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Abstract. Recently, Khan et al. [S. Khan, G. Yasmin, R. Khan and N. A. M. Hassan, Hermite-based
Appell polynomials: Properties and Applications, J. Math. Anal. Appl. 351 (2009), 756–764] defined the
Hermite-based Appell polynomials by

G(x, y, z; t) := A(t) · exp(xt + yt2 + zt3)

=

∞∑
n=0

HAn(x, y, z)
tn

n!

and investigated their many interesting properties and characteristics by using operational techniques
combined with the principle of monomiality. Here, in this paper, we find the differential, integro-differential
and partial differential equations for the Hermite-based Appell polynomials via the factorization method.
Furthermore, we derive the corresponding equations for the Hermite-based Bernoulli polynomials and
the Hermite-based Euler polynomials. We also indicate how to deduce the corresponding results for the
Hermite-based Genocchi polynomials from those involving the Hermite-based Euler polynomials.

1. Introduction, Definitions and Preliminaries

A polynomial set
{
pn(x)

}∞
n=0 is called quasi-monomial if there exist two operators P̂ and M̂, independent

of n, such that

M̂
{
pn(x)

}
= pn+1(x)

and

P̂
{
pn(x)

}
= npn−1(x)

(
p0(x) := 1; p−1(x) := 0

)
,
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where it is assumed (as usual) that

p0(x) := 1 and p−1(x) := 0.

The operators M̂ and P̂ are, respectively, called the raising and the lowering operators acting on the
polynomials pn(x). These operators satisfy the following commutation relation:[

P̂, M̂
]

= Î,

where Î denotes the identity operator. Thus, clearly, the operators M̂ and P̂ display a Weyl group structure.
Many of the properties of the polynomials pn(x) can be obtained by using the operators M̂ and P̂. If

the operators M̂ and P̂ possess a differential character, then the polynomials pn(x) satisfy the following
differential equation:

M̂P̂
{
pn(x)

}
= npn(x).

Moreover, since p0(x) := 1, the polynomial set
{
pn(x)

}∞
n=0 can be constructed explicitly through the action of

the operator M̂n on p0(x) as follows:

pn(x) = M̂n
{1} (n ∈N0 :=N ∪ {0} = {0, 1, 2, · · · }),

where N denotes (as usual) the set of positive integers. Several recent works dealing extensively with the
quasi-monomiality principle include (for example) [3], [4], [5], [6], [7], [8] and [16].

A polynomial set {An(x)}∞n=0 is called an Appell set of polynomials (see, for details, [19, p. 398, Problem
28]; see also [1] and the recent work [14] and the references cited therein) if

d
dx
{An(x)} = nAn−1(x) (n ∈N0; A−1(x) := 0)

or, equivalently, if

A(t) · ext =

∞∑
n=0

An(x)
tn

n!
, (1)

where

A(t) =

∞∑
n=0

antn (a0 , 0). (2)

The familiar three-variable Hermite polynomials
{
Hn(x, y, z)

}∞
n=0 generated by

exp
(
xt + yt2 + zt3

)
=

∞∑
n=0

Hn(x, y, z)
tn

n!
(3)

are quasi-monomials under the action of the operators M̂ and P̂ given by

M̂ := x + 2y
∂
∂x

+ 3z
∂2

∂x2 and P̂ :=
∂
∂x
, (4)

satisfy the following differential equation:(
3z
∂3

∂x3 + 2y
∂2

∂x2 +
∂
∂x
− n

) {
Hn(x, y, z)

}
= 0 (5)
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and possess the following operational representation:

Hn(x, y, z) = exp
(
y
∂2

∂x2 + z
∂3

∂x3

)
{xn
} . (6)

Recently, by suitably combining the generating functions (1) and (3), Khan et al. [11] defined the
Hermite-based Appell polynomials

{
HAn(x, y, z)

}∞
n=0 by means of the following generating function:

G(x, y, z; t) := A(t) · exp
(
tM̂

)
{1} =

∞∑
n=0

HAn(x, y, z)
tn

n!
, (7)

where the operator M̂ is defined in (4) and the power series A(t) is given by (2). In fact, with the aid of the
Berry decoupling identity:

eÂ+B̂ = exp
(

m2

12

)
· exp

(
−

m
2

Â
1
2 + Â

)
eB̂

([
Â, B̂

]
= mÂ

1
2

)
, (8)

the generating function (7) of the Hermite-based Appell polynomials HAn(x, y, z) can be rewritten in the
following form [11, p. 759, Eq. (2.3)]:

G(x, y, z; t) := A(t) · exp
(
xt + yt2 + zt3

)
=

∞∑
n=0

HAn(x, y, z)
tn

n!
. (9)

Some important examples of the Appell polynomials An(x) defined by the generating function (1)
include the classical Bernoulli polynomials Bn (x), the classical Euler polynomials En (x) and the classical
Genocchi polynomials Gn (x), together with their familiar generalizations B(α)

n (x), E(α)
n (x) and G(α)

n (x) of (real
or complex) order α, which are usually defined by means of the following generating functions (see, for
details, [9, Vol. III, p. 253 et seq.], [12, Section 2.8] and [17, p. 61 et seq.]; see also [15], [18, p. 81 et seq.] and
[20] and the references to several related earlier works cited therein):( t

et − 1

)α
· ext =

∞∑
n=0

B(α)
n (x)

tn

n!
(|t| < 2π; 1α := 1) , (10)

( 2
et + 1

)α
· ext =

∞∑
n=0

E(α)
n (x)

tn

n!
(|t| < π; 1α := 1) (11)

and

( 2t
et + 1

)α
· ext =

∞∑
n=0

G(α)
n (x)

tn

n!
(|t| < π; 1α := 1) , (12)

so that, obviously, the classical Bernoulli polynomials Bn(x), the classical Euler polynomials En(x) and the
classical Genocchi polynomials Gn(x) are given, respectively, by

Bn (x) := B(1)
n (x) , En (x) := E(1)

n (x) and Gn (x) := G(1)
n (x) (n ∈N0) . (13)

For the classical Bernoulli numbers Bn, the classical Euler numbers En and the classical Genocchi numbers
Gn of order n, we have
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Bn := Bn (0) = B(1)
n (0) , En := 2nEn

(1
2

)
= 2nE(1)

n

(1
2

)
and Gn := Gn (0) = G(1)

n (0) (n ∈N0) , (14)

respectively.
The specific choice of the power series A(t) in each of these examples becomes obvious when we compare

the generating function (1) with the generating functions (10), (11) and (12) and their special cases when
α = 1. We choose here to introduce the Hermite-based Bernoulli polynomials HBn(x, y, z), the Hermite-based
Euler polynomials HEn(x, y, z) and the Hermite-based Genocchi polynomials HGn(x, y, z) by means of the
following generating functions:( t

et − 1

)
exp

(
xt + yt2 + zt3

)
=

∞∑
n=0

HBn(x, y, z)
tn

n!
(|t| < 2π), (15)

( 2
et + 1

)
exp

(
xt + yt2 + zt3

)
=

∞∑
n=0

HEn(x, y, z)
tn

n!
(|t| < π) (16)

and

( 2t
et + 1

)
exp

(
xt + yt2 + zt3

)
=

∞∑
n=0

HGn(x, y, z)
tn

n!
(|t| < π), (17)

respectively.
In their special cases when z = 0, the generating functions (15), (16) and (17) would reduce immediately

to the generating functions of the two-dimensional Bernoulli, Euler and Genocchi polynomials. In particular,
the special case of the generating function (15) when z = 0 was investigated by Bretti and Ricci [2] who also
derived the differential, integro-differential and partial differential equations of the two-dimensional Appell
polynomials (see, for details, [2]). The above-mentioned investigation for the extended two-dimensional
Appell polynomials was presented by Yılmaz and Özarslan [21]. Earlier, in the year 2002, He and Ricci [10]
made use of the factorization method in order to derive the differential equations for the one-variable Appell
polynomials. Moreover, the Hermite-based Apostol-Bernoulli polynomials, the Hermite-based Apostol-
Euler polynomials and the Hermite-based Apostol-Genocchi polynomials, as well as their unification, were
introduced and studied recently by Özarslan [13].

The main idea of the so-called factorization method is to find the lowering operator L−n and the raising
operators L+

n and then use such relationships as follows:

L−n+1L+
n
{
HAn(x, y, z)

}
= HAn(x, y, z). (18)

The object of this paper is to find the differential, integro-differential and partial differential equations
for the Hermite-based Appell polynomials HAn(x, y, z) defined by (9) via the factorization method. We also
derive the corresponding equations for the Hermite-based Bernoulli polynomials HBn(x, y, z) defined by
(15) and the Hermite-based Euler polynomials HEn(x, y, z) defined by (16). It is fairly straightforward to
obtain, in a similar manner, the analogous results for the Hermite-based Genocchi polynomials HGn(x, y, z)
defined by (17). Alternatively, of course, one can freely use the following relationships:

HGn(x, y, z) = n HEn−1(x, y, z) (19)

and

HEn(x, y, z) =
( 1

n + 1

)
HGn+1(x, y, z), (20)
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which obviously follow immediately by comparing the generating functions (16) and (17).
We choose to organize our paper as follows: In Section 2, we find the recurrence relations of the three-

variable Hermite-based Appell polynomials HAn(x, y, z) defined by (9) and we obtain the lowering and
the raising operators of the three-variable Hermite-based Appell polynomials HAn(x, y, z) with respect to
variables x, y and z. Furthermore, we give the corresponding recurrence relations as well as the lowering
and the raising operators for the three-dimensional Hermite-based Bernoulli polynomials HBn(x, y, z)
defined by (15) and the three-dimensional Hermite-based Euler polynomials HEn(x, y, z) defined by (16).
In Section 3, we find the differential, integro-differential and partial differential equations for the Hermite-
based Appell polynomials HAn(x, y, z) and also list the corresponding results for the Hermite-Bernoulli
polynomials HBn(x, y, z) and the Hermite-Euler polynomials HEn(x, y, z) as their special cases.

2. Recurrence Relations and Shift Operators

In this section, we begin by deriving the recurrence relations and the shift operators for the Hermite-
based Appell polynomials HAn(x, y, z) defined by the generating function (9).
Theorem 1. The Hermite-based Appell polynomials HAn(x, y, z) defined by the generating function (9) satisfy the
following recurrence relations:

HAn+1(x, y, z) = (x + α0) HAn(x, y, z) +

n∑
k=1

(
n
k

)
αk HAn−k(x, y, z)

+ 2ny HAn−1(x, y, z) + 3n(n − 1)z HAn−2(x, y, z), (21)

where
HA−1(x, y, z) := 0 and HA−2(x, y, z) := 0 (22)

and the coefficients {αk}k∈N0
are given by the following expansion:

A′(t)
A(t)

=

∞∑
k=0

αk
tk

k!
. (23)

The shift operators are given by

xL
−

n :=
1
n

Dx, (24)

yL
−

n :=
1
n

D−1
x Dy, (25)

zL
−

n :=
1
n

D−2
x Dz, (26)

xL
+
n := x + α0 +

n∑
k=1

αk

k!
Dk

x + 2yDx + 3zD2
x, (27)

yL
+
n := x + α0 +

n∑
k=1

αk

k!
D−k

x Dk
y + 2yD−1

x Dy + 3zD−2
x D2

y (28)

and

zL
+
n := x + α0 +

n∑
k=1

αk

k!
D−2k

x Dk
z + 2yD−2

x Dz + 3zD−4
x D2

z , (29)

where

Dx :=
∂
∂x
, Dy :=

∂
∂y
, Dz :=

∂
∂z

and D−1
x :=

∫ x

0
f (ξ)dξ. (30)
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Proof. Upon differentiating both sides of the generating relation (9) with respect to t, we have

∂
∂t

{
G(x, y, z; t)

}
= G(x, y, z; t)

(
A′(t)
A(t)

+ x + 2yt + 3zt2

)
. (31)

We now substitute the corresponding series forms for G(x, y, z; t) from (9) and for the quotient:

A′(t)
A(t)

from (23). By equating the coefficients of tn in the equation resulting from (31), we obtain the recurrence
relation (21) asserted by Theorem 1.

We now use this recurrence relation (21) to find the shift operators xL
+
n , yL

+
n and zL

+
n with respect to

x, y and z. First of all, in order to find the shift operator xL
−
n , we differentiate both sides of the generating

relation (9) with respect to x and equate the coefficients of tn, so that we have

∂
∂x

{
HAn(x, y, z)

}
= n HAn−1(x, y, z).

Thus, clearly, the operator given by (24) satisfies the following relation:

xL
−

n
{
HAn(x, y, z)

}
= HAn−1(x, y, z).

By taking the derivative with respect to y in the generating relation (9), we have

∂
∂y

{
HAn(x, y, z)

}
= n(n − 1) HAn−2(x, y, z) = n

∂
∂x

{
HAn−1(x, y, z)

}
,

so that

D−1
x Dy

{
HAn(x, y, z)

}
= n HAn−1(x, y, z),

and, therefore, we get (25).
Upon differentiating both sides of the generating relation (9) with respect to z, we have

∂
∂z

{
HAn(x, y, z)

}
= n(n − 1)(n − 2) HAn−3(x, y, z) = n

∂2

∂x2

{
HAn−1(x, y, z)

}
,

so that

D−2
x Dz

{
HAn(x, y, z)

}
= n HAn−1(x, y, z),

which yields (26).
Next, in order to obtain the raising operator xL

+
n , we use the following relations:

HAn−k(x, y, z) =
(

xL
−

n−k+1 xL
−

n−k+2 · · · xL
−

n−1 xL
−

n

) {
HAn(x, y, z)

}
=

(n − k)!
n!

Dk
x
{
HAn(x, y, z)

}
,

HAn−1(x, y, z) = xL
−

n
{
HAn(x, y, z)

}
=

1
n

Dx
{
HAn(x, y, z)

}
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and

HAn−2(x, y, z) =
(

xL
−

n−1 xL
−

n

) {
HAn(x, y, z)

}
=

1
n(n − 1)

D2
x
{
HAn(x, y, z)

}
.

By substituting from these relations into the recurrence relation (21), we have

HAn+1(x, y, z) =

x + α0 +

n∑
k=1

αk

k!
Dk

x + 2yDx + 3zD2
x

 {HAn(x, y, z)
}
.

which yields the raising operator (27).
To obtain the raising operator (28), we use the following relations:

HAn−k(x, y, z) =
(

yL
−

n−k+1 yL
−

n−k+2 · · · yL
−

n−1 yL
−

n

) {
HAn(x, y, z)

}
=

(n − k)!
n!

D−k
x Dk

y
{
HAn(x, y, z)

}
,

HAn−1(x, y, z) = yL
−

n
{
HAn(x, y, z)

}
=

1
n

D−1
x Dy

{
HAn(x, y, z)

}
and

HAn−2(x, y, z) =
(

yL
−

n−1 yL
−

n

) {
HAn(x, y, z)

}
=

1
n(n − 1)

D−2
x D2

y
{
HAn(x, y, z)

}
.

Upon substituting from these relations into the recurrence relation (21), we get

HAn+1(x, y, z)

=

x + α0 +

n∑
k=1

αk

k!
D−k

x Dk
y + 2yD−1

x Dy + 3zD−2
x D2

y

 {HAn(x, y, z)
}
,

which leads us to the raising operator (28).
The derivation of the raising operator (29) would similarly make use of the following relations:

HAn−k(x, y, z) =
(

zL
−

n−k+1 zL
−

n−k+2 · · · zL
−

n−1 zL
−

n

) {
HAn(x, y, z)

}
=

(n − k)!
n!

D−2k
x Dk

z
{
HAn(x, y, z)

}
,

HAn−1(x, y, z) = zL
−

n
{
HAn(x, y, z)

}
=

1
n

D−2
x Dz

{
HAn(x, y, z)

}
and

HAn−2(x, y, z) =
(

zL
−

n−1 zL
−

n

) {
HAn(x, y, z)

}
=

1
n(n − 1)

D−4
x D2

z
{
HAn(x, y, z)

}
,
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which, in conjunction with the recurrence relation (21), yields

HAn+1(x, y, z)

=

x + α0 +

n∑
k=1

αk

k!
D−2k

x Dk
z + 2yD−2

x Dz + 3zD−4
x D2

z

 {HAn(x, y, z)
}

and, consequently, we have the raising operator (29).

Remark 1. By appropriately choosing A(t) in Theorem 1, we can deduce the following corollaries for
the Hermite-based Bernoulli polynomials HBn(x, y, z) and the Hermite-based Euler polynomials HEn(x, y, z)
defined by the generating functions (15) and (16), respectively.

Corollary 1. The recurrence relations of the Hermite-based Bernoulli polynomials HBn(x, y, z) are given by

HBn+1(x, y, z) =
(
x −

1
2

)
HBn(x, y, z) + 2ny HBn−1(x, y, z)

+ 3n(n − 1)z HBn−2(x, y, z) −
1

n + 1

n+1∑
k=2

(
n + 1

k

)
HBn−k+1(x, y, z)Bk,

where Bk denotes the Bernoulli number of order k and

HB−n(x, y, z) := 0 (n ∈N).

The shift operators are given by

xL
−

n =
1
n

Dx,

yL
−

n =
1
n

D−1
x Dy,

zL
−

n =
1
n

D−2
x Dz,

xL
+
n = x −

1
2

+ 2yDx + 3zD2
x −

n+1∑
k=2

Bk

k!
Dk−1

x ,

yL
+
n = x −

1
2

+ 2yD−1
x Dy + 3zD−2

x D2
y −

n+1∑
k=2

Bk

k!
D1−k

x Dk−1
y

and

zL
+
n = x −

1
2

+ 2yD−2
x Dz + 3zD−4

x D2
z −

n+1∑
k=2

Bk

k!
D2−2k

x Dk−1
z .

Corollary 2. The recurrence relations of the Hermite-based Euler polynomials HEn(x, y, z) are given by

HEn+1(x, y, z) =
(
x −

1
2

)
HEn(x, y, z) +

1
2

n∑
k=1

(
n
k

)
ek HEn−k(x, y, z)

+ 2ny HEn−1(x, y, z) + 3zn(n − 1) HEn−2(x, y, z).

The shift operators are given by

xL
−

n =
1
n

Dx,

yL
−

n =
1
n

D−1
x Dy,
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zL
−

n =
1
n

D−2
x Dz,

xL
+
n = x −

1
2

+ 2yDx + 3zD2
x +

1
2

n∑
k=1

ek

k!
Dk

x,

yL
+
n = x −

1
2

+ 2yD−1
x Dy + 3zD−2

x D2
y +

1
2

n∑
k=1

ek

k!
D−k

x Dk
y

and

zL
+
n = x −

1
2

+ 2yD−2
x Dz + 3zD−4

x D2
z +

1
2

n∑
k=0

ek

k!
D−2k

x Dk
z,

where ek are the coefficients that are linked with the Euler numbers Ek by

ek = −
1
2k

k∑
j=0

(
k
j

)
Ek− j.

Remark 2. The results asserted by Corollary 2 can easily be restated in terms of the Hermite-based Genocchi
polynomials HGn(x, y, z) defined by the generating function (17) by simply making use of the relationships
(19) and (20). The details involved are being omitted here.

3. Differential, Integro-Differential and Partial Differential Equations for the Hermite-Based Appell
Polynomials

In this section, we obtain differential, integro-differential and partial differential equations for the
Hermite-based Appell polynomials via the factorization method. Moreover, we list the corresponding
equations for the Hermite-based Bernoulli polynomials and the Hermite-based Euler polynomials.
Theorem 2. The Hermite-based Appell polynomials satisfy the following differential equation:(x + α0)Dx +

n∑
k=1

αk

k!
Dk+1

x + 2yD2
x + 3zD3

x − n

 {HAn(x, y, z)
}

= 0. (32)

Proof. Using the following factorization relation:

xL
−

n+1 xL
+
n
{
HAn(x, y, z)

}
= HAn(x, y, z)

and the shift operators (24) and (27), we get the desired result (32).

Theorem 3. The Hermite-based Appell polynomials satisfy the following integro-differential equations:(
(x + α0)Dy +

n∑
k=1

αk

k!
D−k

x Dk+1
y + 2D−1

x Dy

+ 2yD−1
x D2

y + 3zD−2
x D3

y − (n + 1)Dx

) {
HAn(x, y, z)

}
= 0, (33)

(
(x + α0)Dz +

n∑
k=1

αk

k!
D−2k

x Dk+1
z + 2yD−2

x D2
z

+ 3D−4
x D2

z + 3zD−4
x D3

z − (n + 1)D2
x

) {
HAn(x, y, z)

}
= 0, (34)
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(x + α0)Dy +

n∑
k=1

αk

k!
D−2k

x Dk
zDy + 2D−2

x Dz

+ 2yD−2
x DzDy + 3zD−4

x D2
zDy − (n + 1)Dx

) {
HAn(x, y, z)

}
= 0 (35)

and (
(x + α0)Dz +

n∑
k=1

αk

k!
DzD−k

x Dk
y + 2yD−1

x DyDz

+ 3D−2
x D2

y + 3zD−2
x D2

yDz − (n + 1)D2
x

) {
HAn(x, y, z)

}
= 0. (36)

Proof. Using the following factorization relation:

L
−

n+1L
+
n HAn(x, y, z) = HAn(x, y, z)

and the shift operators (25), (26), (28) and (29), we get the integro-differential equations (33) and (34),
respectively. Again, by using the above factorization relation together with the shift operators (25) and (29),
we get the integro-differential equation (35). To obtain the integro-differential equation (36), we use the
shift operators (26) and (28) in the above factorization relation.

Theorem 4. The Hermite-based Appell polynomials satisfy the following partial differential equations:(
(x + α0)D2n

x Dz + 2nD2n−1
x Dz +

n∑
k=1

αk

k!
D2n−2k

x Dk+1
z + 2yD2n−2

x D2
z

+ 3D2n−4
x D2

z + 3zD2n−4
x D3

z − (n + 1)D2n+2
x

) {
HAn(x, y, z)

}
= 0, (37)

(
(x + α0)Dn

xDy + nDn−1
x Dy +

n∑
k=1

αk

k!
Dn−k

x Dk+1
y + 2Dn−1

x Dy

+ 2yDn−1
x D2

y + 3zDn−2
x D3

y − (n + 1)Dn+1
x

) {
HAn(x, y, z)

}
= 0, (38)

(
(x + α0)D2n

x Dy + 2nD2n−1
x Dy +

n∑
k=1

αk

k!
DyD2n−2k

x Dk
z + 2D2n−2

x Dz

+ 2yD2n−2
x DzDy + 3zD2n−4

x D2
zDy − (n + 1)D2n+1

x

) {
HAn(x, y, z)

}
= 0 (39)

and (
(x + α0)Dn

xDz + nDn−1
x Dz +

n∑
k=1

αk

k!
DzDn−k

x Dk
y + 2yDn−1

x DyDz

+ 3Dn−2
x D2

y + 3zDn−2
x D2

yDz − (n + 1)Dn+2
x

) {
HAn(x, y, z)

}
= 0. (40)
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Proof. If we differentiate the integro-differential equation (34) 2n times with respect to x, we get the partial
differential equation (37). Similarly, by taking the derivatives of the integro-differential equation (33) n
times with respect to x,we get the partial differential equation (38). In order to derive the partial differential
equation (39), we take the derivatives of the integro-differential equation (35) 2n times with respect to x.
Similarly, in order to obtain the partial differential equation (40), we take the derivatives of the integro-
differential equation (36) n times with respect to x.

Remark 3. Just as we indicated in Remark 1, by suitably specializing the function A(t) in Theorems 2, 3 and
4, we can deduce the following corollaries which provide the differential, integro-differential and partial
differential equations for the Hermite-based Bernoulli polynomials HBn(x, y, z) and the Hermite-based Euler
polynomials HEn(x, y, z) defined by the generating functions (15) and (16), respectively.

Corollary 3. The Hermite-based Bernoulli polynomials satisfy the following differential equation:(x − 1
2

)
Dx + 2yD2

x + 3zD3
x −

n+1∑
k=2

Bk

k!
Dk

x − n

 {HBn(x, y, z)
}

= 0, (41)

where Bk denotes the Bernoulli number of order k.

Corollary 4. The Hermite-based Bernoulli polynomials satisfy the following integro-differential equations:( (
x −

1
2

)
Dy + 2D−1

x Dy + 2yD−1
x D2

y

+ 3zD−2
x D3

y −

n+1∑
k=2

Bk

k!
D1−k

x Dk
y − (n + 1)Dx

) {
HBn(x, y, z)

}
= 0, (42)

( (
x −

1
2

)
Dz + 2yD−2

x D2
z + 3D−4

x D2
z + 3zD−4

x D3
z

−

n+1∑
k=2

Bk

k!
D2−2k

x Dk
z − (n + 1)D2

x

) {
HBn(x, y, z)

}
= 0, (43)

( (
x −

1
2

)
Dy + 2D−2

x Dz + 2yD−2
x DzDy + 3zD−4

x D2
zDy

−

n+1∑
k=2

Bk

k!
D2−2k

x Dk−1
z Dy − (n + 1)Dx

) {
HBn(x, y, z)

}
= 0 (44)

and ( (
x −

1
2

)
Dz + 2yD−1

x DyDz + 3D−2
x D2

y + 3zD−2
x D2

yDz

−

n+1∑
k=2

Bk

k!
D1−k

x Dk−1
y Dz − (n + 1)D2

x

) {
HBn(x, y, z)

}
= 0, (45)

where Bk denotes the Bernoulli number of order k.
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Corollary 5. The Hermite-based Bernoulli polynomials satisfy the following partial differential equations:( (
x −

1
2

)
Dn

xDy + nDn−1
x Dy + 2Dn−1

x Dy + 2yDn−1
x D2

y + 3zDn−2
x D3

y

−

n+1∑
k=2

Bk

k!
Dn−k+1

x Dk
y − (n + 1)Dn+1

x

) {
HBn(x, y, z)

}
= 0, (46)

( (
x −

1
2

)
D2n

x Dz + 2nD2n−1
x Dz + 2yD2n−2

x D2
z + 3D2n−4

x D2
z + 3zD2n−4

x D3
z

−

n+1∑
k=2

Bk

k!
D2n−2k+2

x Dk
z − (n + 1)D2n+2

x

) {
HBn(x, y, z)

}
= 0, (47)

( (
x −

1
2

)
D2n

x Dy + 2nD2n−1
x Dy + 2D2n−2

x Dz + 2yD2n−2
x DzDy + 3zD2n−4

x D2
zDy

−

n+1∑
k=2

Bk

k!
D2n−2k+2

x Dk−1
z Dy − (n + 1)D2n+1

x

) {
HBn(x, y, z)

}
= 0 (48)

and ( (
x −

1
2

)
Dn

xDz + nDn−1
x Dz + 2yDn−1

x DyDz + 3Dn−2
x D2

y + 3zDn−2
x D2

yDz

−

n+1∑
k=2

Bk

k!
Dn−k+1

x Dk−1
y Dz − (n + 1)Dn+2

x

) {
HBn(x, y, z)

}
= 0, (49)

where Bk denotes the Bernoulli number of order k.

Corollary 6. The differential equation satisfied by the Hermite-based Euler polynomials is given by(x − 1
2

)
Dx + 2yD2

x + 3zD3
x +

1
2

n∑
k=1

ek

k!
Dk+1

x − n

 {HEn(x, y, z)
}

= 0, (50)

where ek is given, in terms of the Euler number Ek, as in Corollary 2.
Corollary 7. The Hermite-based Euler polynomials satisfy the following integro-differential equations:( (

x −
1
2

)
Dy + 2D−1

x Dy + 2yD−1
x D2

y + 3zD−2
x D3

y

+
1
2

n∑
k=1

ek

k!
D−k

x Dk+1
y − (n + 1)Dx

) {
HEn(x, y, z)

}
= 0, (51)

( (
x −

1
2

)
Dz + 2yD−2

x D2
z + 3D−4

x D2
z + 3zD−4

x D3
z

+
1
2

n∑
k=1

ek

k!
D−2k

x Dk+1
z − (n + 1)D2

x

) {
HEn(x, y, z)

}
= 0, (52)
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x −

1
2

)
Dy + 2D−2

x Dz + 2yD−2
x DzDy + 3zD−4

x D2
zDy

+
1
2

n∑
k=1

ek

k!
D−2k

x Dk
zDy − (n + 1)Dx

) {
HEn(x, y, z)

}
= 0 (53)

and ( (
x −

1
2

)
Dz + 2yD−1

x DyDz + 3D−2
x D2

y + 3zD−2
x D2

yDz

+
1
2

n∑
k=1

ek

k!
D−k

x Dk
yDz − (n + 1)D2

x

) {
HEn(x, y, z)

}
= 0. (54)

Corollary 8. The Hermite-based Euler polynomials satisfy the following partial differential equations:( (
x −

1
2

)
Dn

xDy + nDn−1
x Dy + 2Dn−1

x Dy + 2yDn−1
x D2

y + 3zDn−2
x D3

y

+
1
2

n∑
k=1

ek

k!
Dn−k

x Dk+1
y − (n + 1)Dn+1

x

) {
HEn(x, y, z)

}
= 0, (55)

( (
x −

1
2

)
D2n

x Dz + 2nD2n−1
x Dz + 2yD2n−2

x D2
z + 3D2n−4

x D2
z + 3zD2n−4

x D3
z

+
1
2

n∑
k=1

ek

k!
D2n−2k

x Dk+1
z − (n + 1)D2n+2

x

) {
HEn(x, y, z)

}
= 0, (56)

( (
x −

1
2

)
D2n

x Dy + 2nD2n−1
x Dy + 2D2n−2

x Dz + 2yD2n−2
x DzDy + 3zD2n−4

x D2
zDy

+
1
2

n∑
k=1

ek

k!
D2n−2k

x Dk
zDy − (n + 1)D2n+1

x

) {
HEn(x, y, z)

}
= 0 (57)

and ( (
x −

1
2

)
Dn

xDz + nDn−1
x Dz + 2yDn−1

x DyDz + 3Dn−2
x D2

y + 3zDn−2
x D2

yDz

+
1
2

n∑
k=1

ek

k!
Dn−k

x Dk
yDz − (n + 1)Dn+2

x

) {
HEn(x, y, z)

}
= 0, (58)

ek being given, in terms of the Euler number Ek, as in Corollary 2.

4. Further Remarks and Observations

For the Hermite-based Appell polynomials defined by means of the generating function (9), many in-
teresting properties and characteristics were investigated earlier by using operational techniques combined
with the principle of monomiality. Here, in our present investigation, we have found the differential,
integro-differential and partial differential equations for the Hermite-based Appell polynomials via the
factorization method. We have also derived the corresponding equations for the Hermite-based Bernoulli
polynomials and the Hermite-based Euler polynomials which are defined by the generating functions (15)
and (16), respectively. Moreover, just as we indicated in Remark 2, we can easily deduce the corresponding
results for the Hermite-based Genocchi polynomials defined by the generating function (17) from those
involving the Hermite-based Euler polynomials by means of such simple relationships as (19) and (20).
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