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Stability of Solitary Waves for a Generalized
Higher-Order Shallow Water Equation
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Abstract. In this work, we consider solitary wave solutions of a generalized higher-order shallow water
equation. We investigate the existence and stability of solitary waves of the equation.

1. Introduction

Nonlinear evolution equations arise not only from many fields of mathematics, but also from other
branches of science. Therefore, nonlinear evolution equations have attracted a lot of interest of many
mathematicians and scientists in nonlinear sciences. Navier-Stokes equations, Cahn-Hilliard equations,
Boussinesq-type equations and nonlinear Schrödinger equations are examples of nonlinear evolution equa-
tions. These equations have been studied by many authors (see [6, 13–15, 17] and the references therein).

In this paper, we consider the following Cauchy problem for a nonlinear evolution equation{
ut − α2uxxt +

(
1 (u)

)
x + γ

(
u − α2uxx

)
xxx

= α2
(

h′(u)
2 u2

x + h (u) uxx

)
x
, t > 0, x ∈ R,

u (x, 0) = u0 (x) , x ∈ R,
(1)

where 1 (u) , h (u) : R→ R are given function, α and γ are constants.
Eq. (1) describes the generalized integrable shallow water equation with strong dispersive term. The

strong dispersive term γ
(
u − α2uxx

)
xxx

corresponds to the Lagrangian averaged Navier-Stokes alpha equa-
tions for turbulence and can provide analytical control over the solutions [18].

For 1 (u) = 2ωu + 3
2 u2 and h (u) = u, Eq. (1) becomes the the following equation

ut − α
2uxxt + 2ωux + 3uux + γ

(
u − α2uxx

)
xxx

= α2 (2uxuxx + uuxxx) . (2)

In [18], Tian et al. studied the well-posedness of Eq. (2) by applying Kato’s semigroup approach. Moreover,
they got the precise blow-up scenario and gave an explosion criterion of strong solutions of Eq. (2) with
rather general initial data.
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If α = 1, γ = 1 and ω = 0 Eq. (2) becomes the following fifth-order shallow water equation

ut − uxxt + uxxx + 3uux − uxxxxx = 2uxuxx + uuxxx, (3)

which is a higher-order modification of the following Camassa-Holm equation

ut − uxxt + 3uux = 2uxuxx + uuxxx.

The well-posedness of the Cauchy problem of Eq. (3) in Sobolev spaces has been studied by several authours
(see [7, 8, 19] and the references therein).

In Eq. (2) if the strong dispersive term γ
(
u − α2uxx

)
xxx

is rewritten as the weak dispersive term γuxxx,
Eq. (2) becomes the following Dullin-Gottwald-Holm equation:

ut − α
2uxxt + 2ωux + 3uux + γuxxx = α2 (2uxuxx + uuxxx) , t > 0, x ∈ R, (4)

which was derived by Dullin, Gottwald and Holm using asymptotic expansions directly in the Hamiltonian
for Euler’s equations in the shallow water regime in [2].

Recently, the well-posedness problem for the following generalization of the DGH equation:{
ut − α2uxxt + h (u)x + γuxxx = α2

(
1′(u)

2 u2
x + 1 (u) uxx

)
x
, t > 0, x ∈ R,

u (x, 0) = u0 (x) , x ∈ R,
(5)

has been studied in [12]. In [3], authors studied the blow-up of solutions for the (5). Also, they proved the
stability of solitary wave solutions with the help of the orbital stability theory [5].

It seems that the (1) is a better generalization of shallow water equation. In [4], Dündar and Polat
studied the well-posedness by applying Kato’s semigroup approach.

The aim of this paper is to investigate the existence and stability of solitary wave solutions of (1) when
1 (u) = 2ωu +

p+2
2 up+1, h (u) = up, where p > 0 is an integer and ω > 0. Without loss of generality we assume

that α = γ = 1. In this instance, (1) becomes the following problem:{
ut − uxxt + 2ωux +

( p+2
2 up+1

)
x

+ uxxx − uxxxxx =
( p

2 up−1u2
x + upuxx

)
x
, t > 0, x ∈ R,

u (x, 0) = u0 (x) , x ∈ R,
(6)

Our paper is organized as follows: In Section 2, we give two conservation laws for (1). They are
important for to prove stability of solitary waves. In Section 3, we show the existence of solitary waves
of (6). For this, we will use the method of concentrated compactness developed by Lions [11] to solve a
constrained minimization problem . In Section 4, we prove the stability of solitary wave solutions of (6).
We show that there is a function d (c) of the wave speed such that the solitary waves are stable whenever
d (c) is convex. The proof uses a compactness argument similar to those in [1] and [16] (see also [9, 10]).

Notations: Throughout this paper, we use the following notations.
Let Lp = Lp (R) be the Lebesgue measurable space with

∥∥∥ f
∥∥∥

Lp =

(∫
R

∣∣∣ f (x)
∣∣∣p dx

) 1
p

.

The space L∞ is defined as the space of all measurable functions f on R such that∥∥∥ f
∥∥∥

L∞ = ess sup
x∈R

∣∣∣1 (x)
∣∣∣ .

Let Hs = Hs (R) be Sobolev space with

∥∥∥ f
∥∥∥

Hs =

(∫
R

(
1 + |ξ|2

)s ∣∣∣∣ f̂ (ξ)
∣∣∣∣2 dξ

) 1
2

,

where f̂ (ξ) =
∫
R

e−iξx f (x) dx.
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2. Conservation Laws

First, we give the following local well-posedness theorem:

Theorem 2.1. [4] Assume that 1, h ∈ C[s]+1 (R) , and h (0) = 1 (0) = 0. Given u0 ∈ Hs, s > 3
2 , there exists a maximal

T = T (u0) > 0, and a unique strong solution u to (1) such that

u = u (u0, .) ∈ C ([0,T) ; Hs) ∩ C1
(
[0,T) ; Hs−1

)
.

Moreover, the solution depends continuously on the initial data, i.e., the mapping

u0 → u (u0, .) : Hs
→ C ([0,T) ; Hs) ∩ C1

(
[0,T) ; Hs−1

)
is continuous.

For a solution, we want all derivatives involved in the equation to exist and satisfy the equation with
initial/boundary conditions at each point of the domain. Such a solution is called a classical solution.
Certain specific partial differential equations such as the wave equation can be solved in the classical sense;
but if we wish to study conservation laws and recover the underlying physics, we must allow for solutions
which are not continously differentiable or even not continous. As in the case of conservation laws, some
equations can be described in weaker forms and may be satisfied by functions that are not sufficiently
smooth. Moreover, a solution that starts smooth may eventually become singular as in the case of shock
waves. To overcome this difficulty, we allow for generalized or weak solutions. In the classical (smooth)
category, there is no ambiguity as to what it means for a function u to solve an equation; but once one
is in a low regularity class, there are several competing notions of solution, in particular the notions of a
strong solution and a weak solution. To oversimplify a bit, both strong and weak solutions solve (1) in a
distributional sense, but strong solutions are also continuous in time.

Applying the operator
(
I − ∂2

x

)−1
to both sides of (1) we obtain

 ut + bh (u) ux + auxxx = −∂x

(
I − ∂2

x

)−1 (
1 (u) + b

2 h′ (u) u2
x

)
+

(
I − ∂2

x

)−1
(bh (u) ux)

u (x, 0) = u0 (x) ,

where t > 0, x ∈ R and a =
γ
α3 and b = 1

α .Hence u is a solution of (1) in the sense of distribution. In particular,
if s ≥ 5, u is also a classical solution.

Now, we give two useful conservation laws. We note that Eq. (1) can be written as the following
Hamiltonian form:

ut + JF′ (u) = 0,

where J =
(
I − ∂2

x

)−1
∂x is a skew-symmetric operator and

F (u) =
1
2

∫
R

(
2G (u) + α2h (u) u2

x − γu2
x − γα

2u2
xx

)
dx

is the Hamiltonian, where G′ (s) = 1 (s). We note that the functional F (u) is formally conserved. Moreover,
the other conserved quantity is

E (u) =
1
2

∫
R

(
u2 + α2u2

x

)
dx.

Both E (u) and F (u) are very important to the stability analysis.
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Theorem 2.2. Let u be a solution of (1). Then the functionals

E (u) =
1
2

∫
R

(
u2 + α2u2

x

)
dx, F (u) =

1
2

∫
R

(
2G (u) + α2h (u) u2

x − γu2
x − γα

2u2
xx

)
dx

are constant with respect to t, where G′ (s) = 1 (s) .

Proof. Multiplying both sides of Eq. (1) by u and integrating by parts with respect to x, we obtain

dE (u)
dt

=

∫
R

u
(
ut − α

2uxxt

)
dx = 0.

Set v (x, t) =

∫ x

−∞

ut
(
y, t

)
dy. Consider the equalities

d
dt

∫
R

G (u) dx =

∫
R

1 (u) utdx =

∫
R

1 (u) vxdx = −

∫
R

(
1 (u)

)
x vdx,

d
dt

∫
R

α2 1
2

h (u) u2
xdx = α2

∫
R

1
2

h′ (u) utu2
xdx + α2

∫
R

h (u) uxuxtdx

= α2
∫
R

1
2

h′ (u) u2
xvxdx + α2

∫
R

h (u) uxvxxdx

= −α2
∫
R

1
2

h′ (u) u2
xvxdx − α2

∫
R

h (u) uxxvxdx

= α2
∫
R

(1
2

h′ (u) u2
x + h (u) uxx

)
x

vdx,

d
dt

∫
R

1
2
γu2

xdx =

∫
R

γuxuxtdx =

∫
R

γuxvxxdx =

∫
R

γuxxxvdx

and

d
dt

∫
R

1
2
γα2u2

xxdx =

∫
R

γα2uxxuxxtdx =

∫
R

γα2uxxvxxxdx = −

∫
R

γα2uxxxxxvdx.

Combining the above equalities, we have

dF (u)
dt

=
d
dt

∫
R

1
2

(
2G (u) + α2h (u) u2

x − γu2
x − γα

2u2
xx

)
dx

= −

∫
R

((
1 (u)

)
x − α

2
(1

2
h′ (u) u2

x + h (u) uxx

)
x

+ γuxxx − γα
2uxxxxx

)
vdx.

Multiplying both sides Eq. (1) by v and integrating we get∫
R

v
(
ut − α

2uxxt

)
dx = −

∫
R

((
1 (u)

)
x − α

2
(1

2
h′ (u) u2

x + h (u) uxx

)
x

+ γuxxx − γα
2uxxxxx

)
vdx.∫

R

(
vvx − α

2vvxxx

)
dx =

dF (u)
dt

= 0.
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3. Existence of Solitary Waves

In this section, we investigate the existence of solitary waves of the Eq. (6).
By a solitary wave we mean a solution of (6) of the form u (x, t) = ϕ (x − ct) ,where c > 2ω represents the

speed of the wave. Inserting this into (6) and integrating once, taking integral constant zero, we see that ϕ
must satisfiy

cϕ − cϕ′′ − 2ωϕ −
p + 2

2
ϕp+1

− ϕ′′ + ϕ′′′′ +
(p

2
ϕp−1ϕ′2 + ϕpϕ′′

)
= 0. (7)

We obtain solutions to the solitary wave equation (7) by solving a constrained minimization problem.
Define the functionals

I (u) = I (u;ω, c) =

∫
R

(
(c − 2ω) u2 + (c + 1) u2

x + u2
xx

)
dx

and

K (u) =

∫
R

(
up+2 + upu2

x

)
dx.

For λ > 0, we consider the following constrained minimization problem on H2,

Mλ = inf
{
I (u) : u ∈ H2, K (u) = λ

}
. (8)

If ψ ∈ H2 achieves the minimum of problem (8), for some λ > 0, then by the Lagrange multiplier
principle there exists ϑ ∈ R such that ψ is a weak solution of the Euler-Lagrange equation δI

(
ψ
)

= ϑδK
(
ψ
)
,

where δI
(
ψ
)

and δK
(
ψ
)

are the Fréchet derivatives of I and K atψ.Namely, the functionψ is a weak solution
of the Euler-Lagrange equation

(2c − 4ω)ψ − (2c + 2)ψ′′ + 2ψ′′′′ = ϑ
[(

p + 2
)
ψp+1

−

(
pψp−1 (

ψ′
)2 + 2ψpψ′′

)]
with a Lagrange multiplier ϑ.Hence ϕ = ϑ

1
pψ is a solution of the solitary wave equation (7). Such solutions

are called as ground states, and we denote the set of all ground states by Nc. By homogeneity of I and K,
ground states also achieve minimum

m = m (ω, c) = inf

 I (u)

K (u)
2

p+2

: u ∈ H2, u , 0

 ,
and it follows that

Mλ = λ
2

p+2 m. (9)

Multiplying the solitary wave equation (7) by ϕ and integrating the resulting equation gives I
(
ϕ
)

=
p+2

2 K
(
ϕ
)
. Thus the set of ground states may be characterized by

Nc =

ϕ ∈ H2 :
2

p + 2
I
(
ϕ
)

= K
(
ϕ
)

=

(
2

p + 2
m
) p+2

p
 . (10)

We are now going to prove that Nc is nonempty.
We say that ψk is a minimizing sequence if for some λ > 0, lim

k→∞
I
(
ψk

)
= Mλ and lim

k→∞
K

(
ψk

)
= λ.



N. Dündar, N. Polat / Filomat 28:5 (2014), 1007–1017 1012

Theorem 3.1. Let
{
ψk

}
be a minimizing sequence for some λ > 0. If c > 2ω, then there exist a subsequence (renamed

ψk) and scalars yk ∈ R and ψ ∈ H2 such that ψk
(
. − yk

)
→ ψ in H2. The function ψ achieves the minimum

I
(
ψ
)

= Mλ subject to the constraint K
(
ψ
)

= λ.

Proof. We prove the above theorem by applying the concentration compactness lemma of Lions [11]. From
(9) we see that the subadditivity condition holds

Mλ < Mλ1 + Mλ−λ1 , for λ1 ∈ (0, λ) .

Since c > 2ω, the functional I satisfies the coercivity condition

I (u) ≥ (c − 2ω) ‖u‖2H2 .

It is also clear that (c + 1) ‖u‖2H2 ≥ I (u) . That is to say, for c > 2ω the functional I (u) is equivalent to ‖u‖2H2 :

(c − 2ω) ‖u‖2H2 ≤ I (u) ≤ (c + 1) ‖u‖2H2 .

Let
{
ψk

}
be a minimizing sequence. Then by coercivity of I, the squence

{
ψk

}
is bounded in H2, so we define

ρk =
∣∣∣∂2

xψk

∣∣∣2 +
∣∣∣∂xψk

∣∣∣2 +
∣∣∣ψk

∣∣∣2 ,
then after extracting a subsequence, we may assume lim

k→∞

∫
R

ρkdx = L > 0. By normalizing we may assume

further that
∥∥∥ρk

∥∥∥
L1 = L for all k. By the concentration compactness lemma, a further subsequence ρk satisfies

one of the following three conditions.
(i) Compactness: There exists yk ∈ R such that for any ε > 0 there exists R(ε) such that for all k∫

|x−yk|≤R
ρkdx ≥

∫
R

ρkdx − ε. (11)

(ii) Vanishing: For every R > 0,

lim
k→∞

sup
y∈R

∫
|x−y|≤R

ρkdx = 0. (12)

(iii) Dichotomy: There exists some l ∈ (0,L) such that for any ε > 0 there exist R > 0 and Rk → ∞, yk ∈ R
and k0 such that∣∣∣∣∣∣

∫
|x−yk|≤R

ρkdx − l

∣∣∣∣∣∣ < ε and

∣∣∣∣∣∣
∫

R<|x−yk|<Rk

ρkdx

∣∣∣∣∣∣ < ε (13)

for k ≥ k0.
Our purpose is to show that both vanishing and dichotomy ruled out, and therefore ρk is compact. First
suppose that (ii) holds. By the Sobolev inequality we have∫

|x−y|≤1

∣∣∣ψk

∣∣∣p+2
dx ≤ C

∫
|x−y|≤1

ρkdx


p+2

2

,

∫
|x−y|≤1

∣∣∣ψp
k

(
∂xψk

)2
∣∣∣ dx ≤ C

∫
|x−y|≤1

∣∣∣ψk

∣∣∣p+2
dx


p

p+2

.

∫
|x−y|≤1

∣∣∣∂xψk

∣∣∣p+2
dx


2

p+2

for all y ∈ R and
{
ψk

}
is bounded in H2. We obtain that for any ψk ∈ H2

∫
|x−y|≤1

∣∣∣ψk

∣∣∣p+2
dx ≤ C

sup
y∈R

∫
|x−y|≤1

ρkdx


p
2

.
∥∥∥ψk

∥∥∥2

H2 ,
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∫
|x−y|≤1

∣∣∣ψp
k

(
∂xψk

)2
∣∣∣ dx ≤ C

∥∥∥ψk

∥∥∥2

H2

C
sup

y∈R

∫
|x−y|≤1

ρkdx


p
2

.
∥∥∥ψk

∥∥∥2

H2


p

p+2

.

Hence from (12) (with R = 1), we arrive at the contradiction that lim
k→∞

K
(
ψk

)
= 0. Hence vanishing cannot

occur.
Next suppose (iii) holds. Then we may define cutoff functions δ1 and δ2 with support on |x| ≤ 2 and |x| ≥ 1

2 ,
respectively and with δ1 (x) = 1 for |x| ≤ 1 and δ2 (x) = 1 for |x| ≥ 1, in such a way that the functions

ψk,1 (x) = δ1


∣∣∣x − yk

∣∣∣
R

ψk (x)

and

ψk,2 (x) = δ2


∣∣∣x − yk

∣∣∣
Rk

ψk (x)

satisfy

I
(
ψk

)
= I

(
ψk,1

)
+ I

(
ψk,2

)
+ O (ε) ,

K
(
ψk

)
= K

(
ψk,1

)
+ K

(
ψk,2

)
+ O (ε) (14)

for k ≥ k0. Since
{
ψk

}
is bounded in H2 it follows that ψk,1 and ψk,2 are also bounded in H2 independently of

ε. Consequently K
(
ψk,1

)
and K

(
ψk,2

)
are bounded and we can pass to subsequences to define

λ1 (ε) = lim
k→∞

K
(
ψk,1

)
and λ2 (ε) = lim

k→∞
K

(
ψk,2

)
.

As λ1 (ε) and λ2 (ε) are bounded independently of ε,we can choose a sequence ε j → 0 such that both limits

λ1 = lim
j→∞

λ1

(
ε j

)
and λ2 = lim

j→∞
λ2

(
ε j

)
exist. Certainly, λ1 + λ2 = λ, and there are three cases to consider now.
If λ1 ∈ (0, λ) then by (14) and Mλ = λ

2
p+2 m

I
(
ψk

)
= I

(
ψk,1

)
+ I

(
ψk,2

)
+ O (ε) ≥MK(ψk,1) + MK(ψk,2) + O

(
ε j

)
=

(
K

(
ψk,1

)2/(p+2) + K
(
ψk,2

)2/(p+2
)

m + O
(
ε j

)
.

We first let k→∞ to obtain

Mλ ≥

[
λ2/(p+2)

1

(
ε j

)
+ λ2/(p+2)

2

(
ε j

)]
m + O

(
ε j

)
.

Then letting j→∞, we arrive at

Mλ ≥Mλ1 + Mλ−λ1 ,

a contradiction.
If λ1 = 0 (or equivalently, when λ1 = λ), we have

I
(
ψk,1

)
≥ (c − 2ω)

∫
R

(∣∣∣ψk,1

∣∣∣2 +
∣∣∣∂xψk,1

∣∣∣2 +
∣∣∣∂2

xψk,1

∣∣∣2) dx

= (c − 2ω)

∫
|x−yk|≤2R

(∣∣∣ψk

∣∣∣2 +
∣∣∣∂xψk

∣∣∣2 +
∣∣∣∂2

xψk

∣∣∣2) dx + O
(
ε j

)
= (c − 2ω)

(
l + O

(
ε j

))
.
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Thus

I
(
ψk

)
= I

(
ψk,1

)
+ I

(
ψk,2

)
+ O

(
ε j

)
≥ (c − 2ω)

(
l + O

(
ε j

))
+ K

(
ψk,2

)2/(p+2 m + O
(
ε j

)
.

Letting k and j→∞ respectively, we obtain

Mλ ≥ (c − 2ω) l + K
(
ψk,2

)2/(p+2) m = (c − 2ω) l + Mλ > Mλ,

which is a contradiction.
Finally, λ1 > λ (or equivalently, when λ1 < 0), we use the positivity of I to estimate

I
(
ψk

)
≥ I

(
ψk,1

)
+ O

(
ε j

)
≥ K

(
ψk,1

)2/(p+2 m + O
(
ε j

)
.

Letting k and j→∞ respectively, we obtain

Mλ ≥Mλ1 > Mλ,

which is a contradiction.
So there exist yk ∈ R such that ρk

(
. − yk

)
is compact. Now set ϕk = ψk

(
. − yk

)
. Since ϕk is bounded in H2, a

subsequence ϕk converges to some ψ ∈ H2, and by the weak lower semicontinuity of I over H2, we have

I
(
ψ
)
≤ lim

k→∞
I
(
ϕk

)
= Mλ.

Also, weak convergence in H2, compactness of ρk, and Sobolev inequality imply strong convergence of ϕk
to ψ in Lp+2. Therefore

K
(
ψ
)

= lim
k→∞

K
(
ϕk

)
= λ,

so I
(
ψ
)
≥ Mλ. Together with the inequality above, this implies I

(
ψ
)

= Mλ, so ψ is minimizer of I subject
to the constraint K

(
ϕ
)

= λ. Finally, since I is equivalent to the norm on H2, ϕk → ψ, and I
(
ϕk

)
→ I

(
ψ
)
, it

follows that ϕk converges to ψ in H2.

We now show that this weak solution is in fact a classical solution of (7).

Lemma 3.2. Suppose ϕ ∈ H2 is a weak solution of (7). Then ϕ is a classical solution and ϕ ∈ C5.

Proof. Eq. (7) can be written as

cϕ − cϕ′′ − 2ωϕ − ϕ′′ + ϕ′′′′ = f
(
ϕ,ϕ′, ϕ′′

)
,

where f
(
ϕ,ϕ′, ϕ′′

)
=

p+2
2 ϕ

p+1
−

( p
2ϕ

p−1ϕ′2 + ϕpϕ′′
)
. Since ϕ ∈ H2, both ϕ and ϕ′ are in L∞ ∩ L2 and thus

f
(
ϕ,ϕ′, ϕ′′

)
∈ L2. Since ϕ is a weak solution of (7) this implies ϕ ∈ H4 and therefore f

(
ϕ,ϕ′, ϕ′′

)
∈ C1 by

Sobolev’s lemma. Thus ϕ ∈ C5.

4. Stability

We define the function d of wavespeed c > 2ω as

d (c) = cE
(
ϕ
)
− F

(
ϕ
)
,

where ϕ is any ground state solution of (7), i.e ϕ ∈ Nc. Then ϕ satisfies

cE′
(
ϕ
)
− F′

(
ϕ
)

= 0,
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where E′ and F′ are the Fréchet derivatives of E and F, respectively. The functionals E and F are related to
the functionals I and K used to obtain the solitary waves by the simple formula

cE (u) − F (u) =
1
2

(I (u) − K (u)) . (15)

By using I
(
ϕ
)

=
p+2

2 K
(
ϕ
)

and (10), we obtain

d (c) =
p

2
(
p + 2

) I
(
ϕ
)

=
p
4

K
(
ϕ
)

=
p
4

(
2

p + 2
m
) p+2

p

. (16)

In this section we show that stability of the set of ground states is determined by the convexity of the
function d (c) . We will use the following definition of stability throughout.

Definition 4.1. A set S ⊂ H2 is stable with respect to (6) if given ε > 0 there exists some δ > 0 such that if u0
satisfies

inf
ϕ∈S

∥∥∥u0 (.) − ϕ (.)
∥∥∥

H2 < δ

then the solution u (., t) of (6) with initial data u (., 0) = u0 (.) exists for all t > 0 and satisfies

sup
0≤t<∞

inf
ϕ∈S

∥∥∥u (., t) − ϕ
(
. − y

)∥∥∥
H2 < ε.

Otherwise, we say that S is unstable with respect to (6).

We state the basic properties of the function d.
Therefore, d is well defined, and we may deduce its properties by examining the function m.

Lemma 4.2. Let c > 2ω, then m = m (ω, c) is monotonically increasing in c.

Proof. We assume that ϕc1 , ϕc2 are solutions of equation (7) corresponding to c = c1, c = c2, respectively.
Without loss of generality, let c1 < c2, then we have

m (ω, c1) ≤
I
(
ϕc2 ;ω, c1

)
K

(
ϕc2

) 2
p+2

=

∫
R

[
(c1 − 2ω)ϕ2

c2
+ (c1 + 1)

(
ϕ′c2

)2
+

(
ϕ′′c2

)2
]

dx

K
(
ϕc2

) 2
p+2

=

∫
R

[
(c2 − 2ω)ϕ2

c2
+ (c2 + 1)

(
ϕ′c2

)2
+

(
ϕ′′c2

)2
]

dx

K
(
ϕc2

) 2
p+2

+
−c2

∫
R

[
ϕ2

c2
+

(
ϕ′c2

)2
]

dx + c1

∫
R

[
ϕ2

c2
+

(
ϕ′c2

)2
]

dx

K
(
ϕc2

) 2
p+2

= m (ω, c2) + (c1 − c2)

∫
R

[(
ϕ′c2

)2
+ ϕ2

c2

]
dx

K
(
ϕc2

) 2
p+2

≤ m (ω, c2) .

This shows that m is monotonically increasing in c, so that by (16) d must be monotonically increasing as
well.
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Let

Uε =

{
u ∈ H2 : inf

ϕ∈Nc

∥∥∥u − ϕ
∥∥∥

H2 < ε

}
denote the ε−neighborhood of the set of ground states Nc. It follows from (16) and d (c) is monotonically
increasing in c that

c (u) = d−1
(p

4
K (u)

)
. (17)

The following lemma is helpful in order to prove the stability of solitary waves.

Lemma 4.3. If d′′ (c) > 0, then there exists ε > 0 such that for any u ∈ Uε and ϕ ∈ Nc we have

c (u)
[
E (u) − E

(
ϕ
)]
−

[
F (u) − F

(
ϕ
)]
≥

1
4

d′′ (c) |c (u) − c|2 .

Proof. By using d′ (c) = E
(
ϕ
)

and Taylor’s formula, we have the expansion

d
(̃
c
)

= d (c) + E
(
ϕ
) (̃

c − c
)

+
1
2

d′′ (c)
(̃
c − c

)2
+ o

(∣∣∣̃c − c
∣∣∣2)

for c̃ near c. By choosing ε sufficiently small the continuity of c (u) implies that

d (c (u)) ≥ d (c) + E
(
ϕ
)

(c (u) − c) +
1
4

d′′ (c) (c (u) − c)2

= c (u) E
(
ϕ
)
− F

(
ϕ
)

+
1
4

d′′ (c) (c (u) − c)2 .

It follows from (16) and (17) that K
(
ϕc(u)

)
= 4

p d (c (u)) = K (u) and ϕc(u) minimizes I (.;ω, c (u)) subject to this
constraint, we then have

c (u) E (u) − F (u) =
1
2

(I (u;ω, c (u)) − K (u))

≥
1
2

(
I
(
ϕc(u);ω, c (u)

)
− K

(
ϕc(u)

))
= d (c (u))

and

c (u) E (u) − F (u) ≥ c (u) E
(
ϕ
)
− F

(
ϕ
)

+
1
4

d′′ (c) (c (u) − c)2 .

Theorem 4.4. Let c > 2ω. If d′′ (c) > 0 then the set of ground states Nc is stable.

Proof. Suppose Nc is unstable and choose initial data vk such that

inf
ϕ∈Nc

∥∥∥vk − ϕ
∥∥∥

H2 <
1
k
,

and let uk (., t) be the solution of (6) with uk (., 0) = vk. Then, by Theorem 2.1 uk is continuous in t, and there
exist some δ > 0 and times tk such that

inf
ϕ∈Nc

∥∥∥uk (., tk) − ϕ
∥∥∥

H2 = δ. (18)
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Since E and F are invariants of (6) and since Nc is bounded, we can find ϕk ∈ Nc such that∣∣∣E (uk (., tk)) − E
(
ϕk

)∣∣∣ =
∣∣∣E (uk (., 0)) − E

(
ϕk

)∣∣∣→ 0, (19)∣∣∣F (uk (., tk)) − F
(
ϕk

)∣∣∣ =
∣∣∣F (uk (., 0)) − F

(
ϕk

)∣∣∣→ 0 (20)

as k→∞. By Lemma 4.3, if δ is sufficiently small, we have

c (uk (., tk))
[
E (uk (., tk)) − E

(
ϕk

)]
−

[
F (uk (., tk)) − F

(
ϕk

)]
≥

1
4

d′′ (c) |c (uk (., tk)) − c|2 ,

and therefore, by (19) and (20), c (uk (., tk))→ c as k→∞.
The continuity of d implies that

lim
k→∞

K (uk (., tk)) = lim
k→∞

4
p

d (c (uk (., tk))) =
4
p

d (c) . (21)

Using (15), (19), (20) and the fact that d (c) = cE
(
ϕk

)
− F

(
ϕk

)
, we have

lim
k→∞

I (uk (., tk)) =
2
(
p + 2

)
p

d (c) . (22)

Hence uk (., tk) is a minimizing sequence and therefore has a subsequence which converges in H2 to some
ϕ ∈ Nc. This contradicts with (18). The proof is completed.
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