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Available at: http://www.pmf.ni.ac.rs/filomat

Stability and Boundedness to Certain Differential Equations of
Fourth Order with Multiple Delays

Erdal Korkmaza, Cemil Tuncb

aMus Alparslan University, Department of Mathematics, 49100, Muş -Turkey
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Abstract. In this paper, we give sufficient conditions to guarantee the asymptotic stability and boundedness
of solutions to a kind of fourth-order functional differential equations with multiple delays. By using the
Lyapunov-Krasovskii functional approach, we establish two new results on the stability and boundedness
of solutions, which include and improve some related results in the literature.

1. Introduction

In 1956, Cartwright [6] investigated the asymptotic stability of zero solution of various linear and non-
linear differential equations of fourth order without delay. In [6], she considered the following differential
equations of fourth order:

x(4) + a1x′′′ + a2x′′ + a3x′ + a4x = 0,

x(4) + a1x′′′ + a2x′′ + a3x′ + f (x) = 0

and

x(4) + a1x′′′ + a2x′′ + ψ(x)x′ + f (x) = 0.

She first constructed a Lyapunov function for the linear equation with constant coefficients, such that its
time derivative is negative semi-definite, as a sum of four linear squares, all with positive coefficients (given
explicitly) if the characteristic roots have negative real parts. Then, she studied the asymptotic stability
of zero solution of these equations by the Lyapunov ‘s direct method. The work of Cartwright [6] made
very important scientific contributions to the qualitative theory of differential equations of higher order,
and this paper may be accepted as a starting basic point for the later researches done on the topic. Later,
many researchers investigated the stability and boundedness of solutions of various nonlinear differential
equations of fourth order without delay, see, the book of Reissig et al. [24] as a survey and the papers
of Abou-El-Ela& Sadek [1], Adesina&Ogundare [3], Burganskaja [5], Cartwright [6],Chukwu [7], Ezeilo
[8-10], Ezeilo&Tejumola [11], Harrow [12], Hu [13], Kaufman & Harrow [15], Lalli & Skrapek [16-18], Lin et
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al. [19], Ogundare&Okecha [20], Ogurcov [21, 22], Skidmore [27], Skrapek&Lalli [28], Tejumola [29], Tunç
[31-34, 36,37], Wu&Xiong [44] and the references cited.

However, to the best of our information, the stability and boundedness to nonlinear differential equations
of fourth order with delay have only been discussed by a few authors, see, Bereketoglu[4], Abou-El-Ela
et al. [2], Kang&Si [14], Okoronkwo [23], Sadek [25], Sinha [26], Tejumola [30], Zhu [45] and Tunç [35,
38–43], and the same topic for the differential equations of fourth order with multiple delays have not been
investigated in the literature yet. The possible reason for this case is probably the difficulty of construction
or definition of suitable Lyapunov functionals for higher order functional differential equations. This case
remains as an open problem in the literature.

The purpose of this work is to address this problem for a kind of nonlinear differential equations of
fourth order with multiple delays.

In this paper, we consider the fourth order nonlinear multi-delay differential equation of the form

x(4) + φ(x′′)x′′′ +
n∑

i=1

hi(x′′(t − ri)) +

n∑
i=1

1i(x′(t − ri)) +

n∑
i=1

fi(x(t − ri))

= p(t, x, x′, x′′, x′′′), (1)

where φ, hi, 1i, fi and p depend only on the variables displayed explicitly and ri are positive constant delays.
It is assumed as basic that the functions φ, hi, 1i, fi and p are continuous in their respective arguments and
satisfy a Lipchitz condition in x(t − ri), x′(t − ri), x′′, x′′(t − ri) and x′′′; hi(0) = 1i(0) = fi(0) = 0 and the
derivatives d1i

dx′ = 1′i (x
′), dhi

dx′′ = h′i (x
′′) and d fi

dx = f ′i (x) exist and are also continuous.
We write Eq.(1) in the system form,

x′ = y
y′ = z
z′ = u

u′ = −φ(z)u −
n∑

i=1

hi(z) −
n∑

i=1

1i(y) −
n∑

i=1

fi(x) +

n∑
i=1

∫ t

t−ri

h′i (z(s))u(s)ds (2)

+

n∑
i=1

∫ t

t−ri

1′i (y(s))z(s)ds +

n∑
i=1

∫ t

t−ri

f ′i (x(s))y(s)ds + p(t, x, y, z,u).

We use the functional Lyapunov approach to investigate the stability and boundedness of solutions of Eq.
(1). This work is the first attempt and an improvement on the topic in the literature, and it contributes to the
earlier relative works done on the nonlinear differential equations of fourth order with and without delay.

2. Preliminaries

We also consider the general autonomous delay differential system
.
x = f (xt), xt(θ) = x(t + θ), − r ≤ θ ≤ 0, t ≥ 0. (3)

Lemma 2.1. (See Sinha [27].) Suppose f (0) = 0. Let V be a continuous functional defined on CH = C with V(0) = 0
, and let u(s) be a function, non-negative and continuous for 0 ≤ s < ∞, u(s)→∞ as s→∞ with u(0) = 0. If for all
φ ∈ C, u

(∣∣∣φ(0)
∣∣∣) ≤ V(φ), V(φ) ≥ 0,

.
V(φ) ≤ 0, then the solution x = 0 of Eq.(3) is stable.

If we define Z =
{
φ ∈ CH :

.
V(φ) = 0

}
, then the solution x = 0 of Eq.(3) is asymptotically stable, provided

that the largest invariant set in Z is Q = {0} .
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3. Main Results

For convenience, we shall introduce the notations:

φ1(z) =

{
1
z

∫ z

0 φ(τ)dτ, z , 0
φ(0) z = 0

and

G(y) =


n∑

i=1

1i(y)
y , y , 0

n∑
i=1
1′i (0), y = 0

.

Let p(t, x, y, z,u) = 0.
Our first main result is the following theorem.

Theorem 3.1. In addition to the basic assumptions imposed on φ, hi, 1i ve fi , we assume that there are positive
constants a, b, c, d, δ, ε and ki, ci,mi (i = 1, 2, ...,n) such that:

i) abc − c
n∑

i=1

ki − adφ(z) ≥ δ > 0, 1′i (y) ≤ ki for all y and z;

ii) 0 < d − aδ
4c <

n∑
i=1

f ′i (x) ≤
n∑

i=1

ci ≤ d, 0 < f ′i (x) ≤ ci for all x;

iii) 0 ≤ G(y) − c < δ
8c

√
d

2ac for all y;

iv) 0 ≤
n∑

i=1

hi(z)
z − b ≤ c3ε

2d2 for all z (z , 0) and h′i (z) ≤ mi,
n∑

i=1

h′i (z) ≤
n∑

i=1

mi ≤ b for all z; in which 0 < ε ≤

δ
2acD ,D = ab + bc

d ;
v) φ(z) ≥ a, φ1(z) − φ(z) < δ

2a2c for all z.

If

r = max
1≤i≤n

ri < min
{

εc
abβ + βd + βb + 2λ

,
δ

2ac(ab + d + b + 2µ)
,

2aε
α(ab + b + d) + 2ρ

}
with α = ε + 1

a , β = ε + d
c , λ = d

2 (α + β + 1) > 0, µ = ab
2 (α + β + 1) > 0, ρ = b

2 (α + β + 1) > 0,then the zero
solution of the system (2) is asymtotically stable.

Remark 3.2. Conditions (i) and (v) imply that

φ(z) <
bc
d
,

n∑
i=1

ki < ab, aε ≤ 1 (4)

Let p(t, x, y, z,u) , 0.

Our second main result is the following theorem.
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Theorem 3.3. Let all the conditions of Theorem 3.1 and the assumption

∣∣∣p(t, x, y, z,u)
∣∣∣ ≤ q(t)

hold, where max q(t) < ∞ and q ∈ L1(0,∞),L1(0,∞) is space of integrable Lebesgue functions.If

r = max
1≤i≤n

ri < min
{

εc
abβ + βd + βb + 2λ

,
δ

2ac(ab + d + b + 2µ)
,

2aε
α(ab + b + d) + 2ρ

}

with α = ε + 1
a , β = ε + d

c , λ = d
2 (α + β + 1) > 0, µ = ab

2 (α + β + 1) > 0, ρ = b
2 (α + β + 1) > 0,

then there exists a finite positive constant K such that the solution x(t) of Eq. (1) defined by the initial function

x(t) = ψ(t), x′(t) = ψ′(t), x′′(t) = ψ′′(t), x′′′(t) = ψ′′′(t),where t ∈ [t0 − r, t0] ,

satisfies

|x(t)| ≤ K, |x′(t)| ≤ K, |x′′(t)| ≤ K, |x′′′(t)| ≤ K

for all t ≥ t0, where ψ ∈ C3([t0 − r ,t0],R).

Proof of Theorem 3.1 To prove the theorem, we define a Lyapunov functional,

2V(x, y, z,u) = 2β
∫ x

0

n∑
i=1

fi(ζ)dζ + bβy2
− αdy2 + 2

∫ y

0

n∑
i=1

1i(η)dη

+ 2α
∫ z

0

n∑
i=1

hi(τ)dτ + 2
∫ z

0
φ(τ)τdτ − βz2 + αu2

+ 2y
n∑

i=1

fi(x) + 2αz
n∑

i=1

fi(x) + 2αz
n∑

i=1

1i(y)

+ 2βy
∫ z

0
φ(τ)dτ + 2βyu + 2zu + 2λ

∫ 0

−r

∫ t

t+s
y2(θ)dθds

+ 2µ
∫ 0

−r

∫ t

t+s
z2(θ)dθds + 2ρ

∫ 0

−r

∫ t

t+s
u2(θ)dθds, (5)

where α = ε+ 1
a , β = ε+ d

c and λ, µ, ρ are positive constants, which will be determined later in the proof.
It is clear that V(0, 0, 0, 0) = 0. We can rearrange V in the following form:

2V = V1 + V2 + V3 + V4 + V5, (6)
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where

V1 = 2β
∫ x

0

n∑
i=1

fi(ζ)dζ −
(1

c

)  n∑
i=1

fi(x)


2

,

V2 =
[
bβ − αd − β2φ1(z)

]
y2 + 2

∫ y

0

n∑
i=1

1i(η)dη − cy2,

V3 =

2α∫ z

0

n∑
i=1

hi(τ)dτ − (β + α2c)z2

 +

[
2
∫ z

0
φ(τ)τdτ − φ1(z)z2

]
,

V4 =

[
α −

1
φ1(z)

]
u2 + 2αyz

[
G(y) − c

]
,

V5 =
1
c

 n∑
i=1

fi(x) + cy + αcz


2

+
1

φ1(z)

[
u + φ1(z)z + βφ1(z)y

]2

+ 2λ
∫ 0

−r

∫ t

t+s
y2(θ)dθds + 2µ

∫ 0

−r

∫ t

t+s
z2(θ)dθds + 2ρ

∫ 0

−r

∫ t

t+s
u2(θ)dθds.

Subject to the assumptions of the theorem, it follows that

V1 = 2β
∫ x

0

n∑
i=1

fi(ζ)dζ −
(1

c

)  n∑
i=1

fi(x)


2

= 2
(
ε +

d
c

) ∫ x

0

n∑
i=1

fi(ζ)dζ −
(1

c

)  n∑
i=1

fi(x)


2

= 2
∫ x

0

(ε +
d
c

)
−

(1
c

) n∑
i=1

f ′i (ζ)

 n∑
i=1

fi(ζ)dζ (7)

≥ 2
∫ x

0

[(
ε +

d
c

)
−

d
c

] n∑
i=1

fi(ζ)dζ

≥ 2ε
∫ x

0

n∑
i=1

fi(ζ)dζ ≥ ε
(
d −

aδ
4c

)
x2.

Since G(y) =

n∑
i=1

1i(y)
y =

n∑
i=1

1′i (σiy), (0 < σi < 1), from condition (iii) and (4), we have c < ab. Using the

first mean value theorem for integral,we have

φ1(z) =
1
z

∫ z

0
φ(s)ds = φ(γz), 0 ≤ γ ≤ 1. (8)

From conditions (i) and (iii), and the estimates (4) and (8), we have

V2 =
[
bβ − αd − β2φ1(z)

]
y2 + 2

∫ y

0

n∑
i=1

1i(η)dη − cy2

≥

[
bβ − αd − β2φ(θ1z)

]
y2 (9)

≥

(
δd

2ac2

)
y2 0 ≤ θ1 ≤ 1.
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Since φ′1(z) = −
(

1
z2

) ∫ z

0 φ(τ)dτ +
φ(z)

z , we know∫ z

0
φ1(τ)τdτ = z2φ1(z) −

∫ z

0
φ(τ)τdτ; z2φ1(z) (10)

=

∫ z

0
φ1(τ)τdτ +

∫ z

0
φ(τ)τdτ.

From conditions (iii)-(v) and the estimate (10), we get

V3 =

2α∫ z

0

n∑
i=1

hi(τ)dτ − (β + α2c)z2

 +

[
2
∫ z

0
φ(τ)τdτ − φ1(z)z2

]
≥

[
αb − β − α2c

]
z2 +

∫ z

0

[
φ(τ) − φ1(τ)

]
τdτ ≥

(
δ

2a2c

)
z2, (11)

[
α −

1
φ1(z)

]
u2 =

[
ε +

1
a
−

1
φ1(z)

]
u2
≥

[
ε +

1
a
−

1
a

]
u2 = εu2,

∣∣∣2αyz
[
G(y) − c

]∣∣∣ ≤ 4
a

∣∣∣yz
[
G(y) − c

]∣∣∣ ≤ δ
2ac

√
d

2ac
yz ≤

δd
4ac2 y2 +

δ

8a2c
z2,

V4 ≥ εu2
−
δd

4ac2 y2
−

δ

8a2c
z2. (12)

From the above analysis, we get

2V ≥ ε
(
d −

aδ
4c

)
x2 +

(
δd

4ac2

)
y2 + εu2 +

δ

8a2c
z2 + V5. (13)

Furthermore, we can easily check

dV
dt

= −

d − n∑
i=1

f ′i (x)

 (y +
α
2

z
)2
−

 n∑
i=1

hi(z)
z
− b

 (z +
β

2
y
)2

−
[
βG(y) − d

]
y2 +

β2

4

 n∑
i=1

hi(z)
z
− b

 y2

−

b − α n∑
i=1

1′i (y) − βφ1(z)

 z2

+
α2

4

d − n∑
i=1

f ′i (x)

 z2
−

[
αφ(z) − 1

]
u2 (14)

+
(
αu + βy + z

) n∑
i=1

t∫
t−ri

h′i (z(s))u(s)ds + ρru2
− ρ

t∫
t−r

u2(s)ds

+
(
αu + βy + z

) n∑
i=1

t∫
t−ri

1′i (y(s))z(s)ds + µrz2
− µ

t∫
t−r

z2(s)ds

+
(
αu + βy + z

) n∑
i=1

t∫
t−ri

f ′i (x(s))y(s)ds + λry2
− λ

t∫
t−r

y2(s)ds.
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By conditions (i), (iii)-(v), we have

βG(y) − d ≥ cε, ε ≤
δ

2acD
<

d
c
,
β2

4

 n∑
i=1

hi(z)
z
− b

 ≤ cε
2
.

From conditions (i),(iii),(4) and (8), we get

b − α
n∑

i=1

1′i (y) − βφ1(z)

>
1
ac

abc − c
n∑

i=1

1′i (y) − adφ(γz)

 − abε − εφ(γz)

≥
δ

2ac
. (15)

By conditions (ii) and (v), we have

α2

4

d − n∑
i=1

f ′i (x)

 < δ
4ac

, αφ(z) − 1 ≥ aε.

In view of the above discussion, we get

dV
dt
≤ −

cε
2

y2
−

δ
4ac

z2
− aεu2 +

(
αu + βy + z

) n∑
i=1

t∫
t−ri

h′i (z(s))u(s)ds

+
(
αu + βy + z

) n∑
i=1

t∫
t−ri

f ′i (x(s))y(s)ds (16)

+
(
αu + βy + z

) n∑
i=1

t∫
t−ri

1′i (y(s))z(s)ds

+ ρru2
− ρ

t∫
t−r

u2(s)ds + λry2
− λ

t∫
t−r

y2(s)ds + µrz2
− µ

t∫
t−r

z2(s)ds.

Since
n∑

i=1

f ′i (x) ≤
n∑

i=1

ci ≤ d,
n∑

i=1

1′i (y) ≤
n∑

i=1

ki ≤ ab,
n∑

i=1

h′i (z) ≤
n∑

i=1

mi ≤ b and 2mn ≤ m2 + n2, then we obtain

dV
dt
≤ −

1
2
[
cε −

(
abβ + βd + βb + 2λ

)
r
]

y2
−

1
2

[
δ

2ac
−

(
ab + d + b + 2µ

)
r
]

z2

−

[
aε −

(
α
2

ab +
α
2

b +
α
2

d + ρ
)

r
]

u2 (17)

+

[
d
2
(
α + β + 1

)
− λ

] t∫
t−r

y2(s)ds

+

[
ab
2

(
α + β + 1

)
− µ

] t∫
t−r

z2(s)ds +

[
b
2
(
α + β + 1

)
− ρ

] t∫
t−r

u2(s)ds.
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Take λ = d
2
(
α + β + 1

)
> 0, µ = ab

2
(
α + β + 1

)
> 0 and ρ = b

2
(
α + β + 1

)
> 0 so that

dV
dt
≤ −

1
2
[
cε −

(
abβ + βd + βb + 2λ

)
r
]

y2

−
1
2

[
δ

2ac
−

(
ab + d + b + 2µ

)
r
]

z2 (18)

−

[
aε −

(
α
2

ab +
α
2

b +
α
2

d + ρ
)

r
]

u2.

Therefore, if

r = max
1≤i≤n

ri < min
{

εc
abβ + βd + βb + 2λ

,
δ

2ac(ab + d + b + 2µ)
,

2aε
α(ab + b + d) + 2ρ

}
,

then we have

dV
dt
≤ −σ

(
y2 + z2 + u2

)
for some σ > 0. (19)

Using dV
dt = 0 and system (2), we can easily obtain x = y = z = u = 0. Hence, all the conditions in Lemma

2.1. are satisfied, and so the zero solution of Eq.(1) is asymptotically stable. The proof of the theorem is
now complete.

Proof of Theorem 3.3 From (13), we have

V ≥ D1

(
x2 + y2 + z2 + u2

)
, (20)

where D1 = 1
2 min

{
ε
(
d − aδ

4c

)
, δd

4ac2 ,
δ

8a2c , εu2
}
. Taking the time derivative of (5) with respect to t along the

trajectory of (2), we obtain

dV
dt
≤ −σ

(
y2 + z2 + u2

)
+

∣∣∣αu + βy + z
∣∣∣ ∣∣∣p(t, x(t), y(t), z(t),u(t))

∣∣∣
≤

∣∣∣αu + βy + z
∣∣∣ ∣∣∣p(t, x(t), y(t), z(t),u(t))

∣∣∣
≤ D2

(∣∣∣y∣∣∣ + |z| + |u|
)

q(t),

where D2 = max
{
α, β, 1

}
.

Making use of the estimate
∣∣∣y∣∣∣ < 1 + y2, it is clear that

dV
dt
≤ D2

(
3 + y2 + z2 + u2

)
q(t).

By (20), we also have(
y2 + z2 + u2

)
≤

(
x2 + y2 + z2 + u2

)
≤ D−1

1 V(x, y, z,u).

Hence

dV
dt
≤ D2

(
3 + D−1

1 V(x, y, z,u)
)

q(t)

= 3D2q(t) + D2D−1
1 V(x, y, z,u)q(t).
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Now, integrating the last inequality from 0 to t, using the assumption q ∈ L1(0,∞) and Gronwall-Reid-
Bellman inequality, we obtain

V(x, y, z,u) ≤ V(x0, y0, z0,u0) + 3D2A + D2D−1
1

t∫
0

V(xs, ys, zs,us)q(s)ds

≤
(
V(x0, y0, z0,u0) + 3D2A

)
exp

D2D−1
1

t∫
0

q(s)ds


≤

(
V(x0, y0, z0,u0) + 3D2A

)
exp

(
D2D−1

1 A
)

= K1 < ∞, (21)

where K1 > 0 is constant,
(
V(x0, y0, z0,u0) + 3D2A

)
exp

(
D2D−1

1 A
)

= K1 < ∞ and A =
t∫

0
q(s)ds.

Now, the inequalities (20) and (21) together yields that

x2(t) + y2(t) + z2(t) + u2(t) ≤ D−1
1 V(xt, yt, zt,ut) ≤ K,

where K2 = K1D−1
1 . Thus, we can conclude that

|x(t)| ≤ K,
∣∣∣y(t)

∣∣∣ ≤ K, |z(t)| ≤ K, |u(t)| ≤ K,

for all t ≥ t0. The proof of Theorem 3.3. is completed.
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[39] Tunç, C., A boundedness criterion for fourth order nonlinear ordinary differential equations with delay. Int. J. Nonlinear Sci.,

6(2008),no.3,195–201.
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[41] Tunç, C., On the stability of solutions of non-autonomous differential equations of fourth order with delay. Funct. Differ. Equ. 17

(2010), no. 1-2, 195–212.
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[43] Tunç, C., The boundedness to nonlinear differential equations of fourth order with delay. Nonlinear Stud. 17(2010),no.1, 47–56.
[44] Wu, X.; Xiong, K., Remarks on stability results for the solutions of certain fourth order autonomous differential equations.

Internat. J. Control 69 (1998), no. 2, 353–360.
[45] Zhu, Y. F., On stability, boundedness and existence of periodic solution of a kind of third order nonlineer delay differential

system. . Ann. Differential Equations, 8(1992), no.2, 249-259.


