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Abstract. In this paper, we characterize the matrix classes (`1, `λp ) (1 ≤ p < ∞). We also obtain estimates for
the norms of the bounded linear operators LA defined by these matrix transformations and find conditions
to obtain the corresponding subclasses of compact matrix operators by using the Hausdorff measure of
noncompactness.

1. Preliminaries

We shall write ω for the set of all complex sequences x = (xk)∞k=0. Let φ, `∞, c and c0 denote the sets of
all finite, bounded, convergent and null sequences, respectively. We write `p = {x ∈ ω :

∑
∞

k=0 |xk|
p < ∞} for

1 ≤ p < ∞. By e and e(n) (n ∈ N), we denote the sequences such that ek = 1 for k = 0, 1, ..., and e(n)
n = 1 and

e(n)
k = 0 (k , n). For any sequence x = (xk)∞k=0, let x[n] =

∑n
k=0 xke(k) be its n–section.

A sequence (b(n))∞n=0 in a linear metric space X is called Schauder basis if for every x ∈ X, there is a unique
sequence (λn)∞n=0 of scalars such that x =

∑
∞

n=0 λnb(n). A sequence space X with a linear topology is called a
K–space if each of the maps pi : X → C defined by pi(x) = xi is continuous for all i ∈ N. A K-space is called
an FK–space if X is a complete linear metric space; a BK–space is a normed FK–space. An FK–space X ⊃ φ is
said to have AK if every sequence x = (xk)∞k=0 ∈ X has a unique representation x =

∑
∞

k=0 xke(k), that is, x[n]
→ x

as n→∞ (cf. [20]).
The classical sequence spaces c0, c and `p (1 ≤ p < ∞) all have Schauder bases but `∞ has no Schauder

basis; the spaces c0 and `p (1 ≤ p < ∞) have AK.
Let (X, ‖ · ‖) be a normed space. Then the unit sphere and closed unit ball in X are denoted by SX := {x ∈

X : ‖x‖ = 1} and B̄X := {x ∈ X : ‖x‖ ≤ 1}. If X and Y are normed spaces then we write, as usual, B(X,Y) for
the space of all bounded linear operators L : X → Y normed by ‖L‖ = sup{‖L(x)‖ : x ∈ SX}; if Y is a Banach
space, so is B(X,Y).

Throughout this paper, the matrices are infinite matrices of complex numbers. If A is an infinite matrix
with complex entries ank (n, k ∈ N), then we write A = (ank) instead of A = (ank)∞n,k=0. Also, we write An for
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the sequence in the nth row of A, that is, An = (ank)∞k=0 for every n ∈ N. In addition, if x = (xk) ∈ ω, then we
define the A-transform of x as the sequence Ax = (Anx)∞n=0, where Anx =

∑
∞

k=0 ankxk (n = 0, 1, . . . ) provided the
series on the right converges for each n.

An infinite matrix T = (tnk) is said to be a triangle if tnk = 0 for k > n and tnn , 0 (n = 0, 1, . . . ).
Let X and Y be subsets of ω and A = (ank) an infinite matrix. Then the set XA = {x ∈ ω : Ax ∈ X} is called

the matrix domain of A in X. We say that A defines a matrix mapping from X into Y, and we denote this by
writing A : X→ Y, if Ax exists and is in Y for all x ∈ X. By (X,Y), we denote the class of all infinite matrices
that map X into Y. Thus A ∈ (X,Y) if and only if X ∈ YA, that is, An ∈ Xβ for all n ∈ N and Ax ∈ Y for all
x ∈ X.

The following results are well known and give some relations between the classes (X,Y) and B(X,Y).

Lemma 1.1. Let X ⊃ φ and Y be BK–spaces.
(a) Then we have (X,Y) ⊂ B(X,Y), that is, every matrix A ∈ (X,Y) defines an operator LA ∈ B(X,Y) by LA(x) = Ax
for all x ∈ X ([20, Theorem 4.2.8].
(b) If X has AK, then B(X,Y) ⊂ (X,Y), that is, for every operator L ∈ B(X,Y) there exists a matrix A ∈ (X,Y) such
that L(x) = Ax for all x ∈ X ([8, Theorem 1.9]).

In case of Lemma 1.1 (b), we say that L ∈ B(X,Y) is represented by a matrix A ∈ (X,Y).

2. λ–Sequence Spaces

We consider some λ–sequence spaces which are the matrix domains of the matrices of weighted means
matrix in `p for 1 < p < ∞.

Here and in the sequel, we shall use the convention that any term with a negative subscript is equal to
naught.

Let (rk)∞k=0 be a sequence of nonnegative real numbers with r0 > 0 and Rn =
∑n

k=0 rk for n = 0, 1, . . . . Then
the triangle N̄r = (ank) of weighted means is given by ank = rk/Rn (0 ≤ k ≤ n; n = 0, 1, . . . ). If we write
λn = Rn for n = 0, 1, . . . , rk = ∆Rk = Rk − Rk−1 = ∆λk then (λn) is a nondecreasing sequence of positive reals
and, defining the triangle Λ = (λnk) by λnk = (λk − λk−1)/λn (0 ≤ k ≤ n; n = 0, 1, . . . ), we obtain N̄r = Λ.

Conversely, let (λn) be a nondecreasing sequence of positive reals and the matrix Λ = (λnk) be defined
as above. If we write rk = ∆λk, then r0 > 0, rk ≥ 0 for all k ≥ 1, Rn =

∑n
k=0 rk = λn > 0 and Λ = N̄r.

So, let λ = (λk)∞k=0 be a nondecreasing sequence of positive reals numbers. We say that a sequence
x = (xk) ∈ ω is λ-convergent to the number ξ ∈ C, called the λ-limit of x, if Λnx→ ξ as n→∞, where

Λnx =
1
λn

n∑
k=0

(λk − λk−1)xk (n ∈N). (1)

In particular, we say that x is a λ-null sequence if Λnx → 0 as n → ∞. Furthermore, we say that x is
λ-bounded if supn |Λnx| < ∞. We also say that the associated series

∑
∞

k=0 xk is p-absolutely convergent of type λ if∑
∞

n=0 |Λnx|p < ∞, where 0 < p < ∞.
Recently, the sequence spaces `λ∞, cλ, cλ0 and `λp have been defined and studied by Mursaleen and

Noman (cf. [16]) which are the sets of all λ-bounded, λ-convergent, λ–null sequences and λ(p)-absolutely
convergent series, respectively, that is, the matrix domains of the triangle Λ in the spaces `∞, c and c0,
respectively,

`λ∞ = (`∞)Λ, cλ = cΛ, cλ0 = (c0)Λ and `λp = (`p)Λ.

The following result is known.

Lemma 2.1. ([16]) The spaces `λ∞, cλ and cλ0 are BK spaces with the same norm given by ‖x‖`λ∞ = ‖Λx‖∞, that is,

‖x‖`λ∞ = sup
n
|Λnx|.
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The space `λp (1 ≤ p ≤ ∞) is a BK space with the norm ‖x‖`λp = ‖Λx‖p, that is,

‖x‖`λp =

 ∞∑
n

|Λnx|p
1/p

(1 ≤ p < ∞).

3. The HausdorffMeasure of Noncompactness

The Hausdorff measure of noncompactness can be most effectively used to characterize compact oper-
ators between Banach spaces.

Here we recall some fundamental definitions and results, and give a short outline of how the Hausdorff
measure of noncompactness can be applied in the characterization of compact matrix operators between
BK spaces when the final space has a Schauder basis.

There are several measures of noncompactness in use. Here we only mention two of them. We refer the
reader to the the monographs [2, 3] for further studies.

The first measure of noncompactness, the function α, was defined and studied by Kuratowski [9] in 1930.
Darbo [5] used this measure to generalize both the classical Schauder fixed point principle and (a special
variant of) Banach’s contraction mapping principle for so called condensing operators. The Hausdorff or
ball measure of noncompactness χ was introduced by Goldenštein, Gohberg and Markus [6] in 1957, and
later studied by Goldenštein and Markus [7].

Let X and Y be infinite dimensional Banach spaces. We recall that a linear operator L from X into Y is
called compact if its domain is all of X and, for every bounded sequence (xn) in X, the sequence the sequence
(L(xn)) has a convergent subsequence. We denote the class of all compact operators in B(X,Y) by C(X,Y).

Let (X, d) be a metric space, x0 ∈ X and r > 0. Then we write, as usual, B(x, r) = {x ∈ X : d(x, x0) < r} for
the open ball of radius r and center x0. LetMX denote the class of all bounded subsets of X. If Q ∈ MX,
then the Hausdorff measure of noncompactness of the set Q, denoted by χ(Q), is defined by

χ(Q) = inf

ε > 0 : Q ⊂
n⋃

k=1

B(xk, rk), xk ∈ X, rk < ε (k = 1, 2, ...), n ∈N

 .
The function χ :MX → [0,∞) is called the Hausdorff measure of noncompactness.

The basic properties of the Hausdorff measure of noncompactness can be found in [1–3, 12, 13].
Now we recall the definition of the Hausdorff measure of noncompactness operators between Banach

spaces. Let X and Y be Banach spaces and χ1 and χ2 be the Hausdorff measures of noncompactness on X
and Y , respectively. An operator L : X → Y is said to be (χ1,χ2)–bounded if L(Q) ∈ MY for all Q ∈ MX and
there exist a constant C ≥ 0 such that χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX. If an operator L is (χ1,χ2)–bounded
then the number

‖L‖(χ1,χ2) = inf{C ≥ 0 : χ2(L(Q)) ≤ Cχ1(Q) for all Q ∈ MX}

is called the (χ1, χ2)–measure of noncompactness of L. If χ1 = χ2 = χ, then we write ‖L‖(χ1,χ2) = ‖L‖χ.
Now we outline the applications of the Hausdorff measure of noncompactness to the characterization

of compact operators between Banach spaces. Let X and Y be Banach spaces and L ∈ B(X,Y). Then the
Hausdorff measure of noncompactness of L is given by ([13, Theorem 2.25])

‖L‖χ = χ(L(SX)) (2)

and L is compact if and only if ([13, Corollary 2.26 (2.58)])

‖L‖χ = 0. (3)

The identities in (2) and (3) reduce the characterization of compact operators L ∈ B(X,Y) to the determi-
nation of the Hausdorff measure of noncompactness χ(Q) of bounded sets Q in a Banach space X. If X has
a Schauder basis, then there exist estimates or even identities for χ(Q).
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Theorem 3.1 (Goldenštein, Gohberg, Markus). ([6] or [13, Theorem 2.23])
Let X be a Banach space with a Schauder basis (bk)∞k=0, Q ∈ MX, Pn : X → X be the projectors onto the linear span
of {b0, b1, . . . , bn} and Rn = I − Pn for n = 0, 1, . . . , where I denotes the identity map on X. Then we have

1
a
· lim sup

n→∞

sup
x∈Q
‖Rn(x)‖

 ≤ χ(Q) ≤ lim sup
n→∞

sup
x∈Q
‖Rn(x)‖

 ,
where a = lim supn→∞ ‖Rn‖.

In particular, the following result shows how to compute the Hausdorff measure of noncompactness in
the spaces c0 and `p (1 ≤ p < ∞) which are BK-spaces with AK.

Theorem 3.2. ([13, Theorem 2.15]) Let Q be a bounded subset of the normed space X, where X is `p for 1 ≤ p < ∞
or c0. If Pn : X→ X is the operator defined by Pn(x) = x[n] for all x = (xk)∞k=0 ∈ X and Rn = I − Pn for n = 0, 1, . . . ,
then we have

χ(Q) = lim
n→∞

sup
x∈Q
‖Rn(x)‖

 . (4)

Since matrix mappings between BK spaces define bounded linear operators between these spaces which
are Banach spaces, it is natural to use the above results and the Hausdorff measure of noncompactness
to obtain necessary and sufficient conditions for matrix operators between BK spaces with a Schauder
basis or AK to be compact operators. This technique has recently been used by several authors in many
research papers (see for instance [4, 10, 15, 18]. In this paper, we characterize the matrix classes (`1, `λp )
(1 ≤ p < ∞). We also obtain an identity for the norms of the bounded linear operators LA defined by
these matrix transformations and find conditions to obtain the corresponding subclasses of compact matrix
operators by using the Hausdorff measure of noncompactness.

4. Main Results

Here we characterize the classesB(`1, `λp ) for (1 ≤ p < ∞) and compute the norm of operators inB(`1, `λp ).
We also apply the results of the previous section to determine the Hausdorff measure of noncompactness
of operators in B(`1, `λp ) and to characterize the classes C(`1, `p) for 1 ≤ p < ∞.

The following result is useful.

Lemma 4.1. ([13, Theorem 3.8]) Let T be a triangle and X and Y be arbitrary subsets of ω.
(a) Then we have A ∈ (X,YT) if and only if C = T · A ∈ (X,Y), where C denotes the matrix product of T and A.
(b) If X and Y are B spaces and A ∈ (X,YT) then

‖LA‖ = ‖LC‖. (5)

First we establish the characterizations of the classes B(`1, `λp ) for (1 ≤ p < ∞) and an identity for the
operator norm.

Theorem 4.2. Let 1 ≤ p < ∞.
(a) We have L ∈ B(`1, `λp ) if and only if there exists an infinite matrix A ∈ (`1, `λp ) such that

‖A‖ = sup
k

 ∞∑
n=0

∣∣∣∣∣∣∣∣ 1
λn

n∑
j=0

(λ j − λ j−1)a jk

∣∣∣∣∣∣∣∣
p

1/p

< ∞ (6)

and

L(x) = Ax for all x ∈ `1. (7)

(b) If L ∈ B(`1, `λp ) then

‖L‖ = ‖A‖. (8)
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Proof. Since `1 is a BK space with AK it follows from Lemma 1.1 that L ∈ B(`1, `λp ) for 1 ≤ p < ∞ if and
only if there exists an infinite matrix A ∈ (`1, `λp ) such that (7) holds. Also we have by Lemma 4.1 (a) that
A ∈ (`1, `λp ) if and only if C = Λ · A ∈ (`1, `p), where the entries of the triangle C are given by

cnk =
1
λn

n∑
j=0

(λ j − λ j−1)a jk for 0 ≤ k ≤ n and n = 0, 1, . . . .

Furthermore, we have by [20, Example 8.4.1D] that C ∈ (`1, `p) if and only if

‖C‖ = sup
k

 ∞∑
n=0

|cnk|
p


1/p

< ∞.

This completes the proof of Part (a).
(b) If L ∈ B(`1, `λp ) then it follows from (5) that ‖L‖ = ‖LC‖, where LC ∈ B(`1, `p) is given by LC(x) = Cx for

all x ∈ `1. It follows by Minkowski’s inequality that

‖LC(x)‖p =

 ∞∑
n=0

∣∣∣∣∣∣∣
∞∑

k=0

cnkxk

∣∣∣∣∣∣∣
p

1/p

≤

∞∑
k=0

|xk|

 ∞∑
n=0

|cnk|
p


1/p

≤ ‖C‖ · ‖x‖ = ‖A‖ · ‖x‖,

and so

‖L‖ ≤ ‖A‖. (9)

We also obtain for e(k)
∈ S`1 (k ∈N)

∥∥∥LC(e(k))
∥∥∥ =

 ∞∑
n=0

|cnk|
p


p

,

and so ‖L‖ ≥ ‖A‖. This and (9) yield (8).

Now we are going to establish a formula for the Hausdorff measure of noncompactness of operators in
B(`1, `λp ). We need the following result.

Lemma 4.3. ([14, Theorem 4.2]) Let X be a linear metric space with a translation invariant metric, T be a triangle
andχ, andχT denote the Hausdorff measures of noncompactness onMX andMXT , respectively. ThenχT(Q) = χ(TQ)
for all Q ∈ MXT .

Theorem 4.4. Let L ∈ B(`1, `λp ) (1 ≤ p < ∞) and A denote the matrix which represents L. Then we have

‖L‖χ
`λp

= lim
m→∞

sup
k

∞∑
n=m

∣∣∣∣∣∣∣∣ 1
λn

n∑
j=0

(
λ j − λ j−1

)
a jk

∣∣∣∣∣∣∣∣
p

1/p

. (10)

Proof. We write S = S`1 , for short, and C[m] (m ∈N) for the matrix with the rows C[m]
n = 0 for 0 ≤ n ≤ m and

C[m]
n = Cn for n ≥ m + 1. It follows from (2), Lemma 4.3, (4), (8) and (6)

‖L‖χ
`λp

= χ`λp (L(S)) = χ`p (LC(S)) = lim
m→∞

(
sup
x∈S
‖Rm(Cx)‖p

)
= lim

m→∞

(
sup
x∈S
‖C[m]x‖p

)
= lim

m→∞

∥∥∥C[m]
∥∥∥
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= lim
m→∞

sup
k

∞∑
n=m+1

∣∣∣∣∣∣∣∣ 1
λn

n∑
j=0

(
λ j − λ j−1

)
a jk

∣∣∣∣∣∣∣∣
p

1/p

.

Finally, the characterization of C(`1, `λp ) is an immediate consequence of Theorem 4.4 and (3).

Corollary 4.5. Let L ∈ B(`1, `λp ) (1 ≤ p < ∞) and A denote the matrix which represents L. Then L is compact if and
only if

lim
m→∞

sup
k

∞∑
n=m

∣∣∣∣∣∣∣∣ 1
λn

n∑
j=0

(
λ j − λ j−1

)
a jk

∣∣∣∣∣∣∣∣
p = 0.

Remark 4.6. The characterizations of the classes C(`1, `λp ) (1 ≤ p < ∞) could be obtained from the characterizations
of the classes C(`1, `p) in ([19], p. 85). The Hausdorff measure of noncompactness is, however, not used in [19].
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[11] B. de Malafosse and V. Rakočević, Applications of measure of noncompactness in operators on the spaces sα, s0
α, s(c)

α , `p
α, J. Math.

Anal. Appl., 323(1) (2006) 131–145.
[12] E. Malkowsky, Compact matrix operators between some BK spaces, in: M. Mursaleen (Ed.), Modern Methods of Analysis and

Its Applications, Anamaya Publ., New Delhi, 2010, pp. 86–120.
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