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dDepartment of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract. We consider the sequence spaces s0
α(B̃), s(c)

α (B̃) and sα(B̃) with their topological properties, and
give the characterizations of the classes of matrix transformations from them into any of the spaces `1, `∞, c0

and c. We also establish some estimates for the norms of bounded linear operators defined by those matrix
transformations. Moreover, the Hausdorff measure of noncompactness is applied to give necessary and
sufficient conditions for a linear operator on the sets s0

α(B̃), s(c)
α (B̃) and sα(B̃) to be compact. We also close a

gap in the proof of the characterizations by various authors of matrix transformations on matrix domains.

1. Introduction, Definitions and Notations

We start by recalling the most important notations and definitions needed in this paper.
Let ω denote the set of all complex sequences x = (xk)∞k=0. We write `∞, c, c0 and φ for the sets of

all bounded, convergent, null and finite sequences, respectively; also bs, cs and `1 denote the sets of all
bounded, convergent and absolutely convergent series. As usual, e and e(n) (n = 0, 1, . . . ) are the sequences
with ek = 1 for all k, and e(n)

n = 1 and e(n)
k = 0 for k , n.

A subspace X ofω is said to be a BK space if it is a Banach space with continuous coordinates Pn : X→ C
for n = 0, 1, . . . , where Pn(x) = xn for all x = (xk)∞k=0 ∈ X. A BK space X ⊃ φ is said to have AK if every
sequence x = (xk)∞k=0 ∈ X has a unique representation x = limm→∞ x[m], where x[m] =

∑m
n=0 xne(n) is the m

section of the sequence x. Let X be a normed space. Then SX = {x ∈ X : ‖x‖ = 1} and B̄X = {x ∈ X : |x‖ ≤ 1}
denote the unit sphere and closed unit ball in X.

If x and y are sequences and X and Y are subsets of ω, then we write x · y = (xkyk)∞k=0, x−1
∗ Y = {a ∈ ω :

a · x ∈ Y} and M(X,Y) =
⋂

x∈X x−1
∗ Y = {a : ω : a · x ∈ Y for all x ∈ X} for the multiplier space of X and Y; in

particular, we use the notations xα = x−1
∗ `1, xβ = x−1

∗ cs and xγ = x−1
∗ bs, and Xα = M(X, `1), Xβ = M(X, cs)

and Xγ = M(X, bs) for the α–, β– and γ–duals of X.
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Given any infinite matrix A = (ank)∞n,k=0 of complex numbers and any sequence x, we write An = (ank)∞k=0

for the sequence in the nth row of A, Anx =
∑
∞

k=0 ankxk (n = 0, 1, . . . ) and Ax = (Anx)∞n=0, provided An ∈ xβ for
all n. If X and Y are subsets of ω, then XA = {x ∈ ω : Ax ∈ X} denotes the matrix domain of A in X and (X,Y)
is the class of all infinite matrices that map X into Y; so A ∈ (X,Y) if and only if X ⊂ YA.

Given a ∈ ω, we write

‖a‖∗X = sup
x∈SX

∣∣∣∣∣∣∣
∞∑

k=0

akxk

∣∣∣∣∣∣∣
provided the expression on the write hand side is defined and finite which is the case whenever X is a BK
space and a ∈ Xβ ([15, Theorem 7.2.9]).

We write U = {u ∈ ω : uk , 0 for all k} and U+ = {u ∈ ω : uk > 0 for all k}; if u ∈ U then we write
1/u = (1/uk)∞k=0.

A sequence (bn)∞n=0 in a linear metric space X is called a Schauder basis if for each x ∈ X there exists a
unique sequence (λn)∞n=0 of scalars such that x =

∑
∞

n=0 λnbn.
An infinite matrix T = (tnk)∞n,k=0 is said to be a triangle if tnk = 0 (k > n) and tnn , 0 for all n. Throughout,

T denotes an arbitrary triangle and S its inverse. The well-known triangles Σ = (σnk), ∆ = (∆nk), and
B(r, s) = {bnk(r, s)} for r, s ∈ R \ {0} are defined by σnk = 1, (0 ≤ k ≤ n), ∆nn = 1, ∆n−1,n = −1, and bnn(r, s) = r,
bn−1,n(r, s) = s and ∆n,k = bn,k(r, s) = 0 otherwise.

The domain of the matrix B(r, s) in the classical spaces `∞, c0 and c has recently been studied by Kirişçi
and Başar in [6]. The characterizations of compact matrix operators between some of those spaces were
given by Djolović in [2]. Recently difference sequence spaces have extensively been studied, for instance in
[2], [7], [6], [1], [11] and [10].

In the present study, we consider the spaces s0
α(B̃), s(c)

α (B̃) and sα(B̃) and their topological properties,
Schauder bases and determine dual spaces. We also give necessary and sufficient conditions for a matrix
operator to map X into Y where X is any of the sequence spaces s0

α(B̃), s(c)
α (B̃) and sα(B̃), and Y is any of the

sequence spaces `1, `∞, c0 and c. Furthermore we establish some estimates for the norms of bounded linear
operators defined by the matrix transformations mentioned before. Moreover, the Hausdorff measure of
noncompactness is applied to give necessary and sufficient conditions for a matrix operator to be compact.

We also observe that the characterizations of the classes (XT,Y) given in [1] and several other papers
seem to have a gap in the proof. If z ∈ Z = XT then x = Tz ∈ X and

m∑
k=0

ankzk =

m∑
k=0

c(m)
nk xk for m = 0, 1, . . . ,

where, for each m,

c(m)
nk =


m∑

j=k
anjs jk (0 ≤ k ≤ n)

0 (k > n)
(n = 0, 1, . . . ).

No argument is given why the identity

lim
m→∞

m∑
k=0

ankzk =

∞∑
k=0

(
lim

m→∞
c(m)

nk

)
xk

should hold which the proof is based on. We will use the results of [12] to close this gap.

2. Topological Properties of the Sets s0
α(B̃), s(c)

α (B̃) and sα(B̃)

The spaces s0
α = (1/α)−1

∗ c0, s(c)
α = (1/α)−1

∗ c and sα = (1/α)−1
∗ `∞, where α = (αn)∞n=0 ∈ U

+ were
introduced by de Malafosse and Malkowsky in [8, 9]. Here we define the following sets for α ∈ U+. Let
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r̃ = (rk)∞k=0, s̃ = (sk)∞k=0 ∈ U and B(r̃, s̃) = (bnk(r̃, s̃))∞n,k=0 be the double sequential band matrix defined by

bnk(r̃, s̃) =


rk (k = n)
sk (k = n − 1)
0 otherwise

(n = 0, 1, . . . ).

Then we write s0
α(B̃) = s0

α(B(r̃, s̃)) = (s0
α)B(r̃,s̃), s(c)

α (B̃) = s(c)
α (B(r̃, s̃)) = (s(c)

α )B(r̃,s̃) and sα(B̃) = sα(B(r̃, s̃)) = (sα)B(r̃,s̃). It
is clear that ∆ can be obtained as a special case of B(r̃, s̃) for r̃ = e and s̃ = −e and it is also trivial that B(r̃, s̃)
reduces to B(r, s) in the special case r̃ = re and s̃ = se. So, the results related to the domain of the matrix B(r̃, s̃)
are more general and more comprehensive than the corresponding ones of the domains of the matrices ∆
and B(r, s).

Defining the diagonal matrix D = (dnk) by dnn = 1/αn for n = 0, 1, . . . and putting T̃ = DB(r̃, s̃), we see
that our spaces are the matrix domains of the triangle T̃ = DB(r̃, s̃) in the sets c0, c and `∞.

Remark 2.1. The inverse S̃ = (s̃nk) of B(r̃, s̃, α) where

bnk(r̃, s̃, α) =


rn/αn (k = n)
sn−1/αn (k = n − 1)
0 (otherwise)

(n = 0, 1, . . . )

is given by

s̃nk =


(−1)n−kαk

rn

n−1∏
j=k

s j

r j
(0 ≤ k ≤ n)

0 (k > n)
(n = 0, 1, . . .) (1)

Putting αn = e or r′n = rn/αn and s′n = sn/αn+1 (n = 0, 1, ...), B(r̃, s̃, α) reduces to B(r̃, s̃) studied in [1].

Now we define the sequence τ(x) = (τn(x)) as the < T̃ = DB(r̃, s̃)–transform of a sequence x = (xk), that
is,

τn(x) = T̃nx =
rnxn + sn−1xn−1

αn
for all n ∈N. (2)

Since c0, c and `∞ are BK spaces and T̃ is a triangle, the following result is an immediate consequence of
[15, Theorem 4.3.12].

Theorem 2.1. Let X be any of the spaces s0
α(B̃), s(c)

α (B̃) and sα(B̃). Then X is a BK space with the norm

‖x‖ = sup ‖τ(x)‖∞ = sup
n

∥∥∥∥∥ rnxn + sn−1xn−1

αn

∥∥∥∥∥ .
We need the next known results for the study of Schauder bases for our spaces.

Remark 2.2. ([5, Remark 2.4]) The matrix domain XT of a linear metric sequence space X has a basis if and only if
X has a basis.

Lemma 2.3. ([5, Corollary 2.5]) Let X be a BK space with AK and the sequences c(n) (n = 0, 1, . . . ) and c(−1) be
defined by

c(n)
k =

0 (0 ≤ k < n)
skn (k ≥ n)

and c(−1)
k =

k∑
n=0

skn (k = 0, 1, . . . ).
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(a) Every sequence z = (zn)∞n=0 ∈ Z = XT has a unique representation z =
∞∑

n=0
(Tnz)c(n).

(b) Every sequence w = (wn)∞n=0 ∈W = (X ⊕ e)T has a unique representation

w = ξc(−1) +

∞∑
n=0

(Tnw − ξ)c(n),

where ξ is the uniquely determined complex number such that Tw − ξe ∈ X.

We obtain as an immediate consequence of (1), Lemma 2.3 and Remark 2.2.

Proposition 2.4. Let us define the sequences c(n) for n = 0, 1, . . . and c(−1) by

c(n)
k =


0 (0 ≤ k < n)
(−1)k−nαn

rk

k−1∏
j=n

s j

r j
(k ≥ n)

and

c(−1)
k =

k∑
n=0

(−1)k−nαn

rk

k−1∏
j=n

s j

r j
for k = 0, 1, . . . .

(a) Then (c(n))∞n=0 is a Schauder basis for s0
α(B̃), and every sequence x = (xn)∞n=0 ∈ s0

α(B̃) has a unique representation

x =

∞∑
n=0

τn(x) · c(n) with τn(x) from (2) for all n.

(b) Then (c(n))∞n=−1 is a Schauder basis for s(c)
α (B̃), and every sequence x = (xn)∞n=0 ∈ s(c)

α (B̃) has a unique represen-
tation

x = ξc(−1) +

∞∑
n=0

(τn(x) − ξ)c(n), where ξ = lim
n→∞

τn(x).

(c) The space sα(B̃) has no Schauder basis.

3. The Alpha-, Beta- and Gamma-Duals of the Spaces s0
α(B̃), s(c)

α (B̃) and sα(B̃)

In this subsection, we determine the α–, β– and γ–duals of the sets s0
α(B̃), s(c)

α (B̃) and sα(B̃).
We start with an almost trivial result which underlies the determination of the α–, β– and γ–duals of

matrix domains of triangles.

Proposition 3.1. Let X and Y be arbitrary subsets of ω. Then we have a ∈M(XT,Y) if and only if C ∈ (X,Y) where
C is the matrix with the rows Cn = anSn for n = 0, 1, . . . .

Proof. We write Z = XT and observe that z ∈ Z if and only if x = Tz ∈ X. Since anzn = anSnx = Cnx for all n,
we have a · z ∈ Y for all z ∈ Z if and only if Cx ∈ Y for all x ∈ X, that is, C ∈ (X,Y).

The next result is an immediate consequence of Proposition 3.1 and the well–known characterizations
of the classes (X,Y) for X = c0, c, `∞ and and Y = `1, cs, bs.
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Corollary 3.2. We have

(a) ((c0)T)α = CαT = ((`∞)T)α, and a ∈ ((c0)T)α if and only if

sup
K ⊂N
K finite

∞∑
n=0

∣∣∣∣∣∣∣∑k∈K cnk

∣∣∣∣∣∣∣ < ∞; (3)

(b) (i) a ∈ ((c0)T)β if and only if

sup
m

m∑
k=0

∣∣∣∣∣∣∣
m∑

n=k

cnk

∣∣∣∣∣∣∣ ,∞ (4)

and
∞∑

n=k

cnk = γk exists for each k; (5)

(ii) a ∈ cβT if and only if the conditions in (4) and (5) hold and

∞∑
n=0

n∑
k=0

cnk = γ exists; (6)

(iii) a ∈ ((`∞)T)β if and only if

lim
n→∞

n∑
k=0

∣∣∣∣∣∣∣∣
∞∑

j=n

c jk

∣∣∣∣∣∣∣∣ = 0; (7)

(c) ((c0)T)γ = CγT = ((`∞)T)γ, and a ∈ ((c0)T)γ if and only if the condition in (4) holds.

Proof. We apply Proposition 3.1 in each case.

(a) By [15, Example 8.4.9A], we have (c0, `1) = (c, `1) = (`∞, `1), and C ∈ (c0, `1) by [15, Example 8.4.3B] if
and only if (3) is satisfied.

(c) By [15, Example 8.4.6A], we have (c0, bs) = (c, bs) = (`∞, bs), and C ∈ (c0, bs) if and only if (4) is satisfied.

(b) (i) By [15, Example 8.4.6A], we have (c0, cs), if and only if C ∈ c0, bs) and (5) is satisfied.

(ii) By [15, Example 8.4.6A], we have (c, cs), if and only if C ∈ c0, cs) and (6) is satisfied.

(iii) By [15, Example 8.5.8], we have C ∈ (`∞, cs) if and only if (7) is satisfied.

Remark 3.3. (a) Since obviously ([12, Theorem 3.8 (a)]) C ∈ (X, cs) if and only if D = Σ · C ∈ (X, c), we obtain
from [15, Theorem 1.7.18 (iii)] C ∈ (X, cs) if and only if

δk = lim
n→∞

dnk =

∞∑
j=k

c jk exists for each k (8)

and

lim
n→∞

∞∑
k=0

|dnk| = lim
n→∞

∞∑
k=0

∣∣∣∣∣∣∣∣
n∑

j=k

c jk

∣∣∣∣∣∣∣∣ =

∞∑
k=0

|δk| =

∞∑
k=0

∣∣∣∣∣∣∣∣
∞∑
j=k

c jk

∣∣∣∣∣∣∣∣ . (9)
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(b) If we replace the matrix C by the matrix C̃ with the rows Cn = anS̃n (n = 0, 1, . . . ), where the entries of the matrix
S̃ are given by (1), Corollary 3.2 yields the α–, β– and γ–duals of the sets s0

α(B̃), s(c)
α (B̃) and sα(B̃).

(c) In particular, if we put αk = 1 for k = 0, 1, . . . , then Corollary 3.2 (b) and (c) and (8) and (9) yield the results in
[1, Corollary 3.4 (vi), (v), (iv), (i)].

We are going to use the results of [12] to close the gap in the proofs mentioned at the end of our
introduction.

Lemma 3.4. ([13, Theorem 3.2, Remark 3.3 (a), (b)]) Let T be an arbitrary triangle, S be its inverse and R = St,
the transpose of S.

(a) Let X be a BK space with AK or X = `∞. Then a ∈ (XT)β if and only if a ∈ (Xβ)R and W ∈ (X, c0) where the
triangle W is defined by

wnk =


0 (k > n)
∞∑

j=n
a js jk (0 ≤ k ≤ n) for n = 0, 1, 2, . . . . (10)

Moreover, if a ∈ (XT)β then

∞∑
k=0

akzk =

∞∑
k=0

(Rka)(Tkz) for all z ∈ XT. (11)

(b) We have a ∈ (cT)β if and only if a ∈ (`1)R and W ∈ (c, c). Moreover, if a ∈ (cT)β then we have

∞∑
k=0

akzk =

∞∑
k=0

(Rka)(Tkz) − ηγ for all z ∈ cT

where η = lim
k

Tkz and γ = lim
n

n∑
k=0

wnk. (12)

Remark 3.5. (a) If X is a BK space with AK then the condition W ∈ (X, c0) in Lemma 3.4 (a) can be replaced by

W ∈ (X, `∞). (13)

(b) The condition W ∈ (c, c) in Lemma 3.4 (b) can be replaced by the conditions

W(c0, `∞) (14)

and

lim
n→∞

Wne = γ exists. (15)

Proof. We have by the definition of the matrix W

lim
n→∞

Wne(k) = lim
n→∞

∞∑
j=n

a js jk = 0 for each k. (16)

(a) Obviously W ∈ (X, c0) implies (13), and conversely, since X has AK and c0 is a closed subspace of `∞, (13)
and (16) imply W ∈ (X, c0) by [15, 8.3.6].

(b) Obviously W ∈ (c, c) implies (14) and We ∈ c, that is, (15). Conversely, since c0 has AK and c is a
closed subspace of `∞, (14) and (16) imply W ∈ (c0, c) by [15, 8.3.6], and then W ∈ (c0, c) and (15) imply
W ∈ (c, c) by [15, 8.3.7].
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Now we give an alternative representation of the β–duals of the sets s0
α(B̃), s(c)

α (B̃) and sα(B̃).

Theorem 3.1. We have

(a) a ∈ (s0
α(B̃))β if and only if

∞∑
k=0

∣∣∣∣∣∣∣∣
∞∑
j=k

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j

∣∣∣∣∣∣∣∣ < ∞ (17)

and

sup
n

 n∑
k=0

∣∣∣∣∣∣∣∣
∞∑

j=n

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j

∣∣∣∣∣∣∣∣
 < ∞; (18)

moreover, if a ∈ (s0
α(B̃))β then

∞∑
k=0

akxk =

∞∑
k=0

 ∞∑
j=k

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j

 · τk(x) for all x ∈ s0
α(B̃)); (19)

(b) a ∈ (s(c)
α (B̃))β if and only if (17), (18) and

lim
n→∞

n∑
k=0

 ∞∑
j=n

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j

 = ζ; (20)

moreover, if a ∈ (s(c)
α (B̃))β, then

∞∑
k=0

akxk =

∞∑
k=0

 ∞∑
j=k

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j

 · τk(x) − ηζ for all x ∈ s(c)
α (B̃), (21)

where η = limk→∞ τk(x);

(c) a ∈ (sα(B̃))β if and only if (17) and

lim
n→∞

n∑
k=0

∣∣∣∣∣∣∣∣
∞∑
j=k

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j

∣∣∣∣∣∣∣∣ = 0; (22)

moreover, if a ∈ (sα(B̃))β then (19) holds for all x ∈ sα(B̃).

Proof. We apply Lemma 3.4 and Remark 3.5.
First we note that if R̃ denotes the transpose of the matrix S̃ of (1) then

ãk = R̃ka =

∞∑
j=k

s̃ jka j =

∞∑
j=k

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j for k = 0, 1, . . . ; (23)

and the triangle W is given by

wnk =

∞∑
j=n

s̃ jka j =

∞∑
j=n

(−1) j−kαk

r j

j−1∏
l=k

sl

rl
a j for 0 ≤ k ≤ n and n = 0, 1, . . . . (24)
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Since cβ0 = cβ = `
β
∞, the condition R̃a ∈ `1 of Lemma 3.4 yields (17) in each part.

By Remark 3.5 (a) and Lemma 3.4, we have to add the condition W ∈ (c0, `∞) which, by [15, Theorem 1.3.3],
is equivalent to supn

∑
∞

k=0 |wmk| < ∞, and this is the condition in (18).
By Remark 3.5 (b) and Lemma 3.4, we have to add the condition in (15) to (18), and (18) is the condition in
(20).
By Lemma 3.4, we have to add the condition W ∈ (`∞, c0) which, by [14, (21) (21.1)], is equivalent to
limn→∞

∑
∞

k=0 |wnk| = 0, and this is the condition in (22).
Finally, (23) in Parts (a) and (c) and (24) come from (11) and (12), respectively.

4. Matrix Mappings and their Operator Norms

In this section, we characterize various classes of matrix mappings on the spaces s0
α(B̃), s(c)

α (B̃) and sα(B̃),
and establish identities and inequalities for their operator norms.

The following results are needed to characterize certain classes of matrix mappings on the spaces s0
α(B̃)

and s(c)
α (B̃), and to determine the norms of bounded linear operators on our spaces.

Lemma 4.1. Let X and Y be BK spaces.

(a) Then we have (X,Y) ⊂ B(X,Y), that is, every A ∈ (X,Y) defines an operator LA ∈ B(X,Y), where LA(x) = Ax
for all x ∈ X ([12, Theorem 1.23]).

(b) If X has AK then we have B(X,Y) ⊂ (X,Y), that is, every operator L ∈ B(X,Y) is given by a matrix A ∈ (X,Y)
such that L(x) = Ax for all x ∈ X ([5, Theorem 1.9]).

Lemma 4.2. Let Y be an arbitrary subset of ω.

(a) Let X be a BK space with AK or X = `∞, and R = St. Then A ∈ (XT,Y) if and only if Â ∈ (X,Y) and
W(An)

∈ (X, c0) for all n = 0, 1, . . .. Here Â is the matrix with rows Ân = RAn for n = 0, 1, . . . , and the
triangles W(An) (n = 0, 1, . . .) are defined as in (29) with a j replaced by anj. Moreover, if A ∈ (X,Y) then we
have Az = Â(Tz) for all z ∈ Z = XT ([13, Theorem 3.4, Remark 3.5 (a)]).

(b) We have A ∈ (cT,Y) if and only if Â ∈ (c0,Y) and W(An)
∈ (c, c) for all n = 0, 1, . . . and Âe− (γn)∞n=0 ∈ Y, where

γn = limm→∞
∑m

k=0 w(An)
mk for n = 0, 1, . . .. Moreover, if A ∈ (cT,Y) then we have Az = Â(Tz) − η(γn)∞n=0 for all

z ∈ cT, where η = limk→∞ Tkz ([13, Remark 3.5 (b)]).

Remark 4.3. (a) If X is a BK space with AK then, by Remark 3.5 (a), the condition W(An)
∈ (X, c0) in Lemma 4.2 can

be replaced by

W(An)
∈ (X, `∞). (25)

(b) By Remark 3.5 (b), the condition W(An)
∈ (c, c) can be replaced by

W(An)
∈ (c0, `∞). (26)

and

lim
m→∞

W(An)
m e = γn existst for each n. (27)

Lemma 4.4. ([3, Theorem 2.8]) Let X = c0 or X = `∞.

(a) Let Y = c0, c, `∞. If A ∈ (XT,Y) then, putting

‖A‖(XT ,∞) = sup
n

∥∥∥Ân

∥∥∥
1

= sup
n

∞∑
k=0

|ânk| ,

we have ‖LA‖ = ‖A‖(XT ,∞).
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(b) Let Y = `1. If A ∈ (XT, `1), then, putting

‖A‖(XT ,1) = sup
N ⊂N
N finite

 ∞∑
k=0

∣∣∣∣∣∣∣∑n∈N ânk

∣∣∣∣∣∣∣
 ,

we have ‖A‖(XT ,1) ≤ ‖LA‖ ≤ 4 · ‖A‖(XT ,1).

Lemma 4.5. ([3, Theorem 2.9])

(a) Let A ∈ (cT,Y), where Yis any of the spaces c0 ,c or `∞. Then we have

‖LA‖ = ‖A‖(cT ,∞) = sup
n

 ∞∑
k=0

|ânk| + |γn|

 .
(b) Let A ∈ (cT, `1). Then we have

‖A‖(cT ,1) = sup
N ⊂N
N finite

 ∞∑
k=0

∣∣∣∣∣∣∣∑n∈N ânk

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∑n∈N γn

∣∣∣∣∣∣∣
 ≤ ‖LA‖ ≤ 4 · ‖A‖(cT ,1).

Now we characterize of the classes of matrix mappings from the spaces s0
α(B̃), s(c)

α (B̃) and sα(B̃) into `∞,
c, c0 and `1.

Given a matrix A = (ank)∞n,k=0, we define the matrices Ã = (ãnk)∞n,k=0 and W(An) = (w(An)
mk )∞m,k=0 by

ãnk =

∞∑
j=k

(−1) j−kanjαk

r j

j−1∏
l=k

sl

rl
for all n, k ∈N0, (28)

and

w(An)
mk =


∞∑

j=m
(−1) j−k

anjαk

r j

j−1∏
l=k

sl

rl
(0 ≤ k ≤ m)

0 (k > m)
(n = 0, 1, . . . ). (29)

Theorem 4.1. Let X = s0
α(B̃), s(c)

α (B̃), sα(B̃) and Y = `∞, c0, c, `1. Then the necessary and sufficient conditions for
A ∈ (X,Y) can be read from the following table:

From
To

sα(B̃) s0
α(B̃) s(c)

α (B̃)

`∞ 1. 2. 3.
c0 4. 5. 6.
c 7. 8. 9.
`1 10. 11. 12.

where
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1. (1.1)∗ and (1.2)∗ where
(1.1)∗ ‖A‖(sα(B̃),∞) = supn

∑
∞

k=0 |ãnk| < ∞ and
(1.2)∗ limm→∞

∑m
k=0 |w

(An)
mk | = 0 for all n;

2. (1.1)∗ and (2.1)∗ where
(2.1)∗ ‖W(An)

‖(`∞,`∞) = supm
∑m

k=0 |w
(An)
mk | < ∞ for all n;

3. (1.1)∗, (2.1)∗, (3.1)∗ and (3.2)∗ where
(3.1)∗ limm→∞

∑m
k=0 w(An)

mk = γn exists for each n,
(3.2)∗ supn |

∑
∞

k=0 ãnk − γn| = 0;

4. (1.2)∗ and (4.1)∗ where
(4.1)∗ limm→∞

∑m
k=0 |ãnk| = 0;

5. (1.1)∗, (2.1)∗ and (5.1)∗ where
(5.1)∗ limn→∞ ãnk = 0 for each k;

6. (1.1)∗, (2.1)∗, (3.1)∗, (5.1)∗ and (6.1)∗ where
(6.1)∗ limn→∞(

∑
∞

k=0 ãnk − γn) = 0;

7. (1.2)∗, (7.1)∗, (7.2)∗ and (7.3)∗ where
(7.1)∗ lim

n→∞
ãnk = α̃k exists for each n,

(7.2)∗
∑
∞

k=0 |ãnk|,
∑
∞

k=0 |α̃k| < ∞ for all n,

(7.3)∗ limn→∞(
∞∑

k=0
ãnk − α̃k) = 0;

8. (1.1)∗, (2.1)∗ and (7.1)∗;

9. (1.1)∗, (2.1)∗, (3.1)∗, (7.1)∗ and (9.1)∗ where
(9.1)∗ limn→∞(

∑
∞

k=0 ãnk − γn) = δ exists;

10. (1.2)∗ and (10.1)∗ where
(10.1)∗ supK⊂N finite

∑
∞

n=0 |
∑

k∈K ãnk| < ∞;

11. (2.1)∗ and (10.1)∗;

12. (2.1)∗, (3.1)∗, (10.1)∗ and (12.1)∗ where
(12.1)∗

∑
∞

n=0 |
∑
∞

k=0 ãnk − γn| < ∞.

Proof. Let Y be one of the spaces `∞, c0, c, `∞, and Ã and W(An) for n = 0, 1, . . . be the matrices defined in (28)
and (29)

1., 4., 7., 10. Lemma 4.2 (a) yields A ∈ (sα(B̃),Y) if and only if Ã ∈ (`∞,Y) and W(An)
∈ (`∞, c0) for all n.

First Ã ∈ (`∞,Y) yields (1.1)∗ in 1. by [15, Theorem 1.3.3], (4.1)∗ in 4. by [14, bf 21. (21.1)], (7.1)∗, (7.2)∗ and
(7.3)∗ in 7. by [15, Theorem 1.7.18 (ii)], and (10.1)∗ in 10. by [15, 8.4.9A]. Also W(An)

∈ (`∞, c0) for all n yields
(1.2)∗ in 1., 4., 7., 10. by [14, bf 21. (21.1)].

2., 5., 8., 11. Lemma 4.2 (a) and Remark 4.3 (a) yield A ∈ (s(0)
α (B̃),Y) if and only if Ã ∈ (c0,Y) and

W(An)
∈ (c0, `∞) for all n. First Ã ∈ (c0,Y) yields (1.1)∗ in 2. by [15, Theorem 1.3.3], (1.1)∗ and (5.1)∗ in 5. by

[15, 8.4.5A], (1.1)∗ and (7.1)∗ in 8. by [15, 8.4.5A] and (10.1)∗ in 11. by [15, 8.4.3B]. Also W(An)
∈ (c0, `∞) for all

n yields (2.1)∗ in 2., 5., 8., 11. by [15, Theorem 1.3.3].

3., 6., 9., 12. Lemma 4.2 (a) and Remark 4.3 (a) yield A ∈ (s(0)
α (B̃),Y) if and only if Ã ∈ (c0,Y), W(An)

∈ (c0, `∞)
for all n, (27) holds for each n, and Ã − (γn)∞n=0 ∈ Y. This means, we have to add the last two conditions to
those for A ∈ (s(0)

α (B̃),Y), that is, (3.1)∗ and (3.2)∗ in 3. to those in 2., (3.1)∗ and (6.1)∗ in 6. to those in 5., (3.1)∗

and (9.1)∗ in 9. to those in 8. and (3.1)∗ and (12.1)∗ in 12. to those in 11..

Remark 4.6. We obtain identities or estimates for the norms of the matrix operators between the spaces in Theorem
4.1 from Lemmas 4.4 and 4.5 with the matrices Ã and W(An) defined in (28) and (29).
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5. The HausdorffMeasure of Noncompactness

We recall that if X and Y are infinite–dimensional complex Banach spaces then a linear operator L : X→ Y
is said to be compact if the domain of L is all of X, and, for every bounded sequence (xn) in X, the sequence
(L(xn)) has a convergent subsequence. We denote the class of such operators by C(X,Y).

We also recall the definition of the Hausdorff measure of noncompactness of bounded subsets of a metric
space, and the Hausdorff measure of noncompactness of operators between Banach spaces.

Definition 5.1. Let (X, d) be a metric space, B(x0, δ) = {x ∈ X : d(x, x0) < δ} denote the open ball of radius δ > 0
and center in x0 ∈ X, andMX be the collection of bounded sets in X. The Hausdorff measure of noncompactness of
Q ∈ MX is

χ(Q) = inf{ε > 0 : Q ⊂
n⋃

k=1

B(xk, δk), xk ∈ X, δk < ε, 1 ≤ k ≤ n, n ∈N}.

Let X and Y be Banach spaces and χ1 and χ2 be measures of noncompactness on X and Y. Then the operator L : X→ Y
is called (χ1, χ2)–bounded if L(Q) ∈ MY for every Q ∈ MX and there exists a positive constant C such that

χ2(L(Q)) ≤ Cχ1(Q) for every Q ∈ MX. (30)

If an operator L is (χ1, χ2)–bounded then the number

‖L‖(χ1,χ2) = inf
{
C ≥ 0 : (30) holds for all Q ∈ MX

}
is called the (χ1, χ2)–measure of noncompactness of L. In particular, if χ1 = χ2 = χ, then we write ‖L‖χ instead of
|L‖(χ,χ).

Lemma 5.1. ([12, Theorem 2.25 and Corollary 2.26]) Let X and Y are Banach spaces and L ∈ B (X,Y). Then we
have

‖L‖χ = χ
(
L(B̄X)

)
= χ (L(SX)) , (31)

L ∈ C(X,Y) if and only if ‖L‖χ = 0. (32)

Lemma 5.2 (Goldenštein, Goh’berg, Markus). ([12, Theorem 2.23]) Let X be a Banach space with a Schauder
basis (bn)∞n=0, Q ∈ MX, Pn : X→ X be the projector onto the linear span of {b0, b1, . . . bn}, I be the identity map on X
and Rn = I − Pn (n = 0, 1, . . . ). Then we have

1
a
· lim sup

n→∞

sup
x∈Q
‖Rn(x)‖

 ≤ χ(Q) ≤ lim sup
n→∞

sup
x∈Q
‖Rn(x)‖

 , (33)

where a = lim supn→∞ ‖Rn‖.

Lemma 5.3. ([12, Theorem 2.8]) Let Q be a bounded subset of the normed space X, where X is `p for 1 ≤ p < ∞
or c0. If Pn : X → X is the operator defined by Pn(x) = x[n] for x = (xk)∞k=0 ∈ X, then we have χ(Q) =
limn→∞(supx∈Q ‖Rn(x)‖).

The final results of this section give the estimates of the Hausdorff measure of noncompactness of LA
when A ∈ (XT, c) for X = c0, `∞, c.

Lemma 5.4. ([4, Corollary 5.13]) If A ∈ ((c0)T, c) or A ∈ ((`∞)T, c) then we have

1
2
· lim

r→∞

(
sup
n≥r

∥∥∥Ân − α̂
∥∥∥

1

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
n≥r

∥∥∥Ân − α̂
∥∥∥

1

)
, (34)

where α̂ = (αk)∞k=0 with α̂k = limn→∞ ânk for k = 0, 1, . . . .
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Lemma 5.5. ([4, Theorem 5.14]) If A ∈ (cT, c) then we have

1
2
· lim

r→∞

sup
n≥r


∣∣∣∣∣∣∣β − γn −

∞∑
k=0

α̂k

∣∣∣∣∣∣∣ +

∞∑
k=0

|ânk − α̂k|


 ≤
≤ ‖LA‖χ ≤ lim

r→∞

sup
n≥r


∣∣∣∣∣∣∣β − γn −

∞∑
k=0

α̂k

∣∣∣∣∣∣∣ +

∞∑
k=0

|ânk − α̂k|


 ,

where γn = limm→∞ w(An)
mk for n = 0, 1, . . . , β = limn→∞(

∑
∞

k=0 ânk − γn) and α̂ = (α̂k)∞k=0 with α̂k = limn→∞ ânk for
k = 0, 1, . . . .

6. Compact Operators on the Sets

In this section, we establish necessary and sufficient conditions for a matrix operator to be a compact
operator from s0

α(B̃), s(c)
α (B̃) and sα(B̃) into Y, where Y = `∞, c0, c, `1. This is achieved by applying the results

of the previous section on the Hausdorff measure of noncompactness.
The following notations are needed to establish estimates and identities for the Hausdorff measure of

noncompactness of matrix operators and characterize the classes of compact operators.

Let A = (ank)∞n,k=0 be an infinite matrix and r ∈N. Then A[r] denotes the matrix with the rows A[r]
n = 0 for

0 ≤ n ≤ r and A[r]
n = An for n ≥ r + 1. Also we write Ã and W(An) n ∈ N for the matrices defined in (28) and

(29), and α̃ = (α̃k)∞k=0 and γ = (γn)∞n=0 for the sequences with α̃k = limn→∞ ãnk for k = 0, 1, . . . and

γn = lim
m→∞

m∑
k=0

w(An)
mk = lim

m

m∑
k=0

∞∑
j=m

(−1) j−k anj

r j

j−1∏
l=k

sl

rl
;

finally, let β = limn→∞(
∑
∞

k=0 ãnk − γn).
We also write C̃ = (c̃nk)∞n,k=0 for the matrix with c̃nk = ãnk − α̃k for all n, k ∈ N0 and δ = (δn)∞n=0 for the

sequence with

δn =

∞∑
k=0

α̃k − γn + β (n = 0, 1, . . .).

Theorem 6.1. If A ∈ (X,Y) where X = s0
α(B̃), s(c)

α (B̃), sα(B̃) and Y = c0, c, `∞, `1 then the identities or estimates for
LA can be read from the following table:

From
To

sα(B̃) s0
α(B̃) s(c)

α (B̃)

`∞ 1. 1. 2.
c0 3. 3. 4.
c 5. 5. 6.
`1 7. 7. 8.

where
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1. (1.1)∗∗ 0 ≤ ‖LA‖χ ≤ lim
r→∞

(
sup
n≥r

∞∑
k=0
|ãnk|

)
;

2. (2.1)∗∗ 0 ≤ ‖LA‖χ ≤ lim
r→∞

(
sup
n≥r

∞∑
k=0
|ãnk| +

∣∣∣γn

∣∣∣);
3. (3.1)∗∗ ‖LA‖χ = lim

r→∞

(
sup
n≥r

∞∑
k=0
|ãnk|

)
;

4. (4.1)∗∗ ‖LA‖χ = lim
r→∞

(
sup
n≥r

∞∑
k=0
|ãnk| +

∣∣∣γn

∣∣∣);
5. (5.1)∗∗

1
2
· lim

r→∞

(
sup
n≥r

∞∑
k=0
|c̃nk|

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
n≥r

∞∑
k=0
|c̃nk|

)
;

6. (6.1)∗∗
1
2
· lim

r→∞

(
sup
n≥r

∞∑
k=0
|c̃nk| + |δn|

)
≤ ‖LA‖χ ≤ lim

r→∞

(
sup
n≥r

∞∑
k=0
|c̃nk| + |δn|

)
;

7. (7.1)∗∗ lim
r→∞

sup
N ⊂N
N finite

∥∥∥∥∥ ∑
n∈N

Ã[r]
n

∥∥∥∥∥
1
≤ ‖LA‖χ ≤ 4 lim

r→∞
sup
N ⊂N
N finite

∥∥∥∥∥ ∑
n∈N

Ã[r]
n

∥∥∥∥∥
1
;

8. (8.1)∗∗ lim
r→∞

sup
N ⊂N
N finite

(∥∥∥∥∥ ∑
n∈N

Ã[r]
n

∥∥∥∥∥
1

+

∣∣∣∣∣ ∑
n∈N

γn

∣∣∣∣∣) ≤ ‖LA‖χ

≤ 4 lim
r→∞

sup
N ⊂N
N finite

(∥∥∥∥∥ ∑
n∈N

Ã[r]
n

∥∥∥∥∥
1

+

∣∣∣∣∣ ∑
n∈N

γn

∣∣∣∣∣).
Proof. 1. and 2. We define Pr,Rr : `∞ → `∞ by Pr(x) = x[r] for all x ∈ `∞, Rr = I − Pr (r = 0, 1, . . . ), and write
L = LA and B̄ = B̄`∞ for short. Then it follows from (5.1) and ([12, Theorem 2.12] that

0 ≤ ‖L‖χ = χ(L(B̄)) ≤ χ(Pr(L(B̄))) + χ(Rr(L(B̄)))

= χ(Rr(L(B̄))) ≤ sup
x∈B̄
‖Rr(L(x))‖∞ =

∥∥∥Ã[r]
∥∥∥

(X,∞)
.

If X = sα(B̃) or X = s0
α(B̃) the estimates in (1, 1)∗∗ follow from Lemma 4.4 (a). If X = s(c)

α (B̃) then the estimates
in (2.1)∗∗ follow from Lemma 4.5 (a).

3. – 8. The identities or estimates in (3.1)∗∗–(8.1)∗∗ follow from [3, Corollary 3.6 (a), Theorem 3.7 (a),
Corollary 3.6 (c), Theorem 3.7 (a), Corollary 3.6 (b) and Theorem 3.7 (c)].

Corollary 6.1. Let X be one of the spaces s0
α(B̃) or sα(B̃). We obtain as an immediate consequence of (32) and Theorem

6.1 (1.1)∗∗, (3.1)∗∗ and (5.1)∗∗.

(a) If A ∈ (X, c0), then LA is compact if and only if

lim
r→∞

sup
n≥r

 ∞∑
k=0

‖ãnk‖


 = 0. (35)

(b) If A ∈ (X, c), then LA is compact if and only if

lim
r→∞

sup
n≥r

 ∞∑
k=0

‖ãnk − α̃k‖

 = 0.

(c) If A ∈ (X, `∞), then LA is compact if the condition (35) holds.

Corollary 6.2. We obtain as an immediate consequence of (32) and Theorem 6.1 (2.1)∗∗, (4.1)∗∗ and (6.1)∗∗.
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(a) If A ∈ (s(c)
α (B̃), c0), then LA is compact if and only if

lim
r→∞

sup
n≥r

 ∞∑
k=0

‖ãnk‖ +
∥∥∥γn

∥∥∥
 = 0. (36)

(b) If A ∈ (s(c)
α (B̃), c), then LA is compact if and only if

lim
r→∞

sup
n≥r

∑
k=0

∞‖ãnk − α̃k‖ +

∥∥∥∥∥∥∥∑k

α̃k − γn − β

∥∥∥∥∥∥∥
 = 0.

(c) If A ∈ (s(c)
α (B̃), `∞), then LA is compact if (36) holds.

Corollary 6.3. For each subset N ofN and r ∈N, let Nr = {n ∈ N : n ≥ r + 1}.
We obtain as an immediate consequence of (32) and Theorem 6.1 (7.1)∗∗ and (8.1)∗∗.

(a) If A ∈ (s0
α(B̃), `1) or A ∈ (sα(B̃), `1), then LA is compact if and only if

lim
r→∞

 sup
N ⊂N
N finite

 ∞∑
k=0

∣∣∣∣∣∣∣∣
∑
n∈Nr

∞∑
j=k

(−1) j−kαk

r j

j−1∏
m=k

sm

rm
anj

∣∣∣∣∣∣∣∣

 = 0.

(b) If A ∈ (s(c)
α (B̃), `1), then LA is compact if and only if

lim
r→∞

 sup
N ⊂N
N finite

 ∞∑
k=0

∣∣∣∣∣∣∣∣
∑
n∈Nr

∞∑
j=k

(−1) j−kαk

r j

j−1∏
m=k

sm

rm
anj

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∑n∈Nr

γn

∣∣∣∣∣∣∣

 = 0.
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