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Abstract. In the paper of W.N. Everitt and A. Zettl [26] in scalar case, all selfadjoint extensions of the
minimal operator generated by Lagrange-symmetric any order quasi-differential expression with equal
deficiency indexes in terms of boundary conditions are described by Glazman-Krein-Naimark method for
regular and singular cases in the direct sum of corresponding Hilbert spaces of functions. In this work, by
using the method of Calkin-Gorbachuk theory all normal extensions of the minimal operator generated by
fixed order linear singular multipoint differential expression l = (l−, l1, . . . , ln, l+), l∓ = d

dt + A∓, lk = d
dt + Ak

where the coefficients A∓, Ak are selfadjoint operator in separable Hilbert spaces H∓, Hk, k = 1, . . . ,n, n ∈N
respectively, are researched in the direct sum of Hilbert spaces of vector-functions

L2(H−, (−∞, a)) ⊕ L2(H1, (a1, b1)) ⊕ . . . ⊕ L2(Hn, (an, bn)) ⊕ L2(H+, (b,+∞))

−∞ < a < a1 < b1 < . . . < an < bn < b < +∞. Moreover, the structure of the spectrum of normal extensions is
investigated.
Note that in the works of A. Ashyralyev and O. Gercek [2, 3] the mixed order multipoint nonlocal boundary
value problem for parabolic-elliptic equation is studied in weighed Hölder space in regular case.

1. Introduction

The modelings of many physical phenomenons are expressed as differential operators. Therefore op-
erator theory plays an exceptionally important role in modern mathematics, especially in the modeling
of processes of multi-particle quantum mechanics, quantum field theory, the multipoint boundary value
problems for differential equations[1-3,16-18,28].

Although the first studies of the theory multipoint differential operators were performed at the begin-
ning of twentieth century, most of them which are about the investigation of the theory and application to
spectral problems, have been found since 1950 ([19,21,25-28]).

It is well known that basic results of normal extensions of formal normal operator had been established
and developed in [4,6,7]. Unfortunately, applications of this theory to differential operators in Hilbert space
have not received the attentions it deserves.
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In this study, general representation of all normal extensions of the formally normal minimal operator,
which is generated by first order linear singular differential-operator expressions with selfadjoint coefficient
are described in the direct sum of Hilbert spaces of vector functions in term of boundary values. Also, the
spectrum structure of these extensions is investigated.

2. Description of Normal Extensions

Let H∓, Hk, k = 1, 2, . . . ,n, n ∈N be separable Hilbert spaces, −∞ < a < a1 < b1 < . . . < an < bn < b < +∞
and dimH− = dimH+ ≤ +∞. In the direct sum of Hilbert spaces

L2(H−, (−∞, a)) ⊕ L2(H1, (a1, b1)) ⊕ . . . ⊕ L2(Hn, (an, bn)) ⊕ L2(H+, (b,+∞))

of vector-functions we consider the linear multipoint differential expression

l(u) =


u′
−

+ A−u−, −∞ < t < a
u′k + Akuk, ak < t < bk, k = 1, . . . ,n
u′+ + A+u+, b < t < +∞,

(1)

where u = (u−,u1, . . . ,un,u+), A∓ : H∓ → H∓, Ak : Hk → Hk, are linear selfadjoint operators and A− ≤
0, A+ ≥ 0, Ak ≥ Ek, ( Ek is the identical operator in Hk ) k = 1, . . . ,n.

In the Hilbert space L2(H−, (−∞, a))⊕ L2(H1, (a1, b1))⊕ . . .⊕ L2(Hn, (an, bn))⊕ L2(H+, (b,+∞)) the operators
L0 := L0(1, 1, 1) = L−0 ⊕ L10 ⊕ . . .⊕ Ln0 ⊕ L+0 and L := L(1, 1, 1) = L− ⊕ L1 ⊕ . . .⊕ Ln ⊕ L+ are called minimal and
maximal (multipoint) operators generated by the differential expression (1), respectively.

Now we give some notations for convenience as follows

L2(1, 1, 1) := L2(H−, (−∞, a)) ⊕ L2(H1, (a1, b1)) ⊕ . . . ⊕ L2(Hn, (an, bn)) ⊕ L2(H+, (b,+∞))
L2(1, 0, 1) := L2(H−, (−∞, a)) ⊕ 01 ⊕ . . . ⊕ 0n ⊕ L2(H+, (b,+∞))
L2(0, 1k, 0) := 0− ⊕ 01 ⊕ . . . ⊕ 0k−1 ⊕ L2(Hk, (ak, bk)) ⊕ 0k+1 ⊕ . . . ⊕ 0+, k = 1, . . . ,n.

It is known that any symmetric operator with equal deficiency indices has at least one space of boundary
values [9]. Therefore, construct a space of boundary values for the minimal operators M0(1, 0, 1) and
M0(0, 1k, 0), k = 1 . . . ,n generated by linear singular differential expressions of first order in the form

(m−(u−), 01, . . . , 0n,m+(u+)) =

(
−i

du−
dt
, 01, . . . , 0n,−i

du+

dt

)
,

(0−, 01, . . . , 0k−1,mk(uk), 0k+1, . . . , 0n, 0+) =

(
0−, 01, . . . , 0k−1 − i

duk

dt
, 0k+1, . . . , 0n, 0+

)
,

in the direct sum L2(1, 0, 1) and L2(0, 1k, 0), respectively. Moreover the minimal operators M0(1, 0, 1) and
M0(0, 1k, 0) are closed symmetric operators in L2(1, 0, 1) and L2(0, 1k, 0) with deficiency indices (dim H−,dim H+)
and (dim Hk,dim Hk).

Note that since Hilbert spaces H− and H+ are separable and dimH− = dimH+, then there exits a unitary
operator V : H− → H+ [15].

Lemma 2.1. The triplet (H+, γ1, γ2), where

γ1 : D(M∗0)→ H+, γ1(u) =
1

i
√

2
(u+(b) + Vu−(a)),

γ2 : D(M∗0)→ H+, γ2(u) =
1
√

2
(u+(b) − Vu−(a)),

u = (u−, 01, . . . , 0n,u+) ∈ D(M∗0)
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is a space of boundary values of the minimal operator M0(1, 0, 1) in L2(1, 0, 1).

Proof. For arbitrary u = (u−,u1, . . .un,u+) and v = (v−, v1, . . . , vn, v+) from
D((L−0 ⊕ 01 ⊕ . . . ⊕ 0n ⊕ L+0)∗) the validity of the equality

(Mu, v)L2(1,0,1) − (u,Mv)L2(1,0,1) = (γ1(u), γ2(v))H+
− (γ2(u), γ1(v))H+

can be easily verified. Now for any given elements f , 1 ∈ H+, we will find the function u = (u−,u1, . . . ,un,u+) ∈
D((L−0 ⊕ 01 ⊕ . . . ⊕ 0n ⊕ L+0)∗) such that

γ1(u) =
1

i
√

2
(Vu−(a) + u+(b)) = f and γ2(u) =

1
√

2
(Vu−(a) − u+(b)) = 1

that is,

Vu−(a) = (i f + 1)/
√

2 and u+(b) = (i f − 1)/
√

2.

Since V : H− → H+ is an isomorphism, so that we can choose the functions u−(t), u+(t) in the following form

u−(t) = e
t−a
2 V∗(i f + 1)/

√

2, with t < a;
uk(t) = 0k, with ak < t < bk, k = 1, . . . ,n;

u+(t) = e
b−t
2 (i f − 1)/

√

2, with t > b

then it is clear that (u−,u1, . . . ,un,u+) ∈ D((M−0 ⊕ 01 ⊕ . . . ⊕ 0n ⊕M+0)∗) and γ1(u) = f , γ2(u) = 1.

Lemma 2.2. The triplet
(
Hk, γ

(k)
1 , γ

(k)
2

)
,

γ(k)
1 : D((Mk0)∗)→ Hk, γ(k)

1 (uk) =
1

i
√

2
(uk(ak) + uk(bk)),

γ(k)
2 : D((Mk0)∗)→ Hk, , γ(k)

2 (uk) =
1
√

2
(uk(ak) − uk(bk)), uk ∈ D((Mk0)∗)

is a space of boundary values of the minimal operator Mk0 in the Hilbert space L2(0, 1k, 0),
k = 1, . . . ,n.

Theorem 2.3. If the minimal operators L−0, L+0 and Lk0, k = 1, . . . ,n are formally normal, then the following
correlations

D(L−0)⊂W1
2(H−, (−∞, a)), A−D(L−0) ⊂ L2(H−, (−∞, a)),

D(Lk0)⊂W1
2(Hk, (ak, bk)), AkD(Lk0) ⊂ L2(Hk, (ak, bk)),

D(L+0) ⊂W1
2(H+, (b,∞)), A+D(L+0) ⊂ L2(H+, (b,∞)).

are true.

Proof. In acceptation of theorem, for any u− ∈ D(L−0) ⊂ D(L∗
−0)

u′− + A−u− ∈ L2(H−, (−∞, a)) and − u′− + A−u− ∈ L2(H−, (−∞, a)),

are true, so

u′− ∈ L2(H−, (−∞, a)) and A−u− ∈ L2(H−, (−∞, a)).

These mean that

D(L−0)⊂W1
2(H−, (−∞, a)) and A−D(L−0) ⊂ L2(H−, (−∞, a)).

The other parts of theorem can be proved similarly.
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The following result can be easily established.

Lemma 2.4. Every normal extension of L0(1, 1, 1) in L2(1, 1, 1) is a direct sum of normal extensions of the minimal
operator L0(1, 0, 1) in L2(1, 0, 1) and minimal operator Lk0 in L2(Hk, (ak, bk)), k = 1, . . . ,n.

Furthermore, the next theorem can be proved by using the method in [9-14,22-24], Lemma 2.1 and
Lemma 2.2.

Theorem 2.5. Assume that

(−A−)1/2W1
2(H−, (−∞, a)) ⊂W1

2(H−, (−∞, a))

A1/2
k W1

2(Hk, (ak, bk)) ⊂W1
2(Hk, (ak, bk)),

A1/2
+ W1

2(H+, (b,∞)) ⊂W1
2(H+, (b,∞))

L̃ is a normal extension of the minimal operator L0 in the Hilbert space L2(1, 1, 1) generated by differential expression
(1) iff there exits W0 : H− → H+, Wk,A

−1/2
k WkA−1/2

k : Hk → Hk are unitary operators and the boundary conditions

u+(b) = W0u−(a), u−(a) ∈ ker (−A−)1/2, u+(b) ∈ ker A1/2
+ , (2)

uk(bk) = Wkuk(ak), (3)

are held. Also, these unitary operators are uniquely determined by the extension L̃ i.e., L̃ = LW , W = (W0,W1, . . . ,Wn).

Corollary 2.6. If A− or A+ is an injective operator, then the minimal operator L0(1, 1, 1) have not any normal
extension, i.e. it is maximally formal normal in L2(1, 1, 1).

Corollary 2.7. If there is at least one normal extension of the minimal operator L0(1, 1, 1), then the relations

dim ker (−A−)1/2 = dim ker A1/2
+ > 0

are true.

3. The Spectrum of the Normal Extensions

The structure of the spectrum of the normal extension LW in L2(1, 1, 1) will be researched in this section.
In this case by the Lemma 2.4 it is easy to see that

LW = LW0 ⊕ LW1 ⊕ . . . ⊕ LWn ,

where LW0 and LWk are normal extensions of the minimal operators L0(1, 0, 1) and L0(0, 1k, 0) in the Hilbert
spaces L2 and L2(0, 1k, 0), k = 1, . . . ,n respectively. Also, it will be supposed that A− = A∗

−
≤ 0, A+ = A∗+ ≥

0,Ak = A∗k ≥ 0 and 0 ∈ σp((−A−)1/2) ∩ σp(A1/2
+ ).

Theorem 3.1. The point spectrum of any normal extension LW0 of the minimal operator L0(1, 0, 1) in the Hilbert
space L2(1, 0, 1) is empty, i.e. σp(LW0 ) = ∅.

Proof. Assume that λ is an eigenvalue for the normal operator LW0 . In this case, the following problem is
obtained

LW0 u = λu, λ = λr + iλi ∈ C, u = (u−, 01, . . . , 0n,u+) ∈ D(LW0 ).

Because LW0 is a normal operator, the equation

L∗W0
u = λu, λ = λr − iλi ∈ C, u = (u−, 01, . . . , 0n,u+) ∈ D(LW0 )
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is true. From these equations, the solution is like that

u−(λ; t) = eiλi(t−a) f ∗−, t < a, f ∗1 ∈ H−1/2((−A−)),

u+(λ; t) = eiλi(t−b) f ∗+, t > b, f ∗3 ∈ H−1/2(A+)
f ∗3 = W1 f ∗1.

Because σp((A−))∩ σp(A1/2
2 ) = 0, it is clear that λr = 0. If u−(λ; .) ∈ L2(H−, (−∞, a)) and u+(λ; .) ∈ L2(H+, (b,∞))

, then f ∗
−

= 0, f ∗+ = 0. This implies that u− = 0 and u+ = 0 in L2(1, 1, 1), so σp(LW1 ) = ∅.

Since residual spectrum of any normal operators in any Hilbert space is empty, it is sufficient to
investigate the continuous spectrum of the normal extensions LW0 of the minimal operator L0(1, 0, 1) in the
Hilbert space L2(1, 0, 1).

Theorem 3.2. For any normal extension LW0 of the minimal operator L0(1, 0, 1) in the Hilbert space L2(1, 0, 1) the
relations iR ⊂ σc(LW0 ) ⊂ σ(A−) ∪ σ(A+) + iR are held.

Proof. For the spectrum of normal operators spectrum [8], the following relation is true,

σ(LW0 ) ⊂ σ(Re LW0 ) + iσ(Im LW0 ),

where Re(LW0 ) =
LW0 +L∗W0

2 and Im(LW0 ) =
LW0−L∗W0

2i are selfadjoint operators.

Now consider selfadjoint operator T : L2(1, 0, 1)→ L2(1, 0, 1),

Tu(t) :=


A−u−(t), −∞ < t < a
0k, ak < t < bk, k = 1, . . . ,n
A+u+(t), b < t < +∞,

.

Hence,
LW0 +L∗W0

2 is densely defined symmetric bounded and
LW0 +L∗W0

2 ⊂ T in the Hilbert space L2(1, 0, 1).
Therefore, Re(LW0 ) = T is obtained. Also, the operator T = A− ⊗ E ⊕ A+ ⊗ E can be written, so from [5] and
[29] the spectrum of T is equal to σ(A−) ∪ σ(A+). Furthermore σ

(
Im(LW0 )

)
= R can be easily seen.

Finally, for any λ = iλi ∈ C the general solution of the boundary value problem

u′− + A−u− = iλiu− + f−, u−, f− ∈ L2(H−, (−∞, a)),
u′+ + A+u+ = iλiu+ + f+, u+, f+ ∈ L2(H+, (b,∞)), λi ∈ R,

u+(b) = W0u−(a), u−(a) ∈ ker (−A−)1/2 ,u+(b) ∈ ker A1/2
+

will be of the form

u−(iλi; t) = e−(A−−iλi)(t−a) fiλi −

∫ a

t
e−(A−−iλi)(t−s) f−(s)ds, t < a,

u+(iλi; t) = e−(A+−iλi)(t−b)1iλi+

∫ t

b
e−(A+−iλi)(t−s) f+(s)ds, t > b,

1iλi = W0 fiλi .

In this case,

e−(A−−iλi)(t−a) fiλi ∈ L2(H, (−∞, a)), e−(A+−iλi)(t−b)1iλi ∈ L2(H+, (b,∞))
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for any 1iλi ∈ H−, fiλi ∈ H+. If f−(t) = eiλite−(t−a) f ∗, f ∗ ∈ ker (−A−)1/2 , t < a, then∫ a

t
e−(A−−iλi)(t−s) f−(s)ds = e−iλit

∫ a

t
e−(s−a) f ∗ds

= e−iλit(e−(t−a)
− 1) f ∗, t < a1.

Therefore,∫ a

−∞

‖e−iλit(e−(t−a)
− 1) f ∗‖

2
dt =

∫ a

−∞

‖e−iλit(e−(t−a)
− 1) f ∗‖

2
dt

=

∫ a

−∞

(e−2(t−a)
− 2e−(t−a) + 1)dt‖ f ∗‖2 = ∞.

Consequently, we have f−(t) ∈ L2(H−, (−∞, a)), u−(iλi; t) < L2(H−, (−∞, a)). This implies that for any λ ∈ C,
an operator LW0 − λ is one-to-one in L2(1, 0, 1), but it is not an onto transformation. Hence the proof is
completed.

Theorem 3.3. The spectrum of the normal extension LWk of the minimal operator L0(0, 1k, 0) in the Hilbert space
L2(0, 1k, 0), k = 1, . . . ,n is of the form

σ(LWk ) =
{
λ ∈ C: λ =

1
ak − bk

(ln |µ| + i argµ + 2nπi),n ∈ Z,

µ ∈ σ(W∗

ke−Ak(bk−ak)), 0 ≤ argµ < 2π
}

Theorem 3.4. For the spectrum σ(LW) of any normal extension LW , it is true that

σp(LW) =

 n⋃
k=1

σ(LWk )

 , σc(LW) =

 n⋃
k=1

σp(LWk )


c

∩

 n⋃
k=0

σc(LWk )

 .
Proof. If Sk, k = 1, . . . ,m, m ∈N are linear closed operators in any Hilbert spaces Hk, by using [29] we have

σp

 m⊕
k=1

Sk

 =

m⋃
k=1

σp(Sk),

σc

 m⊕
k=1

Sk

 =

 m⋃
k=1

σp(Sk)


c

∩

 m⋃
k=1

σr(Sk)


c

∩

 m⋃
k=1

σc(Sk)

 .
Therefore, the relations of theorem is obtained by using last equalities, Theorem 3.1 and Theorem 3.3.
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