make sure that K6 is defined on
∞.

(3) For each i , j ∈ {1, 2, 3, . . . , k} take a copy of K8,8 (Lemma 3.1) with parts Z × {i} and Z × { j} and place
these 8-cycles in C.

Then (X,C,L) is a maximum packing of K8k+6 with 8-cycles where the leave L is the union of the leaves
in (1) and (2). Removing a 4-cycle from the leave in (1) squashes (X,C,L) into a maximum packing
(X,S(C) ∪ (4-cycle),L \ (4-cycle)) of K8k+6 with 4-cycles.

Lemma 4.4. There is a maximum packing of Kn with 8-cycles that can be squashed into a maxmum packing of Kn
with 4-cycles for all n ≡ 4, 6, 12, 14 (mod16). �

5. n ≡ 1 or 9 (mod 16)

We begin with an example.

Example 5.1. (The squashing of a maximum packing of K9 with 8-cycles into a maximum packing of K9
with 4-cycles.)

X = {0, 1, 2, 3, 4, 5, 6, 7, 8}.

C =


(0, 1, 2, 3, 4, 5, 6, 7) 3
(0, 2, 4, 6, 1, 3, 7, 8) 6
(0, 3, 8, 6, 2, 7, 1, 5) 7
(0, 4, 1, 8, 2, 5, 3, 6) 8

L = {(4, 7, 5, 8)}.

Then (X,C,L) is a maximum packing of K9 with 8-cycles which is squashed into the 4-cycle system (X,C ∪
{(4, 7, 5, 8)}).

We will need the following interpretation of Example 3.2. It is best done with a diagram.

1

2

5

6

73

40

(0, 1, 2, 7, 4, 5, 6, 3) 0
(4, 2, 3, 5, 1, 7, 6, 0) 4
(1, 6, 2, 5, 0, 7, 3, 4) 1

Figure 5
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Let Z be a set of size 8 and set X = {∞} ∪ (Z × {1, 2, 3, . . . , k}) and define a collection of 8-cycles C as
follows:

(1) For each i ∈ {1, 2, 3, . . . , k} define a copy of Example 5.1 on {∞} ∪ (Z× {i}) and make sure the leave does
not contain∞.

(2) If k is even, pair up the copies of Z × {i}:
Z× {1},Z× {2}; Z× {3},Z× {4}; . . . ; Z× {k− 1},Z× {k}, and use Lemma 3.1 and Example 3.2 to partition
K8,8 with parts Z × {i} and Z × {i + 1} union the two 4-cycle leaves into nine 8-cycles.

{11, 21, 31, 41} and {52, 62, 72, 82} 

three 8−cycles      Example 3.2 
31

21

11

41

51

61

71

81

22

32

82

72

62

52

42

12

K  4,4 six 8−cycles with parts

{51, 61, 71, 81} and {12, 22, 32, 42}

{51, 61, 71, 81} and {52, 62, 72, 82}

K8,8

If k is odd, pair up Z × {i}s with one left.

(3) For all other pairs i , j ∈ {1, 2, 3, . . . , k}, place a copy of K8,8 (Lemma 3.1) with parts Z × {i} and Z × { j}
in C.

Then (X,C, ∅) is an 8-cycle system that can be squashed into a 4-cycle system for all n ≡ 1 (mod 16).
If k is odd we have a 4-cycle leave left over in (2). Then (X,C,L) can be squashed into the 4-cycle system
(X,S(C) ∪ L, ∅) for all n ≡ 9 (mod 16).

We have the following lemma.

Lemma 5.2. There is a maximum packing of Kn with 8-cycles that can be squashed into a maximum packing of Kn
with 4-cycles for all n ≡ 1 or 9 (mod 16). (We remark that the result is always a 4-cycle system.) �

6. n ≡ 3 or 11 (mod 16)

Let Z be a set of size 8 and set X = {∞1,∞2,∞3} ∪ (Z × {1, 2, 3, . . . , k}). Define a collection of 8-cycles C as
follows:

(1) For each i ∈ {1, 2, 3, 4, . . . , k}, define a copy of Example 2.1 on {∞1,∞2,∞3} ∪ (Z × {i}) where the leave
consists of the two disjoint cycles (∞1,∞2,∞3) and (a, b, c, d) × {i} and place these 8-cycles in C.

(2) and (3) Exactly the same as (2) and (3) in the cases 1 or 9 (mod 16).

Let (X,C,L) be the resulting maximum packing of K8k+3 with 8-cycles. If k is odd, L consists of a disjoint
3-cycle and 4-cycle. Squashing C into 4-cycles and adding the 4-cycle from L to S(C) gives a maximum
packing of K8k+3 with 4-cycles with leave a 3-cycle. If k is even, L consists of a 3-cycle only, and (X,S(C),L)
is a maximum packing of K8k+3 with 4-cycles. We have the following lemma.

Lemma 6.1. There is a maximum packing of Kn with 8-cycles that can be squashed into a maximum packing of Kn
with 4-cycles for all n ≡ 3 or 11 (mod 16). �
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7. n ≡ 5 or 13 (mod 16)

Here is an example for n = 13.

Example 7.1. (n = 13)

Let Y and Z be sets of size 4 and 8 and set X = {∞} ∪ Y ∪ Z. Define a collection C of 8-cycles as follows:

(1) Place a copy of Example 5.1 on {∞} ∪ Z and make sure the leave does not contain ∞. (The leave is a
4-cycle, say (a, b, c, d).)

(2) Let (y1, y2, y3, y4) be a 4-cycle in Y and partition K4,8 with parts Y and Z union the 4-cycles (y1, y2, y3, y4)
and (a, b, c, d) into five 8-cycles.

(3) The leave consists of the bowtie (∞, y1, y3)(∞, y2, y4).

Then (X,C,L) is a maximum packing of K13 with 8-cycles which can be squashed into the maximum packing
(X,S(C),L) (same leave) of K13 with 4-cycles.

Example 7.2. (Maximum packing of K13 \ K5 with 8-cycles with leave a 4-cycle which can be squashed
into a maximum packing of K13 \ K5 with 4-cycles (no leave).)

(1) Exactly the same as (1) in Example 7.1.
(2) Partition K4,8 with parts Y and Z into four 8-cycles.

Then (K13 \ K5,C, (a, b, c, d)) is a maximum packing of K13 \ K5 with 8-cycles with leave the 4-cycle (a, b, c, d)
which can be squashed into the maximum packing (K13 \ K5,S(C) ∪ (a, b, c, d), ∅) of K13 \ K5 with 4-cycles.

With these two examples we can now give the general construction.
Let ∞ = {∞1,∞2,∞3,∞4,∞5} and let Z be a set of size 8. Let X = ∞ ∪ (Z × {1, 2, 3, . . . , k}) and define a

collection of 8-cycles C as follows:

(1) Place a maximum packing of K13 with 8-cycles on∞∪ (Z × {1}) with leave a bowtie defined on∞.
(2) For each i ∈ {2, 3, . . . , k} place a copy of Example 7.2 on∞∪ (Z × {i}) with leave a 4-cycle contained in

Z × {i}.
(3) If k − 1 is even, consecutive K8s can be partitioned into nine 8-cycles and all other pairings into eight

8-cycles, giving a maximum packing of K8k+5 into 8-cycles with leave a bowtie in ∞. These 8-cycles
can be squashed into 4-cycles with leave the bowtie in∞.

(4) If k− 1 is odd, pair up the K8s with one left over. This gives a maximum packing of K8k+5 into 8-cycles
with leave a bowtie in ∞ and a 4-cycle. These 8-cycles can be squashed into 4-cycles with leave the
bowtie in∞.

Lemma 7.3. There is a maximum packing of Kn with 8-cycles that can be squashed into a maximum packing of Kn
with 4-cycles for all n ≡ 5 or 13 (mod 16). �

8. n ≡ 7 or 15 (mod 16)

We will need two examples.

Example 8.1. (n = 15)

Define a collection C of 8-cycles on Z15 as follows:

C =



(0, 2, 9, 5, 7, 10, 8, 11) 9 (0, 3, 5, 12, 7, 14, 11, 13) 12
(0, 5, 1, 6, 2, 7, 3, 8) 6 (0, 6, 4, 5, 2, 8, 1, 7) 8
(0, 9, 1, 10, 3, 11, 4, 12) 10 (0, 10, 4, 9, 3, 13, 2, 14) 13
(1, 3, 6, 12, 9, 13, 8, 14) 8 (1, 4, 7, 13, 14, 10, 11, 12) 13
(1, 11, 2, 12, 3, 14, 4, 13) 12 (2, 4, 8, 12, 14, 9, 6, 10) 6
(5, 10, 13, 6, 8, 9, 7, 11) 8 (5, 13, 12, 10, 9, 11, 6, 14) 5
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L = {(0, 1, 2, 3, 4), (5, 6, 7, 8)}.

This can be squashed into a maximum packing of K15 with 4-cycles with leave the 5-cycle (0, 1, 2, 3, 4).

Example 8.2. (Maximum packing of K15 \ K7 with 8-cycles with leave a 4-cycle (contained in K15 \ K7)
which can be squashed into a maximum packing of K15 \ K7 with 4-cycles (no leave).)

Let ∞ = {∞1,∞2,∞3} and Y and Z sets of size 4 and 8. Set X = ∞ ∪ Y ∪ Z and define a collectiion C of
8-cycles as follows:

(1) Place a copy of Example 2.1 on∞∪ Z where the leave consists of the two disjoint cycles (∞1,∞2,∞3)
and (a, b, c, d) ⊆ Z.

(2) Partition K4,8 with parts Y and Z into four 8-cycles.

Then (K15 \ K7,C, (a, b, c, d)) is a maximum packing of K15 \ K7 with 8-cycles with leave the 4-cycle (a, b, c, d)
which can be squashed into the maximum packing (K15 \ K7,C ∪ (a, b, c, d), ∅) of K15 \ K7 with 4-cycles.

We can now give the general construction for 7 or 15 (mod 16). Let ∞ = {∞1,∞2,∞3,∞4,∞5,∞6,∞7}

and let Z be a set of size 8. Set X = ∞∪ (Z × {1, 2, 3, . . . , k}) and define a collection of 8-cycles C as follows:

(1) Place a maximum packing of K15 with 8-cycles on∞∪ (Z×{1}) with leave a disjoint 5-cycle and 4-cycle,
where the 5-cycle is contained in∞ and the 4-cycle is contained in Z × {1}.

(2) For each i ∈ {2, 3, 4, . . . , k} place a copy of Example 8.2 on∞∪ (Z × {i}) with leave a 4-cycle contained
in Z × {i}.

(3) If k − 1 is even proceed as in 5 or 13 (mod 16) with leave a disjoint 5-cycle and 4-cycle which can be
squashed into a maximum packing of K8k+7 with leave a 5-cycle.
If k − 1 is odd we have a maximum packing of K8k+7 with 8-cycles with leave a 5-cycle which can be
squashed into 4-cycles with the same leave.

Lemma 8.3. There is a maximum packing of Kn with 8-cycles that can be squashed into a maximum packing of Kn
with 4-cycles for all n ≡ 7 or 15 (mod 16). �

9. Summary

Putting together Lemmas 3.4, 4.4, 5.2, 6.1, 7.3 and 8.3 we have the following theorem (a complete solution
agreeing with Tables 1 and 2 in Section 2).

Theorem 9.1. There exists a maximum packing of Kn with 8-cycles that can be squashed into a maximmum packing
of Kn with 4-cycles for every n > 8. (See Tables 1 and 2 in Section 2.) �

References

[1] B. Alspach, H. Gavlas, Cycle decompositions of Kn and Kn − I, J. Combin. Theory Ser. B 81 (2001) 77–99.
[2] L. Berardi, M. Gionfriddo, R. Rota, Perfect octagon quadrangle systems - II, Discrete Math. 312(3) (2012) 614–620.
[3] Y. Chang, T. Feng, G. Lo Faro, A. Tripodi, The fine triangle intersection for (K4 − e)-designs, Discrete Math. 311(21) (2011)

2442–2462.
[4] Y. Chang, T. Feng, G. Lo Faro, A. Tripodi, The fine triangle intersection for kite systems, Discrete Math. 312(3) (2012) 545-553.
[5] Y. Chang, G. Lo Faro, A. Tripodi, Tight blocking sets in some maximum packings of λKn, Discrete Math. 308 (2008) 427–438.
[6] Y. Chang, G. Lo Faro, A. Tripodi, Determining the spectrum of Meta(K4 + e > K4, λ) for any λ, Discrete Math. 308 (2008) 439–456.
[7] C. C. Lindner, Quasigroups constructed from cycle systems, Quasigroups and Related Systems 10 (2003) 29–64.
[8] C. C. Lindner, G. Lo Faro, A. Tripodi, Squashing maximum packings of 6-cycles into maximum packings of triples, submitted.
[9] C. C. Lindner, M. Meszka, A. Rosa, From squashed 6-cycles to Steiner triple systems, J. Combinatorial Designs 22(5) (2014)

189-195.
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