
Filomat 28:4 (2014), 709–713
DOI 10.2298/FIL1404709Z

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let G be a graph of order n, and let a, b and k nonnegative integers with 2 ≤ a ≤ b. A
graph G is called all fractional (a, b, k)-critical if after deleting any k vertices of G the remaining graph
of G has all fractional [a, b]-factors. In this paper, it is proved that G is all fractional (a, b, k)-critical if

n ≥
(a + b − 1)(a + b − 3) + a

a
+

ak
a − 1

and bind(G) >
(a + b − 1)(n − 1)

an − ak − (a + b) + 2
. Furthermore, it is shown that this

result is best possible in some sense.

1. Introduction

We consider finite undirected graphs without loops or multiple edges. Let G be a graph with a vertex set
V(G) and an edge set E(G). For x ∈ V(G), the set of vertices adjacent to x in G is said to be the neighborhood
of x, denoted by NG(x). For any X ⊆ V(G), we write NG(X) =

⋃
x∈X NG(x). For two disjoint subsets S and

T of V(G), we denote by eG(S,T) the number of edges with one end in S and the other end in T. Thus
eG(x,V(G) \ {x}) = dG(x) is the degree of x and δ(G) = min{dG(x) : x ∈ V(G)} is the minimum degree of G. For
S ⊆ V(G), we use G[S] to denote the subgraph of G induced by S, and G−S to denote the subgraph obtained
from G by deleting vertices in S together with the edges incident to vertices in S. A vertex set S ⊆ V(G) is
called independent if G[S] has no edges. The binding number of G is defined as

bind(G) = min{
|NG(X)|
|X|

: ∅ , X ⊆ V(G),NG(X) , V(G)}.

Let 1 and f be two integer-valued functions defined on V(G) with 0 ≤ 1(x) ≤ f (x) for each x ∈ V(G).
A (1, f )-factor of a graph G is defined as a spanning subgraph F of G such that 1(x) ≤ dF(x) ≤ f (x) for
each x ∈ V(G). We say that G has all (1, f )-factors if G has an r-factor for every r : V(G) → Z+ such that
1(x) ≤ r(x) ≤ f (x) for each x ∈ V(G) and r(V(G)) is even.

A fractional (1, f )-indicator function is a function h that assigns to each edge of a graph G a real number
in the interval [0,1] so that for each vertex x we have 1(x) ≤ h(Ex) ≤ f (x), where Ex = {e : e = xy ∈ E(G)} and
h(Ex) =

∑
e∈Ex

h(e). Let h be a fractional (1, f )-indicator function of a graph G. Set Eh = {e : e ∈ E(G), h(e) > 0}.
If Gh is a spanning subgraph of G such that E(Gh) = Eh, then Gh is called a fractional (1, f )-factor of G. h
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is also called the indicator function of Gh. If h(e) ∈ {0, 1} for every e, then Gh is just a (1, f )-factor of G. A
fractional (1, f )-factor is a fractional f -factor if 1(x) = f (x) for each x ∈ V(G). A fractional (1, f )-factor is a
fractional [a, b]-factor if 1(x) = a and f (x) = b for each x ∈ V(G). We say that G has all fractional (1, f )-factors
if G has a fractional r-factor for every r : V(G) → Z+ such that 1(x) ≤ r(x) ≤ f (x) for each x ∈ V(G). All
fractional (1, f )-factors are said to be all fractional [a, b]-factors if 1(x) = a and f (x) = b for each x ∈ V(G). A
graph G is all fractional (a, b, k)-critical if after deleting any k vertices of G the remaining graph of G has all
fractional [a, b]-factors.

Many authors have investigated factors [1,2,8] and fractional factors [3,4,7,10] of graphs. The following
results on all (1, f )-factors, all fractional [a, b]-factors and all fractional (a, b, k)-critical graphs are known.

Theorem 1.1. (Niessen [6]). G has all (1, f )-factors if and only if

1(S) +
∑
x∈T

dG−S(x) − f (T) − hG(S,T, 1, f ) =

{
−1, i f f , 1
0, i f f = 1

for all disjoint subsets S,T ⊆ V(G), where hG(S,T, 1, f ) denotes the number of components C of G− (S∪T) such that
there exists a vertex v ∈ V(C) with 1(v) < f (v) or eG(V(C),T) + f (V(C)) ≡ 1 (mod 2).

Theorem 1.2. (Lu [5]). Let a ≤ b be two positive integers. Let G be a graph with order n ≥
2(a + b)(a + b − 1)

a
and

minimum degree δ(G) ≥
(a + b − 1)2 + 4b

4a
. If |NG(x)| ∪ |NG(y)| ≥

bn
a + b

for any two nonadjacent vertices x and y in
G, then G has all fractional [a, b]-factors.

Theorem 1.3. (Zhou [9]). Let a, b and k be nonnegative integers with 1 ≤ a ≤ b, and let G be a graph of order n with
n ≥ a + k + 1. Then G is all fractional (a, b, k)-critical if and only if for any S ⊆ V(G) with |S| ≥ k

a|S| +
∑
x∈T

dG−S(x) − b|T| ≥ ak,

where T = {x : x ∈ V(G) \ S, dG−S(x) < b}.

Using Theorem 3, Zhou [9] obtained a neighborhood condition for graphs to be all fractional (a, b, k)-
critical graphs.

Theorem 1.4. (Zhou [9]). Let a, b, k, r be nonnegative integers with 1 ≤ a ≤ b and r ≥ 2. Let G be a graph of order

n with n >
(a + b)(r(a + b) − 2) + ak

a
. If δ(G) ≥

(r − 1)b2

a
+ k, and |NG(x1) ∪NG(x2) ∪ · · · ∪NG(xr)| ≥

bn + ak
a + b

for
any independent subset {x1, x2, · · · , xr} in G, then G is all fractional (a, b, k)-critical.

2. Main Result and Its Proof

In this paper, we proceed to study the existence of all fractional (a, b, k)-critical graphs and obtain a
binding number condition for graphs to be all fractional (a, b, k)-critical. Our main result is the following
theorem.

Theorem 2.1. Let a, b and k be nonnegative integers with 2 ≤ a ≤ b, and let G be a graph of order n with

n ≥
(a + b − 1)(a + b − 3) + a

a
+

ak
a − 1

. If bind(G) >
(a + b − 1)(n − 1)

an − ak − (a + b) + 2
, then G is all fractional (a, b, k)-critical.

Proof. Suppose that G satisfies the assumption of Theorem 2.1, but it is not all fractional (a, b, k)-critical.
Then by Theorem 1.3, there exists some subset S of V(G) with |S| ≥ k such that

a|S| +
∑
x∈T

dG−S(x) − b|T| ≤ ak − 1, (1)
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where T = {x : x ∈ V(G) \ S, dG−S(x) < b}. Clearly, T , ∅ by (1). Define

h = min{dG−S(x) : x ∈ T}.

In terms of the definition of T, we obtain 0 ≤ h ≤ b − 1.
Now in order to prove the correctness of Theorem 2.1, we shall deduce some contradictions according

to the following two cases.
Case 1. h = 0.
Let X = {x : x ∈ T, dG−S(x) = 0}. Obviously, X , ∅ and NG(V(G)\S)∩X = ∅, and so |NG(V(G)\S)| ≤ n−|X|.

According to the definition of bind(G) and the condition of Theorem 2.1, we have

(a + b − 1)(n − 1)
an − ak − (a + b) + 2

< bind(G) ≤
|NG(V(G) \ S)|
|V(G) \ S|

≤
n − |X|
n − |S|

,

which implies

(a + b − 1)(n − 1)|S| > (a + b − 1)(n − 1)n − (an − ak − (a + b) + 2)n + (an − ak − (a + b) + 2)|X|
= (b − 1)(n − 1)n + (b − 2)n + akn + (an − ak − (a + b) + 2)|X|
≥ (b − 1)(n − 1)n + akn + (an − ak − (a + b) + 2)|X|
= (b − 1)(n − 1)n + akn + [(n − 1) + (a − 1)n − ak − (a + b) + 3]|X|

≥ (b − 1)(n − 1)n + akn + [(n − 1) + (a − 1) ·
(

(a + b − 1)(a + b − 3) + a
a

+
ak

a − 1

)
−ak − (a + b) + 3]|X|

> (b − 1)(n − 1)n + akn + [(n − 1) + (a − 1)(a + b − 3) − (a + b) + 3]|X|
≥ (b − 1)(n − 1)n + ak(n − 1) + (n − 1)|X|.

Thus, we obtain

|S| >
(b − 1)n + ak + |X|

a + b − 1
. (2)

Using (1), (2) and |S| + |T| ≤ n, we have

ak − 1 ≥ a|S| +
∑
x∈T

dG−S(x) − b|T|

≥ a|S| + |T| − |X| − b|T|
= a|S| − (b − 1)|T| − |X|
≥ a|S| − (b − 1)(n − |S|) − |X|
= (a + b − 1)|S| − (b − 1)n − |X|

> (a + b − 1) ·
(b − 1)n + ak + |X|

a + b − 1
− (b − 1)n − |X|

= ak,

which is a contradiction.
Case 2. 1 ≤ h ≤ b − 1.

Claim 1. δ(G) >
(b − 1)n + ak + a + b − 2

a + b − 1
.

Let v be a vertex of G with degree δ(G). Set Y = V(G) \NG(v). Obviously, Y , ∅ and v < NG(Y). In terms
of the definition of bind(G), we have

(a + b − 1)(n − 1)
an − ak − (a + b) + 2

< bind(G) ≤
|NG(Y)|
|Y|

≤
n − 1

n − δ(G)
,

which implies

δ(G) >
(b − 1)n + ak + a + b − 2

a + b − 1
.
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This completes the proof of Claim 1.
Note that δ(G) ≤ |S| + h. Then using Claim 1, we have

|S| ≥ δ(G) − h >
(b − 1)n + ak + a + b − 2

a + b − 1
− h. (3)

Claim 2. |T| ≤
an − ak − (a + b) + 1

a + b − 1
+ h.

Assume that |T| ≥
an − ak − (a + b) + 2

a + b − 1
+h. We choose u ∈ T such that dG−S(u) = h and let Y = T\NG−S(u).

Note that |NG−S(u)| = dG−S(u) = h. Thus, we obtain

|Y| ≥ |T| − dG−S(u)

= |T| − h ≥
an − ak − (a + b) + 2

a + b − 1
> 0

and
NG(Y) , V(G).

Combining these with the definition of bind(G), we have

bind(G) ≤
|NG(Y)|
|Y|

≤
n − 1
|T| − h

≤
(a + b − 1)(n − 1)

an − ak − (a + b) + 2
,

which contradicts that the condition of Theorem 2.1. The proof of Claim 2 is completed.
According to (1), (3) and Claim 2, we obtain

ak − 1 ≥ a|S| +
∑
x∈T

dG−S(x) − b|T| ≥ a|S| − (b − h)|T|

> a ·
(

(b − 1)n + ak + a + b − 2
a + b − 1

− h
)
− (b − h) ·

(
an − ak − (a + b) + 1

a + b − 1
+ h

)
=

(h − 1)an + (a + b − h)ak − a
a + b − 1

− (h − 1)(a + b − h),

that is,

ak − 1 >
(h − 1)an + (a + b − h)ak − a

a + b − 1
− (h − 1)(a + b − h). (4)

Let f (h) =
(h − 1)an + (a + b − h)ak − a

a + b − 1
− (h − 1)(a + b − h). If h = 1, then by (4) we have ak − 1 > f (h) =

f (1) = ak −
a

a + b − 1
> ak − 1, which is a contradiction. In the following, we assume that 2 ≤ h ≤ b − 1.

In view of 2 ≤ h ≤ b − 1 and n ≥
(a + b − 1)(a + b − 3) + a

a
+

ak
a − 1

, we have

f ′(h) =
an − ak

a + b − 1
− (a + b − h) + (h − 1)

= 2h +
an − ak

a + b − 1
− (a + b + 1)

≥ 4 +
(a + b − 1)(a + b − 3) + a

a + b − 1
− (a + b + 1)

=
a

a + b − 1
> 0.

Thus, we obtain
f (h) ≥ f (2). (5)
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From (4), (5) and n ≥
(a + b − 1)(a + b − 3) + a

a
+

ak
a − 1

, we obtain

ak − 1 > f (h) ≥ f (2) =
an + (a + b − 2)ak − a

a + b − 1
− (a + b − 2)

≥
(a + b − 1)(a + b − 3) + a + ak + (a + b − 2)ak − a

a + b − 1
− (a + b − 2)

= ak − 1,

which is a contradiction. This completes the proof of Theorem 2.1.

Remark. In Theorem 2.1, the lower bound on the condition bind(G) is best possible in the sense since

we cannot replace bind(G) >
(a + b − 1)(n − 1)

an − ak − (a + b) + 2
with bind(G) ≥

(a + b − 1)(n − 1)
an − ak − (a + b) + 2

, which is shown in the

following example.

Let b ≥ a ≥ 2, k ≥ 0 be three integers such that a + b + k − 1 is even and
a(b − 1) + b(b − 2) + (a + b − 1)k

a
is a positive integer. Set l =

a + b + k − 1
2

and m =
a(b − 1) + b(b − 2) + (a + b − 1)k

a
. We construct a graph

G = Km∨K2l. Then n = m + 2l =
a(b − 1) + b(b − 2) + (a + b − 1)k

a
+ a + b + k− 1. Let X = V(lK2), for any x ∈ X,

then |NG(X \ x)| = n − 1. According to the definition of bind(G), we obtain

bind(G) =
|NG(X \ x)|
|X \ x|

=
n − 1
2l − 1

=
n − 1

a + b + k − 2
=

(a + b − 1)(n − 1)
an − ak − (a + b) + 2

.

Let S = V(Km), T = V(lK2). Then |S| = m ≥ k, |T| = 2l and
∑

x∈T dG−S(x) = 2l. Thus, we have

a|S| +
∑
x∈T

dG−S(x) − b|T| = am − 2l(b − 1)

= a(b − 1) + b(b − 2) + (a + b − 1)k − (b − 1)(a + b + k − 1)
= ak − 1 < ak.

In terms of Theorem 1.3, G is not all fractional (a, b, k)-critical.
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