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Abstract. A classification of all four-circulant extremal codes of length 32 over F2 + uF2 is done by using
four-circulant binary self-dual codes of length 32 of minimum weights 6 and 8. As Gray images of these
codes, a substantial number of extremal binary self-dual codes of length 64 are obtained. In particular a
new code with β = 80 in W64,2 is found. Then applying an extension method from the literature to extremal
self-dual codes of length 64, we have found many extremal binary self-dual codes of length 66. Among
those, five of them are new codes in the sense that codes with these weight enumerators are constructed
for the first time. These codes have the values β = 1, 30, 34, 84, 94 in W66,1.

1. Introduction

Self-dual codes make up an important research field for coding theorists. They are related to many
different areas such as designs, lattice theory, invariant theory and cryptography. Parallel to the growing
interest in codes over rings, self-dual codes over rings have also been a topic of interest recently. Especially
self-dual codes over the rings of order 4, finite chain rings and Frobenius rings have been studied quite
extensively. For some of these works we refer to [6], [5], [23], [13], [15].

Rains, in [19] updated the upper bound for the minimum distance d of an [n,n/2] binary self-dual
code. Self-dual codes meeting this bound are called extremal. A great interest for researchers has been in
constructing and classifying extremal binary self-dual codes of certain lengths. Conway and Sloane have
listed the possible weight enumerators of extremal binary self-dual codes of lengths up to 64 and 72 in [3].
But for many of the possible weight enumerators, the existence of binary self-dual codes is still an open
problem. Finding extremal binary self-dual codes with new weight enumerator has been an interesting
problem that has generated a lot of interest among researchers.

Different techniques have been used in constructing extremal binary self-dual codes of certain lengths,
many of which involve a computer search. Among the techniques used are double-circulant and bordered-
double-circulant constructions, using neighboring codes and automorphism groups. For the works in this
direction we can refer to [2], [7], [9], [10], [18], [21] among others.

Recently, the authors have found extremal binary codes of new weight enumerators by using self-dual
codes over a family of rings of characteristic 2. ([13], [15]).
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In this paper, inspired by the four-circulant construction explained in [1] and [9], we first classify all
four-circulant extremal self-dual codes over F2 + uF2 of length 32, using the lifts of four-circulant binary
codes of length 32 that have minimum weights 6 and 8. The Gray images of these self-dual codes turn out to
be extremal binary self-dual codes of length 64. In particular, we find an extremal binary code of length 64
with β = 80 in W64,2, the existence of which was not known before. Next, we consider extensions of binary
images of these extremal self-dual codes to search for new extremal self-dual codes of length 66. Using the
extension algorithm given in [16], we have found many such codes. They contain five codes which were
not known to exist before. We also obtained four additional codes which were discovered only recently in
[14] using a different method.

In section 2, we give some of the preliminaries on the ring F2 + uF2 and self-dual codes over F2 + uF2.
In section 3, we classify all four-circulant binary self-dual codes of length 32 of minimum weight 6 and
8. We then lift each of these codes over F2 + uF2 to find extremal self-dual binary codes of length 64. We
performed an exhaustive search over all such possible codes and present our results in the form of tables.
In section 4, we present the new extremal self-dual binary codes of length 66 obtained by the extension
algorithm mentioned above.

2. The Ring F2 + uF2

The ring F2 + uF2 is defined as the ring of characteristic 2 with 4 elements with the restriction u2 = 0.
Type II, type IV, self-dual codes and cyclic codes over F2 + uF2 have been studied extensively in [6].

F2 + uF2 =
{
a + bu | a, b ∈ F2, u2 = 0

}
,

and it is easily seen that F2 + uF2 ' F2 [x] /
(
x2

)
. We recall that a linear code C of length n over the ring

F2 + uF2 is an F2 + uF2-submodule of (F2 + uF2)n. Any linear code over F2 + uF2 is permutation equivalent
to a code C with generator matrix

G =

[
Ik1 A B1 + uB2
0 uIk2 uD

]
where A, B1, B2 and D are binary matrices.

We recall that the elements of F2 + uF2 are 0, 1,u, 1 + u and their Lee weights are defined as 0, 1, 2, 1
respectively. The Hamming (dH) and Lee ( dL ) distance between n tuples is then defined as the sum of the
Hamming and Lee weights of the difference of the components of these tuples respectively. The smallest
positive Hamming and Lee distance of a code C is denoted by dH(C) and dL(C) respectively.

A Gray map φ is defined as φ : (F2 + uF2)n
−→ F2n

2

φ
(
a + bu

)
=

(
b, a + b

)
(1)

where a, b in Fn
2 . φ is a distance preserving isometry from

(
(F2 + uF2)n , dL

)
to

(
F2n

2 , dH

)
, where dL and dH

denote the Lee and Hamming distance in (F2 + uF2)n and F2n
2 respectively. This means if C is a linear code

over F2 + uF2 with parameters
[
n, 2k, d

]
, (here 2k means the number of the codewords) then φ (C) is a binary

linear code of parameters [2n, k, d].
The dual of the linear code C is denoted by C⊥;

C⊥ =
{
v ∈ (F2 + uF2)n :

〈
c, v

〉
= 0,∀c ∈ C

}
.

where 〈, 〉 denotes the standard Euclidean inner product in (F2 + uF2)n.
The following theorem is a natural result of the Gray map:

Theorem 2.1. If C is a self-dual code over F2 + uF2 of length n, then φ(C) is a self-dual binary code of length 2n.
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We can also define a natural projection from F2 + uF2 to F2 a follows

µ : F2 + uF2 → F2, µ(a + bu) = a. (2)

If D = µ(C) for some linear code C over F2 + uF2, we say D is a projection of C into F2, and that C is a lift
of D into F2 + uF2.

It is clear that the projection of a self-orthogonal code is self-orthogonal, but the projection of a self-dual
code need not be self-dual. For example the code of length 1 generated by u is self-dual over F2 + uF2 but
its projection is the zero code. However, when C has a special type of generator matrix, the assertion is true:

Theorem 2.2. Suppose that C is a self-dual code over F2 + uF2 of length 2n, generated by the matrix [In|A], where
In is the n × n identity matrix. Then µ(C) is a self-dual binary code of length 2n.

We finish this section with the following useful theorem that will have an impact on our search:

Theorem 2.3. Suppose C is a linear code over F2 + uF2 and that C′ = µ(C) is its projection to F2. With d and d′

representing the minimum Lee and Hamming distances of C and C′ respectively, we have d ≤ 2d′.

Proof. Suppose x ∈ C′ with wH(x) = d′. Now since C′ = µ(C), there exists y ∈ C such that x + uy ∈ C.
However, C is linear over F2 + uF2, which means u(x + uy) = ux ∈ C. Then we have wL(ux) = wH(x, x) = 2d′.
This completes the proof.

3. Extremal Self-Dual Codes of Length 64 from Lifts of Binary Four-Circulant Codes

Inspired by orthogonal designs, Betsumiya et al. introduced the following construction for self-dual
codes over a prime field in [1]: Let M be a matrix over Fp of the form

M =

[
I2n
| A B
| −BT

−AT

]
(3)

where A and B are n × n circulant matrices that satisfy AAT + BBT = aIn for some a ∈ Fp. They proved that
if 1 + a = 0, then the matrix M generates a self-dual code over Fp. This construction, which was called the
two-block circulant construction in [8], was also called the four-circulant construction in [9]. When applied
in the binary field, the matrix simply becomes

M =

[
I2n
| A B
| BT AT

]
(4)

with A,B being n × n binary circulant matrices that satisfy AAT + BBT = In.
The four-circulant construction can easily be extended to the ring F2 + uF2:

Theorem 3.1. Let C be the linear code over F2 + uF2 of length 4n generated by the four-circulant matrix

G :=
[
I2n
| A B
| BT AT

]
where A and B are circulant n × n matrices over F2 + uF2 satisfying AAT + BBT = In. Then C is self-dual.

Proof. Since |C| = |CT
|, we just need to prove self-orthogonality. For that it is enough to show that every

row of G is orthogonal to every other row of G.
Now suppose 1 ≤ i, j ≤ n. Then 〈Gi,G j〉 = δi j + 〈Ai,A j〉 + 〈Bi,B j〉, where δi j is the Kroenecker delta

function. Now, 〈Ai,A j〉 is the (i, j)-entry of AAT, and similarly for the second part. Thus, 〈Ai,A j〉 + 〈Bi,B j〉

is the (i, j)-entry of AAT + BBT = In which is again δi j. Since the characteristic of the ring is 2, we get
〈Gi,G j〉 = δi j + δi j = 0.

In exactly the same way it can be proved that 〈Gi,G j〉 = 0 when n + 1 ≤ i, j ≤ 2n.
We are left with the case when 1 ≤ i ≤ n and n + 1 ≤ j ≤ 2n. In that case 〈Gi,G j〉 = 〈Ai,BT

j 〉 + 〈Bi,AT
j 〉.

But 〈Ai,BT
j 〉 + 〈Bi,AT

j 〉 is the (i, j)-entry of AB + BA = AB + AB = 0 in F2 + uF2, because it is well known that
circulant matrices commute.
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Our first goal is to find all four-circulant extremal self-dual codes over F2 + uF2 of length 32. Note that
the projection of such a code will be a four-circulant binary linear code of length 32. We will then take the
Gray images of the codes overF2 +uF2 to obtain extremal self-dual binary codes of length 64. But recall that
an extremal self-dual binary code of length 64 has minimum distance 12. Thus, in light of Theorem 2.3, and
the observation above, we need to lift four-circulant binary codes of parameters [32, 16, 8] or [32, 16, 6]. An
exhaustive search over all possible four-circulant binary codes of length 32 result in the four non-equivalent
codes given in the table below. We label these codes by C1,C2,C3,C4 with their respective generator matrices
M1,M2,M3,M4. Since Mi are of the form (4), where Ai and Bi are the 8 × 8 circulant parts, we just need the
first rows of Ai and Bi to determine the matrix Mi.

Table 1: The four-circulant codes of length 32
i First row of Ai First row of Bi Parameters of Ci |Aut(C)|
1 (0, 0, 0, 0, 0, 1, 0, 1) (0, 0, 0, 1, 1, 1, 1, 1) [32, 16, 8] 215

· 32
· 5 · 7

2 (0, 0, 0, 0, 0, 1, 1, 1) (0, 1, 0, 1, 1, 1, 1, 1) [32, 16, 8] 215
· 32

3 (0, 0, 0, 0, 1, 1, 1, 1) (0, 0, 0, 1, 0, 0, 1, 1) [32, 16, 8] 25
· 3 · 5 · 31

4 (0, 0, 0, 0, 1, 1, 1, 1) (0, 0, 1, 1, 0, 1, 1, 1) [32, 16, 6] 25

We then lift these binary codes to F2 + uF2 by lifting the 0’s in the first row of Ai and Bi to a non-unit in
F2 + uF2 (0 or u) and the 1’s to a unit in F2 + uF2 (1 or 1 + u). We preserve the circulant structure and the
identity matrix, thus a typical generating matrix for the lift is of the form

G =

[
I16
| A B
| BT AT

]
where A and B are 8× 8 circulant matrices over F2 + uF2. Since we have a total of 28

× 28 = 216 possible such
lifts for each of the matrices Mi given in the table above, we can conduct an exhaustive search to obtain
extremal self-dual codes of length 64. Let us recall that there are two weight types for Type I extremal
self-dual codes of length 64 as was described in [3]:

W64,1 = 1 + (1312 + 16β)y12 + (22016 − 64β)y14 + · · · , 14 ≤ β ≤ 284 (5)

and

W64,2 = 1 + (1312 + 16β)y12 + (23040 − 64β)y14 + · · · , 0 ≤ β ≤ 277, (6)

where β is a perameter. The existence of such codes is now known for β = 14, 18, 32, 36, 44, 64 in W64,1
and for β = 0, 2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 23, 24, 28, 30, 32, 36, 37, 40, 44, 48, 56, 64, 72, 88,
96, 104, 108, 112, 114, 118, 120, 184 in W64,2. In [13], codes with β = 22 and β = 46 in W64,1 and a code
with β = 38 in W64,2 were obtained by using bordered-double-circulant construction and a variation of
bordered-double-circulant construction over R2. In [15], by lifting the extended Hamming code over the
ring R3, we were able to obtain extremal self-dual codes of length 64 with new β values in W64,2, namely
codes with β = 1, 5, 13, 17, 21, 25, 29, 33, 41, 52.

3.1. Lifting M1:

By exhausting all possible lifts of M1 to F2 + uF2 we obtain a total of 37 inequivalent extremal self-dual
binary codes of length 64. 27 of these codes are Type II codes with partial weight distribution 1+2976z12+· · · .
The remaining ten codes are Type I and we give the first rows of the circulant parts as well as their β values
in W64,2 and the orders of the automorphism groups in the following table:
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Table 2: Extremal self-dual codes of length 64 obtained from lifts of M1

First row of A1 First row of B1 β value in W64,2 |Aut(C)|
(0, 0, 0, 0, 0, 1,u, 1 + u) (u,u, 0, 1, 1, 1, 1 + u, 1 + u) 16 27

(0,u, 0,u, 0, 1,u, 1 + u) (u,u, 0, 1, 1, 1, 1 + u, 1 + u) 16 26

(u, 0, 0, 0, 0, 1,u, 1 + u) (0,u, 0, 1, 1, 1, 1, 1 + u) 16 25

(u,u, 0,u, 0, 1,u, 1 + u) (u,u,u, 1, 1, 1, 1, 1 + u) 16 25

(u,u,u,u,u, 1, 0, 1 + u) (u,u, 0, 1, 1, 1, 1 + u, 1 + u) 16 26

(u,u, 0, 0,u, 1,u, 1) (u, 0, 0, 1, 1, 1, 1 + u, 1 + u) 32 25

(u, 0, 0,u, 0, 1,u, 1) (u, 0,u, 1, 1, 1, 1, 1 + u) 32 25

(u, 0, 0, 0, 0, 1,u, 1 + u) (u,u,u, 1, 1, 1, 1, 1 + u) 32 25

(0,u, 0, 0, 0, 1,u, 1) (u, 0, 0, 1, 1, 1 + u, 1 + u, 1 + u) 48 25

(u, 0, 0, 0,u, 1,u, 1 + u) (u,u, 0, 1, 1, 1 + u, 1 + u, 1 + u) 80(New) 27

3.2. Lifting M2:

By searching over all possible lifts of M2 to F2 + uF2 that are self-dual, we obtain as Gray images, a total
of 29 inequivalent extremal self-dual codes of length 64. 24 of these codes are Type II codes with partial
weight distribution 1 + 2976z12 + · · · . The remaining five codes are Type I and we give the first rows of the
circulant parts as well as their β values in W64,2 and the orders of the automorphism groups in the following
table:

Table 3: Extremal self-dual codes of length 64 obtained from lifts of M2

First row of A2 First row of B2 β value in W64,2 |Aut(C)|
(u,u,u,u, 0, 1, 1, 1) (u, 1,u, 1, 1 + u, 1 + u, 1, 1 + u) 16 25

(u, 0,u,u, 0, 1, 1, 1 + u) (u, 1, 0, 1 + u, 1, 1 + u, 1, 1 + u) 16 25

(u, 0,u, 0, 0, 1, 1, 1) (0, 1, 0, 1, 1 + u, 1 + u, 1, 1 + u) 16 25

(u,u,u,u, 0, 1, 1, 1) (0, 1, 0, 1, 1, 1 + u, 1 + u, 1 + u) 32 25

(u,u, 0,u, 0, 1, 1, 1) (u, 1, 0, 1 + u, 1 + u, 1 + u, 1 + u, 1) 32 25

3.3. Lifting M3:

By searching over all possible lifts of M3 to F2 + uF2 that are self-dual, we obtain as Gray images, a total
of 86 inequivalent extremal self-dual codes of length 64. 68 of these codes are Type II codes with partial
weight distribution 1 + 2976z12 + · · · . The remaining eighteen codes are Type I and we give the first rows
of the circulant parts as well as their β values in W64,2 and the orders of the automorphism groups in the
following table:
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Table 4: Extremal self-dual codes of length 64 obtained from lifts of M3

First row of A3 First row of B3 β value in W64,2 |Aut(C)|
(u, 0, 0, 0, 1, 1, 1, 1) (0,u, 0, 1,u, 0, 1 + u, 1 + u) 0 25

(u,u,u,u, 1, 1, 1, 1 + u) (u, 0,u, 1, 0,u, 1 + u, 1 + u) 0 25

(u,u,u, 0, 1, 1, 1, 1) (0,u, 0, 1,u, 0, 1 + u, 1 + u) 0 25

(u,u, 0, 0, 1, 1, 1, 1 + u) (0, 0, 0, 1,u, 0, 1 + u, 1 0 25

(u,u,u, 0, 1, 1, 1, 1) (u, 0,u, 1, 0, 0, 1 + u, 1) 16 25

(u,u, 0,u, 1, 1, 1, 1) (u,u,u, 1, 0,u, 1 + u, 1) 16 25

(u,u, 0, 0, 1, 1, 1, 1 + u) (u, 0,u, 1, 0,u, 1, 1 + u) 16 25

(u, 0,u, 0, 1, 1, 1 + u, 1) (u, 0,u, 1, 0,u, 1 + u, 1 + u) 16 25

(u, 0, 0,u, 1, 1, 1, 1 + u) (0, 0, 0, 1,u, 0, 1, 1) 16 25

(u, 0, 0, 0, 1, 1, 1, 1) (0, 0,u, 1,u, 0, 1 + u, 1) 16 25

(0,u,u, 0, 1, 1, 1, 1 + u) (u,u,u, 1, 0, 0, 1, 1 + u) 16 25

(0,u, 0, 0, 1, 1, 1, 1) (0,u,u, 1,u,u, 1 + u, 1) 16 25

(0,u, 0, 0, 1, 1, 1 + u, 1 + u) (u,u,u, 1, 0,u, 1, 1) 16 25

(0, 0, 0, 0, 1, 1, 1, 1 + u) (0, 0,u, 1,u,u, 1 + u, 1 + u) 16 25

(u, 0, 0,u, 1, 1, 1, 1 + u) (u,u, 0, 1, 0,u, 1 + u, 1) 32 25

(u, 0, 0, 0, 1, 1, 1 + u, 1 + u) (u,u,u, 1, 0,u, 1 + u, 1) 32 25

(0,u,u, 0, 1, 1, 1, 1 + u) (0, 0,u, 1,u,u, 1 + u, 1 + u) 48 25

3.4. Lifting M4:

By searching over all possible lifts of M4 to F2 + uF2 that are self-dual, we obtain as Gray images, a total
of 86 inequivalent extremal self-dual codes of length 64. 68 of these codes are Type II codes with partial
weight distribution 1 + 2976z12 + · · · . The remaining eighteen codes are Type I and we give the first rows
of the circulant parts as well as their β values in W64,2 and the orders of the automorphism groups in the
following table:

Table 5: Extremal self-dual codes of length 64 obtained from lifts of M4

First row of A3 First row of B3 β value in W64,2 |Aut(C)|
(u,u,u,u, 1, 1, 1, 1 + u) (u,u, 1, 1 + u, 0, 1, 1 + u, 1) 0 25

(u, 0, 0,u, 1, 1, 1, 1 + u) (0, 0, 1, 1, 0, 1, 1 + u, 1) 0 25

(u, 0, 0, 0, 1, 1, 1, 1) (0, 0, 1, 1 + u,u, 1, 1 + u, 1) 0 25

(0, 0, 0, 0, 1, 1, 1, 1 + u) (u,u, 1, 1 + u, 0, 1, 1 + u, 1) 0 25

(u,u,u, 0, 1, 1, 1, 1) (0, 0, 1, 1 + u,u, 1, 1 + u, 1) 0 25

(0, 0, 0, 0, 1, 1, 1, 1 + u) (u,u, 1, 1, 0, 1, 1 + u, 1 + u 16 25

(0,u, 0, 0, 1, 1, 1, 1) (u,u, 1, 1,u, 1 + u, 1, 1 + u) 16 25

(u, 0, 0, 0, 1, 1, 1 + u, 1 + u) (u,u, 1, 1 + u,u, 1 + u, 1, 1) 16 25

(u, 0, 0, 0, 1, 1, 1, 1) (0,u, 1, 1, 0, 1 + u, 1, 1 + u) 16 25

(u, 0, 0,u, 1, 1, 1, 1 + u) (u,u, 1, 1 + u, 0, 1, 1 + u, 1) 16 25

(u, 0,u, 0, 1, 1, 1 + u, 1) (u,u, 1, 1 + u, 0, 1, 1 + u, 1) 16 25

(u,u, 0, 0, 1, 1, 1 + u, 1) (0,u, 1, 1,u, 1 + u, 1 + u, 1 + u) 16 25

(u,u, 0, 0, 1, 1, 1, 1 + u) (0, 0, 1, 1 + u, 0, 1 + u, 1, 1) 16 25

(u,u, 0,u, 1, 1, 1, 1) (u,u, 1, 1 + u,u, 1 + u, 1, 1) 16 25

(u,u,u, 0, 1, 1, 1, 1) (0, 0, 1, 1 + u,u, 1, 1 + u, 1) 16 25

(u,u, 0, 0, 1, 1, 1, 1 + u) (u, 0, 1, 1 + u,u, 1, 1, 1) 32 25

(0,u, 0, 0, 1, 1, 1 + u, 1 + u) (u,u, 1, 1,u, 1, 1, 1 + u) 32 25

(u,u, 0, 0, 1, 1, 1 + u, 1) (u,u, 1, 1, 0, 1, 1 + u, 1 + u) 48 25
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4. New Extremal Binary Self-Dual Codes of Length 66

We combined the lifting method of the previous section with the extension algorithm from [16] to
search for new extremal binary self-dual codes of length 66. We have been able to construct 5 such codes.
Additionally, we found 4 codes that have been recently obtained in [14] from the ring R3. It is well-known
that there are three possibilities for the weight enumerators of extremal self-dual codes of length 66 [4].

W66,1 = 1 + (858 + 8β)y12 + (18678 − 24β)y14 + · · · where 0 ≤ β ≤ 778,
W66,2 = 1 + 1690y12 + 7990y14 + · · ·

and W66,3 = 1 + (858 + 8β)y12 + (18166 − 24β)y14 + · · · where 14 ≤ β ≤ 756.

In [11] and [22] codes were obtained with weight enumerator W66,2. A substantial number of codes with
weight enumerator W66,1 are obtained in [3],[11],[12] and [20]. Codes with weight enumerator W66,3 are
found by Tsai et al. in [21] for β = 28, 33 and 34. Most recently, codes with β = 29, 30, 31, 32, 49, 50, 54,
55, 56, 57, 58, 59, 62, 63 and 66 in W66,3 and codes with β = 21, 25, 28, 37, 39, 48, 49, 64 and 67 in W66,1 are
discovered in [14]. In this work, we obtain new extremal binary self-dual codes with β = 1, 30, 34, 84, 94,
25, 28, 39, 48 in W66,1. Note that, the last four β values are obtained in [14], whereas the codes with the first
five β values, to the best of our knowledge, are obtained for the first time.

We first give the statement of the extension theorem from [16] for the convenience of the reader. We
then give the details of the new codes in two tables. Note that to denote the vector x used in the extension
theorem stated below, we use an abbreviation in Table 6 and Table 7 for binary strings when a bit appears
more than once in consecutive positions. Thus for example, the vector 11010000 is denoted by 120104.

Theorem 4.1. [16] Let S be a subset of the set {1, 2, . . . , 2n} of coordinate indices such that |S| is odd. Let G0 =
[L|R] = [li|ri] be a generator matrix (may not be in standard form) of a self-dual code C0 of length 2n, where li and ri
are rows of L and R, respectively, for 1 ≤ i ≤ n. Let x = (x1, . . . , xn, xn+1, . . . , x2n) be the characteristic vector of S, i.e.,
x j := 1 if j ∈ S and x j := 0 if j < S for 1 ≤ j ≤ 2n. Suppose that yi := (x1, . . . , xn, xn+1, . . . , x2n) · (li|ri) for 1 ≤ i ≤ n.
Here · denotes the (scalar) inner product. Then the following matrix:

1 0 x1 . . . xn xn+1 . . . x2n
y1 y1

L R...
...

yn yn


generates a self-dual code C of length 2n + 2.

Table 6: New extremal binary self-dual codes of length 66

Src First row of A First row of B Vector x in 4.1 β in W66,1

M1 u,u, 0,u, 0, 1,u, 1 + u u,u,u, 1, 1, 1, 1, 1 + u 1012081202108106

0310410105102108130 30
M1 u, 0, 0, 0,u, 1,u, 1 + u u,u, 0, 1, 1, 1 + u, 1 + u, 1 + u 104101031021305101203102

10210102101013104101 84
M1 u, 0, 0, 0,u, 1,u, 1 + u u,u, 0, 1, 1, 1 + u, 1 + u, 1 + u 02140313061021031201021

0120160120710210130210 94
M3 u,u,u, 0, 1, 1, 1, 1 u, 0,u, 1, 0, 0, 1 + u, 1 1203104101201204111

10120120120101302120310130102 34
M4 u,u,u,u, 1, 1, 1, 1 + u u,u, 1, 1 + u, 0, 1, 1 + u, 1 1702150120213012016

120101031803112 1
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Table 7: New extremal binary self-dual codes of length 66 recently found by another method

Src First row of A First row of B Vector x in 4.1 β in W66,1

M1 u,u, 0,u, 0, 1,u, 1 + u u,u,u, 1, 1, 1, 1, 1 + u 0212012012010101010412010104

1204130410101010312012013021 28
M3 u,u,u, 0, 1, 1, 1, 1 u, 0,u, 1, 0, 0, 1 + u, 1 14016010101301201013013

11701401014021 39
M1 u,u,u, 0, 1, 1, 1, 1 0,u, 0, 1,u, 0, 1 + u, 1 + u 0104101014108

031021031021201041010 25
M1 u,u, 0, 0,u, 1,u, 1 u, 0, 0, 1, 1, 1, 1 + u, 1 + u 01201201202103130214021402

14021303120312021501 48

5. Conclusion

We first note that what is done for length 32 here can be done for other lengths as well. A four-circulant
binary code has length of the form 4k, thus over F2 + uF2 it will also have length 4k, meaning that using this
idea, we can only obtain binary self-dual codes of lengths divisible by 8. (However, it is possible to obtain
codes of lengths of the form 8m ± 2 using extension or shortening algorithms on known codes.) Theorem
2.3 gives an important idea about which binary four-circulant codes to lift, thus narrowing the search space
considerably.

A rather curious observation is that the β values of all the codes of length 64 we have found are multiples
of 16. This could prove to be useful in working out theoretical results for the β values. Another observation
is that we get automorphism groups with different sizes only when we use the first generator. With the
remaining three generators the automorphism groups all have size 25.

Acknowledgment: The authors would like to thank the anonymous referees and the editor for their
valuable remarks that improved the presentation of this paper.
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