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Abstract. We consider the sequence spaces s2(B), s (B) and s,(B) with their topological properties, and
give the characterizations of the classes of matrix transformations from them into any of the spaces {1, {w, co
and c. We also establish some estimates for the norms of bounded linear operators defined by those matrix
transformations. Moreover, the Hausdorff measure of noncompactness is applied to give necessary and
sufficient conditions for a linear operator on the sets s%(B), sff)(B) and s,(B) to be compact. We also close a
gap in the proof of the characterizations by various authors of matrix transformations on matrix domains.

1. Introduction, Definitions and Notations

We start by recalling the most important notations and definitions needed in this paper.

Let w denote the set of all complex sequences x = ()2, We write {w, ¢, co and ¢ for the sets of
all bounded, convergent, null and finite sequences, respectively; also bs, cs and ¢; denote the sets of all
bounded, convergent and absolutely convergent series. As usual, e and e (n=0,1,...) are the sequences
with e, = 1 for all k, and ¢ = 1 and e](:') =0fork # n.

A subspace X of w is said to be a BK space if it is a Banach space with continuous coordinates P, : X — C
forn =0,1,..., where P,(x) = x, for all x = (xk);io € X. A BK space X D ¢ is said to have AK if every
sequence x = (%), € X has a unique representation x = limy, e x", where x" = Y x,eM is the m
section of the sequence x. Let X be a normed space. Then Sx = {x € X : ||x]| = 1} and Bx = {x € X : |x]| < 1}
denote the unit sphere and closed unit ball in X.

If x and y are sequences and X and Y are subsets of w, then we write x - y = ()2, ¥ ' *Y = fa € w :
a-x€Yhand M(X,Y) = MNyexX '*Y ={a:w:a-x €Y forall x € X} for the multiplier space of X and Y; in
particular, we use the notations x* = x!# {1, x¥ = x"xcs and x” = x71 #bs, and X* = M(X, 1), XP = M(X, cs)
and X’ = M(X, bs) for the a—, f— and y-duals of X.
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Given any infinite matrix A = (@) o of complex numbers and any sequence x, we write A, = (@)
for the sequence in the n'" row of A, A,x = Yok n=0,1,...)and Ax = (Anx),;,, provided A, € xP for
all n. If X and Y are subsets of w, then X4 = {x € w : Ax € X} denotes the matrix domain of A in X and (X, Y)
is the class of all infinite matrices that map X into Y; so A € (X, Y) if and only if X C Y4.

Given a € w, we write
(o)

¥ o
k=0

llally, = sup
X€Sx

provided the expression on the write hand side is defined and finite which is the case whenever X is a BK
space and a € XP ([15, Theorem 7.2.9]).

We write U = {u € w : ux # Oforallk} and U* = {u € w : ux > 0forallk}; if u € U then we write
1/u= (1/uk);:;0.

A sequence (b,),’ ; in a linear metric space X is called a Schauder basis if for each x € X there exists a
unique sequence (A,),, of scalars such that x = Yoo Anbn.

An infinite matrix T = (tnk);‘jkzo is said to be a triangle if t,; = 0 (k > n) and £,,, # O for all n. Throughout,
T denotes an arbitrary triangle and S its inverse. The well-known triangles © = (o), A = (Ay), and
B(r,s) = {bu(r,s)} for r,s € R\ {0} are defined by o, =1, (0 <k < 1), Ay =1, Ay—1n = =1, and by, (r,5) = 7,
by-1,(r,8) =sand A, x = b, x(r,s) = 0 otherwise.

The domain of the matrix B(r, s) in the classical spaces ¢, ¢y and ¢ has recently been studied by Kiris¢i
and Basar in [6]. The characterizations of compact matrix operators between some of those spaces were
given by Djolovi¢ in [2]. Recently difference sequence spaces have extensively been studied, for instance in
(2], [7], [6], [1], [11] and [10].

In the present study, we consider the spaces s%(B), s©(B) and s,(B) and their topological properties,
Schauder bases and determine dual spaces. We also give necessary and sufficient conditions for a matrix
operator to map X into Y where X is any of the sequence spaces s2(B), s (B) and s,(B), and Y is any of the
sequence spaces {1, {w, Cp and c. Furthermore we establish some estimates for the norms of bounded linear
operators defined by the matrix transformations mentioned before. Moreover, the Hausdorff measure of
noncompactness is applied to give necessary and sufficient conditions for a matrix operator to be compact.

We also observe that the characterizations of the classes (Xr,Y) given in [1] and several other papers
seem to have a gap in the proof. If z € Z = X7 thenx = Tz € X and

m
Z AgkZk = c;"]:)xk form=0,1,...,

where, for each m,

m

Y. a,s; 0<k<n
N g s ) (n=0,1,...).
0 (k > n)

No argument is given why the identity

lim Zankzk = Z(hm C" ) Xk
should hold which the proof is based on. We will use the results of [12] to close this gap.

2. Topological Properties of the Sets s (B), sff) (B) and s,(B)

The spaces s = (1/a) ! +co, s = (1/a)? cand s, = (1/a)"!  £e, where a = (an)>, € U were
introduced by de Malafosse and Malkowsky in [8, 9]. Here we define the following sets for @ € U*. Let
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7= (1o S = (k)i € U and B(7,5) = (buk(7,3));7,_, be the double sequential band matrix defined by
re  (k=mn)
bk (7,38) = { sk (k=n-1) ®m=0,1,...).
0 otherwise

Then we write s)(B) = s3(B(7,9)) = (s2)s9, 55 (B) = 5 (B(F, 9)) = (s5)5¢9 and sa(B) = s4(B(F,5)) = (sa)s(r9)- It
is clear that A can be obtained as a special case of B(7, §) for # = ¢ and § = —¢ and it is also trivial that B(, §)
reduces to B(r, s) in the special case 7 = re and § = se. So, the results related to the domain of the matrix B(7, §)
are more general and more comprehensive than the corresponding ones of the domains of the matrices A
and B(7, s).

Defining the diagonal matrix D = (d,x) by du, = 1/a, for n = 0,1,... and putting T = DB(#,5), we see
that our spaces are the matrix domains of the triangle T = DB(#,3) in the sets ¢p, c and {..

Remark 2.1. The inverse S = (3,x) of B(F, 5, ) where

/0y (k=n)
bu(7,8,a) ={sy1/ay,  (k=n-1) m=0,1,...)

0 (otherwise)
is given by
_1yrk, n-1g:
i CD) a2 s O0<k<n)
Spk = n j=k V]‘ (n = 0, 1, . ) (1)
0 (k>mn)

Putting a, = eor v, = ry/ay and s;, = sy /a1 (1 =0,1,...), B(7, 8, a) reduces to B(F, 8) studied in [1].
Now we define the sequence 7(x) = (7,(x)) as the < T = DB(#, §)-transform of a sequence x = (x), that
is,

TnXp + Sp—1Xp-1

T(x) = Tpx = forall n € IN. ()

an

Since ¢y, ¢ and ¢« are BK spaces and T is a triangle, the following result is an immediate consequence of
[15, Theorem 4.3.12].

Theorem 2.1. Let X be any of the spaces sO(B), s'”(B) and s,(B). Then X is a BK space with the norm

TnXp + Sp—1Xn-1
Qp

llx|l = sup [IT(xX)|leo = sup

We need the next known results for the study of Schauder bases for our spaces.

Remark 2.2. ([5, Remark 2.4]) The matrix domain X of a linear metric sequence space X has a basis if and only if
X has a basis.

Lemma 2.3. ([5, Corollary 2.5]) Let X be a BK space with AK and the sequences ¢ (n = 0,1,...) and c™9 be
defined by

k
and c,(c_l) = Zsk” k=0,1,...).
n=0

c<”>—{0 0 <k<n)

k sin (k>n)
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(a) Every sequence z = (z,),., € Z = X has a unique representation z = Z (Tuz)c™.
n=0

(b) Every sequence w = (wy),., € W = (X @ e)r has a unique representation
w =& 4+ Z(an - &),
n=0

where & is the uniquely determined complex number such that Tw — e € X.
We obtain as an immediate consequence of (1), Lemma 2.3 and Remark 2.2.

Proposition 2.4. Let us define the sequences c™ forn =0,1,... and ¢=Y by

0 (0<k<n)
M _ ) (Z1)kngy k=1s;
G = VT TS sy
Tk j=n 1’]‘
and
k-1

Z(l)k”anl—[ fork 0,1,.

(a) Then (™) is a Schauder basis for sS(B), and every sequence x = (x,)>>, € s3(B) has a unique representation

X = Z Tu(x) - ¢ with 7, (x) from (2) for all n.
n=0

(b) Then (™)., is a Schauder basis for s(B), and every sequence x = ()2, € s (B) has a unique represen-
tation

x =&Y + Z(Tn(x) — &)™, where & = lim T, (x).
n=

(c) The space s,(B) has no Schauder basis.

3. The Alpha-, Beta- and Gamma-Duals of the Spaces s’ (B), sff) (B) and s,(B)

In this subsection, we determine the a—, - and y—duals of the sets s2(B), s (B) and s,(B).
We start with an almost trivial result which underlies the determination of the a—, f— and y—duals of
matrix domains of triangles.

Proposition 3.1. Let X and Y be arbitrary subsets of w. Then we have a € M(Xrt,Y) if and only if C € (X, Y) where
C is the matrix with the rows C, = a,S, forn =0,1,....

Proof. We write Z = Xt and observe that z € Z if and only if x = Tz € X. Since a,z, = 4,5,x = C,x for all n,
wehavea-zeYforallz e Zifand only if Cx € Y forall x € X, thatis, C € (X,Y). O

The next result is an immediate consequence of Proposition 3.1 and the well-known characterizations
of the classes (X, Y) for X = ¢y, ¢, {e and and Y = &4, cs, bs.
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Corollary 3.2. We have
(@) ((co)r)* = C§ = ((£eo)1)*, and a € ((co)7)" if and only if

sup i chk

KcN —
Kenie =0 [keK

< 00,

(b) (i) a € ((co)r)? if and only if

m | m
=)
k=0 |n=k

, 00
m
and
(e8]
Z Cuk = Vi exists for each k;
n=k

(ii) ae c[; if and only if the conditions in (4) and (5) hold and

i i Cuk = ) exists;

n=0 k=0

(iii) a € (({eo)7r)P if and only if

(o]
lim Z Cik| = 0;
n—oo
j=n

n
k=0

(c) ((co)r) = C7T/ = ((Ceo)1)”, and a € ((co)7)? if and only if the condition in (4) holds.

Proof. We apply Proposition 3.1 in each case.

1063

(a) By [15, Example 8.4.9A], we have (co, {1) = (¢, {1) = (€, 1), and C € (co, £1) by [15, Example 8.4.3B] if

and only if (3) is satisfied.

(c) By[15, Example 8.4.6A], we have (cy, bs) = (¢, bs) = ({0, bs), and C € (¢, bs) if and only if (4) is satisfied.

(b) (i) By [15, Example 8.4.6A], we have (cy, ¢s), if and only if C € ¢g, bs) and (5) is satisfied.
(ii) By [15, Example 8.4.6A], we have (c, cs), if and only if C € cy, cs) and (6) is satisfied.
(iii) By [15, Example 8.5.8], we have C € ({, cs) if and only if (7) is satisfied.

O

Remark 3.3. (a) Since obviously ([12, Theorem 3.8 (a)]) C € (X, cs) if and only if D = £ - C € (X, c), we obtain

from [15, Theorem 1.7.18 (iii)] C € (X, cs) if and only if

(e8]

O = lim dy = Z Cjk exists for each k

n—oo

=
and

(o] (o] n (o) (o] (o]
lim Y el = lim Y 1Y el = Y lord = YY) e
n— n—oo

) k=0 | j=k k=0 =0 | j=k

(8)
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(b) If we replace the matrix C by the matrix C with the rows C, = a,5, (n =0,1,...), where the entries of the matrix
S are given by (1), Corollary 3.2 yields the a—, p— and y—duals of the sets sO(B), s (B) and s,(B).

(c) In particular, if we put a = 1 for k =0,1,..., then Corollary 3.2 (b) and (c) and (8) and (9) yield the results in
[1, Corollary 3.4 (vi), (v), (iv), (i)].

We are going to use the results of [12] to close the gap in the proofs mentioned at the end of our
introduction.

Lemma 3.4. ([13, Theorem 3.2, Remark 3.3 (a), (b)]) Let T be an arbitrary triangle, S be its inverse and R = S,
the transpose of S.

(a) Let X be a BK space with AK or X = €w. Then a € (X7)P if and only if a € (XP)r and W € (X, co) where the

triangle W is defined by
0 (k>n)
Wi = ZﬂjS/’k O<k<n) forn=0,1,2,.... (10)
j=n
Moreover, if a € (Xr)P then
Z azi = ) (Rea)(Tiz) for all z € Xr. (11)

k=0 k=0

(b) We have a € (cr)P if and only if a € (£1)gr and W € (c,c). Moreover, if a € (cr)P then we have

(9]
) =

k=0 k

(Rxa)(Tyz) — ny forall z € cr

(o]
=0

where n = li]£n Tyz and y = lim Z Wk (12)
k=0

Remark 3.5. (a) If X is a BK space with AK then the condition W € (X, co) in Lemma 3.4 (a) can be replaced by
W e (X, l). (13)

(b) The condition W € (c, c) in Lemma 3.4 (b) can be replaced by the conditions

W(C(), foo) (14)
and
lim Wye = y exists. (15)

Proof. We have by the definition of the matrix W

lim W,e® = lim ajsjx = 0 for each k. (16)
n—oo n—oo ]':n
(a) Obviously W € (X, cp) implies (13), and conversely, since X has AK and ¢y is a closed subspace of ¢, (13)
and (16) imply W € (X, cp) by [15, 8.3.6].
(b) Obviously W € (c,c) implies (14) and We € ¢, that is, (15). Conversely, since ¢y has AK and c is a
closed subspace of ¢, (14) and (16) imply W € (co, c) by [15, 8.3.6], and then W € (cy, c) and (15) imply
We(cc)by[15,837]. O
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Now we give an alternative representation of the f—duals of the sets s2(B), sf;) (B) and s,(B).

Theorem 3.1. We have
(a) a € (s%(B))? if and only if

o | o vk j-1
Yoy ED e T 2 <o (17)
=0 | =k !
and
1S (<1 s
sup Z ()r—k H —la]- < oo; (18)
n k=0 [j=n i =k !
moreover, if a € (sS(B))P then
S = (> (<) T s 3
Zakxk = Z Z —k —laj - Tx(x) for all x € $°(B)); (19)
k=0 o\ 1=k !

(b) a e (sO(B))P if and only if (17), (18) and

fim, ) [Z( o kakﬂ ‘]= 20)

moreover, if a € (s (B)), then

() oo ] k ] 1 _
Z axy = Z [Z (1) a ﬂaj] ~Tk(x) —nCforall x € sff)(B), (21)
k=0 k=0 \ j=k 1=k !
where 1 = limy_,o0 Tk (x);
(c) a € (so(B)) if and only if (17) and
o j- k j-1

lim 2 1) s ‘:’—’ | =0; 22)
n—oo 1

k=0 | =k 1=k

moreover, if a € (so(B))? then (19) holds for all x € s,(B).

Proof. We apply Lemma 3.4 and Remark 3.5. .
First we note that if R denotes the transpose of the matrix S of (1) then

- = (—1) oy 1
gszku:Z§jkaj=ZM Lo fork=0,1,...; (23)

] 00 _1 ]—k
wnk=Z§jkaj=Z()—ak S—Ia]»forOskSnamdn:O,l,.... (24)
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Since cg =cf = ffo, the condition Ra € ¢; of Lemma 3.4 yields (17) in each part.

By Remark 3.5 (a) and Lemma 3.4, we have to add the condition W € (cy, {s) which, by [15, Theorem 1.3.3],
is equivalent to sup, Y., [l < 0o, and this is the condition in (18).

By Remark 3.5 (b) and Lemma 3.4, we have to add the condition in (15) to (18), and (18) is the condition in
(20).

By Lemma 3.4, we have to add the condition W € ({w,co) which, by [14, (21) (21.1)], is equivalent to
limy, o0 Xpeg [kl = 0, and this is the condition in (22).

Finally, (23) in Parts (a) and (c) and (24) come from (11) and (12), respectively. [

4. Matrix Mappings and their Operator Norms

In this section, we characterize various classes of matrix mappings on the spaces s 0(B), s(c)(B) and s,(B),
and establish identities and inequalities for their operator norms.
The following results are needed to characterize certain classes of matrix mappings on the spaces s (B)

and sﬁf)(B), and to determine the norms of bounded linear operators on our spaces.

Lemma 4.1. Let X and Y be BK spaces.

(a) Then we have (X,Y) C B(X,Y), that is, every A € (X, Y) defines an operator Ly € B(X,Y), where La(x) = Ax
forall x € X ([12, Theorem 1.23]).

(b) If X has AK then we have B(X,Y) C (X, Y), that is, every operator L € B(X,Y) is given by a matrix A € (X,Y)
such that L(x) = Ax for all x € X ([5, Theorem 1.9]).

Lemma 4.2. Let Y be an arbitrary subset of w.

(a) Let X be a BK space with AK or X = {w, and R = S'. Then A € (Xr,Y) if and only if A e (XY)and
W) € (X,co) for all n = 0,1,.... Here A is the matrix with rows A, = RA, forn = 0,1,..., and the
triangles W) (n = 0,1,...) are deﬁned as in (29) with a; replaced by a,j. Moreover, if A € (X, Y) then we

have Az = A(Tz)for all z € Z = X7 ([13, Theorem 3.4, Remark 3.5 (a)]).

(b) We have A € (cr,Y) ifand only if A € (co, Y) and W) € (c,c) foralln = 0,1,...and Ae - (Vn)2y € Y, where

Vo = iMoo Vg w(A”) forn=0,1,.... Moreover, if A € (cr, Y) then we have Az = A(Tz) — n(yn) for all
z € cr, where n = hmk_m Tz ([13, Remark 3.5 (b)]).

Remark 4.3. (a) If X is a BK space with AK then, by Remark 3.5 (a), the condition W) € (X, co) in Lemma 4.2 can
be replaced by

WA e (X, €s). (25)
(b) By Remark 3.5 (b), the condition W) € (c, c) can be replaced by

WA € (co, €oo). (26)
and
%1_1)130 We = Vn existst for each n. (27)

Lemma 4.4. ([3, Theorem 2.8]) Let X = ¢p or X = {.
(a) LetY =co,c L. If A € (Xt,Y) then, putting

1Al = sup [ Aull, = sup Y laud
n [—

we have ||Lal| = |Allx;,00)-
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(b) LetY ={1. If A € (X1, (1), then, putting

[Allx,1y = sup (i Zﬁnk],

NeN -\ k=0 |[neN
we have ||Allx;,1) < ILall £ 4 - |Allx,,1)-

N finite

Lemma 4.5. ([3, Theorem 2.9])

(a) Let A € (cr,Y), where Yis any of the spaces cq ,c or {e. Then we have
AN = Al er ) = SUP (2 el + w].
k=0

(b) Let A € (ct,{1). Then we have

1Al = sup [Z

NcN _
N finite k=0

H»

neN

Z dnk

neN

] <ILall £ 4 - [|Aller,1)-

Now we characterize of the classes of matrix mappings from the spaces s2(B), s”(B) and s,(B) into £,
¢, co and ;.

Given a matrix A = (a,x),_,, we define the matrices A = (@)~,_, and W) (w (A ))m o by

(1) a3

Z C ) i o for all n, k € Ny, (28)

j=k = 1

and
F TS o ckem)
wffsé') = j=m Ti 1=k T o n=0,1,...). (29)

0 (k> m)

Theorem 4.1. Let X = s0(B), sﬁf)(B), sa(B) and Y = €, co,c, 1. Then the necessary and sufficient conditions for
A € (X,Y) can be read from the following table:

From | sa(B) | 2(B) | s©(B)
To
loo 1 2. 3
o 4 5. 6
c 7. 8. 9.
41 10. 11. 12.

where
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1.  (1.1)" and (1.2)" where
1.1y ”A“(S(Y(B),oo) =sup, Yoo lank| < o0 and
(1.2) limpse Yopto |w£2(")| =0 forall n;
2. (1.1 and (2.1)" where
Q.1 WAl ey = sup,, Yito wa:k”)l < oo for all n;
3. (1.1), (2.1), (3.1)" and (3.2)" where
(3.1 lirn,,,_,ooo;km=0 wf:k”) = Yy exists for each n,
3.2 sup, | Zk:o Ayk — an =0;
4. (1.2)" and (4.1)" where
(41)* hmm—»oo Z;nzo |ﬁnk| =0;
5. (1.1)%, (2.1)" and (5.1)* where
(5.1)" limy,—,0 @y = O for each k;
6. (1.1), (2.1), (3.1), (5.1)" and (6.1)* where
(6.1)" imy,—so0(Ypeg Gk — V) = 0;
7. (1.2), (7.1), (7.2)" and (7.3)* where
(7.1)* lim @, = dy exists for each n,
n—oo
(7.2) Litolaul, Yo ldxl < oo for all n,
(7.3)" limy oo (X @ — ) = 0;
k=0
8. (L1, (2.1 and (7.1);
9. (L.1),, (2.1), (3.1), (7.1)" and (9.1)" where
(9.1)" imy,—s00(Ypeg Gnk — V) = O exists;
10. (1.2)" and (10.1)* where
(10.1)" SUP g finite Lino | Likek Ankl < 00;
11, (2.1)" and (10.1)";
12. (2.1)", (3.1)%, (10.1)* and (12.1)* where
(12.1) Yoo | Yreo Gk — Yl < 0.

Proof. LetY be one of the spaces {«, co, ¢, £, and A and W) forn = 0,1, ... be the matrices defined in (28)
and (29)

1.,4.,7.,10. Lemma 4.2 (a) yields A € (s,(B), Y) if and only if A € (£, Y) and W) € (£, co) for all n.
First A € (£, Y) yields (1.1) in 1. by [15, Theorem 1.3.3], (4.1)* in 4. by [14, bf 21. (21.1)], (7.1)*, (7.2)* and
(7.3)" in 7. by [15, Theorem 1.7.18 (ii)], and (10.1)* in 10. by [15, 8.4.9A]. Also W) € (£, cp) for all n yields
(1.2)*in 1., 4., 7., 10. by [14, bf 21. (21.1)].

2,5, 8., 11. Lemma 4.2 (a) and Remark 4.3 (a) yield A € (sﬁlo)(B), Y) if and only if A € (co, Y) and
WA € (o, £w) for all n. First A € (cp, Y) yields (1.1)* in 2. by [15, Theorem 1.3.3], (1.1)* and (5.1) in 5. by
[15,8.4.5A], (1.1)* and (7.1)* in 8. by [15, 8.4.5A] and (10.1)* in 11. by [15, 8.4.3B]. Also W) € (co, £ for all
nyields (2.1)* in 2., 5., 8., 11. by [15, Theorem 1.3.3].

3.,6.,9.,12. Lemma 4.2 (a) and Remark 4.3 (a) yield A € (s{(B), Y) if and only if A € (co, Y), W) € (o, €w0)
for all n, (27) holds for each n, and A — (y,);2, € Y. This means, we have to add the last two conditions to

those for A € (sV(B), Y), that is, (3.1)* and (3.2)" in 3. to those in 2., (3.1)* and (6.1)" in 6. to those in 5., (3.1)*
and (9.1)* in 9. to those in 8. and (3.1)* and (12.1)* in 12. to those in 11.. O

Remark 4.6. We obtain identities or estimates for the norms of the matrix operators between the spaces in Theorem
4.1 from Lemmas 4.4 and 4.5 with the matrices A and W) defined in (28) and (29).
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5. The Hausdorff Measure of Noncompactness

Werecall thatif X and Y are infinite-dimensional complex Banach spaces then a linear operator L : X — Y
is said to be compact if the domain of L is all of X, and, for every bounded sequence (x,) in X, the sequence
(L(xy)) has a convergent subsequence. We denote the class of such operators by C(X, Y).

We also recall the definition of the Hausdorff measure of noncompactness of bounded subsets of a metric
space, and the Hausdorff measure of noncompactness of operators between Banach spaces.

Definition 5.1. Let (X, d) be a metric space, B(xo,0) = {x € X : d(x, x0) < 6} denote the open ball of radius 6 > 0
and center in xg € X, and Mx be the collection of bounded sets in X. The Hausdorff measure of noncompactness of
Q S MX 1s

xX(Q) =infle>0:Qc | JB(x, &), x€X, 6 <e, 1<k<n neN.
k=1

Let X and 'Y be Banach spaces and x1 and x» be measures of noncompactness on X and Y. Then the operator L : X =Y
is called (x1, x2)-bounded if L(Q) € My for every Q € My and there exists a positive constant C such that

x2(L(Q)) < Cx1(Q) for every Q € Mx. (30)
If an operator L is (x1, x2)-bounded then the number
ILIl(yy,x0) = Inf {C > 0 : (30) holds for all Q € Mx}

is called the (x1, x2)-measure of noncompactness of L. In particular, if x1 = x2 = x, then we write |L||, instead of
|L||(X,X)'

Lemma 5.1. ([12, Theorem 2.25 and Corollary 2.26]) Let X and Y are Banach spaces and L € B(X,Y). Then we
have

ILIl, = x (L(Bx)) = x (L(Sx)), 31)
L € C(X,Y) ifand only if ||L||, = O. (32)

Lemma 5.2 (Goldenstein, Goh’berg, Markus). ([12, Theorem 2.23]) Let X be a Banach space with a Schauder
basis (b)), Q € Mx, Py : X — X be the projector onto the linear span of {bo, b1, . .. by}, I be the identity map on X
and R, =1-P,(n=0,1,...). Then we have

1 -lim sup [sup ||Rn(x)||) < x(Q) < limsup (sup ||Rn(x)||) , (33)
a n—oo xeQ n—oo xeQ
where a = limsup, _,__ [|R,]l.

Lemma 5.3. ([12, Theorem 2.8]) Let Q be a bounded subset of the normed space X, where X is €, for 1 < p < oo
or co. If Py : X — X is the operator defined by P,(x) = x" for x = () € X, then we have x(Q) =
hmn—»cc(suprQ (1R (0)11)-

The final results of this section give the estimates of the Hausdorff measure of noncompactness of L
when A € (X, ¢) for X = ¢, €, C.

Lemma 5.4. ([4, Corollary 5.13]) If A € ((co)T, c) or A € ((€)7, C) then we have

% -Tim (sup |4 - a||1) < IILally < lim (sup || Ax - a||1), (34)
nzr nzr

where & = (a);2,, with & = limye Ay fork=0,1,....
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Lemma 5.5. ([4, Theorem 5.14]) If A € (cr, ¢) then we have

1 (e8]
Z su + A — & <
2 r ( n>§ [ ; | nk k|]]

< |ILally £ lim [sup[
r—00 n>r

(o)

ﬁ Vn — Z &k
k=0

(o)

(o)
B=Vn— Z&k + Z [ —@kl]],
¥=0 k=0

where v, = limy, e wifk”)for n=0,1,..., B =limyse(Xiegduk — Vu) and & = (&k);‘;o with & = limy, e Ak for
k=0,1,....

6. Compact Operators on the Sets

In this section, we establish necessary and sufficient conditions for a matrix operator to be a compact
operator from sg(B), sff)(B) and s,(B) into Y, where Y = £, co, ¢, £1. This is achieved by applying the results
of the previous section on the Hausdorff measure of noncompactness.

The following notations are needed to establish estimates and identities for the Hausdorff measure of
noncompactness of matrix operators and characterize the classes of compact operators.

LetA = (”"k);’kzo be an infinite matrix and r € N. Then Al'l denotes the matrix with the rows ALV] =0 for

0<n<rand A" = A, forn > r + 1. Also we write A and W) 11 € IN for the matrices defined in (28) and
(29), and @ = ()2, and y = (yu);, for the sequences with & = limy,_,c @y fork =0,1,... and

m o j-1 s
Yn = lim w(A”) —hmZ 2( 1)/ —]H—];
" k=0 i
=0 j=m 1=k

finally, let B = limy,— (Y peo dnk — Vn)-
We also write C = (E"k)zok:o for the matrix with &y = dyx — @ for all n,k € Ng and 6 = (6,);_, for the
sequence with

Ou=) E=yu+p(n=01,.).

k=0

Theorem 6.1. If A € (X,Y) where X = s3(B), sUB), 54(B) and Y = co, ¢, Ceo, €1 then the identities or estimates for
Ly can be read from the following table:

From | sa(B) | 2(B) | s©(B)
To
lo 1 1. 2
% 3 3. 3
c 5 5. 6
% 7 7. 8

where
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1. (1.1 0<|ILally < hm (sup Y, |a,,k|)

n>r k=0

2. (21" 0<|Lally < lim (sup Y 1l + [y );
r—oo k=0

3. G |Lally = hm (sup Y Iankl)

n>r k=0

4. 4.1~ IILAIIX=}Lrglo(supk§0|ﬁnkl+|yn});

1
5. (5.1)* 5 lim (sup y |an|) <|ILally < hm (sup Y, IanI)
=\ n>r k=0 n>r k=0
1 o |~
6. (61" - lim (Sup Y (el + 15 |) < LA, < lim (SuP Y [l + |6n|),-
1=\ >y k=0 T\ n2r k=0
7. (71" lim sup ||¥ AU <|Lall, <4hm sup ||y Al
= Nen  HlneN 1 NeN  llneN 1
N finite N finite
8. (81)* lim sup ( +| X Vn ) < [ILally
=% NcN nelN 1 IneN
N finite
<4lim sup ( +| X Vn )
'=% NeN nelN 1 IneN
N finite

Proof. 1. and 2. We define P,, R, : oo — Lo by Py(x) = xI forall x € €, R, =1 - P, (r = 0,1,...), and write
L = L4 and B = B, for short. Then it follows from (5.1) and ([12, Theorem 2.12] that

0 <|[Llly = X(L(B)) < x(P,(L(B))) + X(RAL(B)))
= X(RA(L(B))) < sup IR (LIl = [A]| .., -

xeB

If X = s,(B) or X = s(B) the estimates in (1,1)* follow from Lemma 4.4 (a). If X = s(B) then the estimates
in (2.1)* follow from Lemma 4.5 (a).

3. — 8. The identities or estimates in (3.1)*—(8.1)* follow from [3, Corollary 3.6 (a), Theorem 3.7 (a),
Corollary 3.6 (c), Theorem 3.7 (a), Corollary 3.6 (b) and Theorem 3.7 (c)]. O

Corollary 6.1. Let X be one of the spaces s3(B) or s,(B). We obtain as an immediate consequence of (32) and Theorem
6.1 (1.1)", (3.1)" and (5.1)".

(a) If A € (X, cop), then Ly is compact if and only if

lim (sup {Z IIankll]] (35)

nxr

(b) If A € (X,c), then Ly is compact if and only if

lim sup [Z [ deIJ =0
k

nzr =0

(c) IfA e (X, {x), then Ly is compact if the condition (35) holds.

Corollary 6.2. We obtain as an immediate consequence of (32) and Theorem 6.1 (2.1)*, (4.1)" and (6.1)*.
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(a) IfAe 9(B), co), then Ly is compact if and only if
tim sup| )" el + [ || = 0. (36)
nzr \ % =o
(b) IfAce s9(B), c), then Ly is compact if and only if

tim sup | Y oo [ld — il +||Y | dx =y — || = 0.

n2r \ k=0 k

(©) IfA € (s9B),€u), then Ly is compact if (36) holds.

Corollary 6.3. For each subset N of Nandr € N, let N, ={neN:n>r+1}.
We obtain as an immediate consequence of (32) and Theorem 6.1 (7.1)" and (8.1)*.

(a) IfA € (s%B), 1) or A € (s4(B), t1), then La is compact if and only if

lim| sup zzz‘””‘“knm '

NcN
Nf(i:nite k=0 [neN, = =k m=k

(b) IfAc 9(B), 1), then Ly is compact if and only if

i sp [/F 3 C ]2 |3 |0

NcN
Nﬁcnite k=0 [neN, j=k nenN,
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