Filomat 28:5 (2014), 947-962

Published by Faculty of Sciences and Mathematics,
DOI 10.2298/FIL1405947 A

University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

re/ 8
U o
Ut @a\di‘

&
0 W
Zpppor

High Order Approximation of the Inverse Elliptic Problem
with Dirichlet-Neumann Conditions

Charyyar Ashyralyyev?

?Department of Mathematical Engineering, Gumushane University, 29100 Gumushane, Turkey; TAU, Ashgabat, Turkmenistan

Abstract. Inverse problem for the multidimensional elliptic equation with Dirichlet-Neumann conditions
is considered. High order of accuracy difference schemes for the solution of inverse problem are presented.
Stability, almost coercive stability and coercive stability estimates of the third and fourth orders of accuracy
difference schemes for this problem are obtained. Numerical results in a two dimensional case are given.

1. Introduction

Methods of solution of the inverse problems for partial differential equations have been investigated
extensively by many researchers (see [1]-[18] and the references therein).

Consider inverse problem of finding functions u(t, x) and p(x) for the multidimensional elliptic equation
with the following boundary conditions

_utt(t/ x) - Zl(aq(x)”xq)xq + Ou(t/ x) = f(t/ x) + p(x)/
p

x=(x1,000,x) €Q, 0<t<T, (1.1)

u(0,x) = p(x), u(T,x) = P(x), u(A, x) = &(x),x € 5,

M0 =0, xeS0<t<T.
Here, 0 < A < T and 0 > 0 are given numbers, a,(x), (x € Q), p(x), P(x), &(x) (x € Q), and ft,x)(te(,T), xe
Q) are given smooth functions and a,(x) > a > 0 (x € QQ), and Q = (0,¢) x --- X (0, ) is the open cube in the
n-dimensional Euclidean space with boundary S, Q = QU S.

Well-posedness and .the first and second order of accuracy in t and the second order of accuracy in space
variables for the approximate solution of problem (1.1) was investigated in [12]. High order of accuracy
stable difference schemes for nonlocal boundary value elliptic problems presented in [19]-[21].

For the differential operator A* generated by problem (1.1),

Ay = — Z(aq(x)uxq)xq +ou, 1.2)
q=1
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it follows that (see [27], [28]) B = %(TC + VAC + 12C?) is a self-adjoint positive definite operator and

R = (I + ©B)"! which is defined on the whole space H is a bounded operator. Here, C = A* + %(A’()2 and |
is the identity operator.
Now we give some lemmas that will be needed below.

Lemma 1.1. ([13]). For 1 <1< N -1, the operator
1A 1A
RN _ (LA gy LA e
Si=I-R (2(T l)+2(T 1)%)

X(Rl—l + RZN—1+1 _ RN—I+1 + RN+[—1) _ (1 _ %(% _ Z)Z)(Rl + RZN—I _ RN—[ + RN+l)

1A 1A 28 l+1 ON-I-1 N-I-1 N+i+1
( 2(T l)+2(T D)R™ +R R + R )
has an inverse such that G, = ST L and estimate
Il G1 llH—H< M(0O). (1.3)

is valid.

Lemma 1.2. ([13]). For 1 <1 < N — 1 the operator
1 A 1 A
_7_ RN _ Ay A2 3y (Ri-2 o RAN-I42 _ pN-I+2 | pN+I-2
S;=I-R (12(T D 12(T D*YR™+R R +R )

1A

8 A 1A
—(—E(;—l)‘FE(;—l) +6(

o~ 1)3)(Rl_1 + RZN—I+1 _ RN—I+1 + RN+I—1)
T

+(& _ 1)2(R7 +R2Nfl _RNfl +RN+Z) _ (i(& —l) + 1(& _1)2 _ 1(& _1)3)
T 127 2t 6T
1 A 1 A
I+1 | p2N-I-1 _ pN-I-1 , pN+l+1y (.  + A LA s
X(R™ + R R +R ) — ( 12(1 l)+12(T )

X(Rl+2 + RZN—I—Z _ RN—I—Z + RN+I+2).

has an inverse such that G; = S; L and the estimate
| G2l M (1.4)
is satisfied.

Our aim in this paper is construction of high order accuracy stable difference schemes for inverse problem
(1.1). In this work, we present the third and fourth orders of accuracy in t and the second order of accuracy in
space variables for the approximate solution of problem (1.1). Stability, almost coercive stability and coercive
stability estimates of these difference schemes are obtained. The modified Gauss elimination method is
applied for testing the third and fourth orders of accuracy difference schemes in a two dimensional case.

The remainder of this paper is organized as follows. In Section 2, we present the third and fourth order
difference schemes for problem (1.1) and establish their well-posedness. In Section 3, we give the numerical
results. Section 4 is conclusion.
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2. The third and fourth orders accuracy of difference schemes and the stability estimates
The discretization of problem (1.1) is carried out in two steps. In the first step, we define the grid spaces
Q= = Oy, g = (- ), mg = 0, My,

haM; = 6q=1,-,1},Q=0Q,NQ,5,=QNS,

Introduce the Hilbert spaces Ly, = Lz(ﬁh) and W%h = W%(ﬁh) of grid functions ph (x) ={pthimy,-- -, hymy))
defined on Q, equipped with the norms

||ph||L2h = (Z |Ph(X)|2h1 o 'hn)l/zr

xeQy,

1/2
”Ph”W%h = th”Lzh + [Z Z )(Ph)quz hy - hn]

xeﬁ,, g=1

1/2
’ {Z Yl - h”J |

xeﬁh g=1
To the differential operator A* (1.2), we assign the difference operator A; defined by the formula,

n

Au@ ==Y (aq(x)u%) o) 2.1)

g=1 Xq,]r

acting in the space of grid functions u"(x), satisfying the condition D"u"(x) = 0 for all x € S;,. Here D"/ (x)
is an approximation of %.
By using A%, for obtaining 1" (t, x) functions we arrive at problem

dar?

— B0 | Axyh(g x) = it %) + M), 0<E< T, x€Q, 22)
uh(0,x) = @"(x), u'(A,x) = EMx), (T, x) = P'(x), x € Q. ‘

For finding a solution u"(, x) of the problem (2.2), we apply the substitution
u'(t,x) = 0"(t,0) + (A) 7P (). (2.3)

Here v/'(t, x) is the solution of the following nonlocal boundary value problem

dt?

~E 4 At x) = fi(E ), 0<E<T, xeQy, 24
0'(0,) = 0"(4,x) = ¢"(x) = &), V(T x) =01, 2) = Y (@) - '), x € Oy |

for a system of ordinary differential equations, and p"(x) is unknown function which is defined by formula

pl(x) = Alpl(x) - AT0"(0,%),x € Q. (2.5)

We consider the algorithm for solving the problem (2.2) which includes three stages ([11]). In the first
stage, consider the nonlocal boundary value problem (2.4) and obtain " (t, x). In the second stage, putting
t = 0, find v"(0, x). Then, applying (2.5), obtain p"(x). In the third stage, use formula (2.3) for obtaining the
solution u"(t, x) of problem (2.2).
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In the second step, we approximate (2.2) in variable t. Let [0, T]; = {tx = kt,k =1,--- ,N, Nt = T} be the
uniform grid space with step size 7 > 0, where N is a fixed positive integer.

To formulate our result on well-posedness of difference schemes, we give definition of C([0, T'],, H) and
Cg’“([O, T], H) which are the lineer spaces of mesh functions 9° = {Qk}sz ’11 with values in the Hilbert space

T
H. We denote C([0, T'];, H) normed space with the norm

”{Gk}kN:_ll”C([O,T]T,H) I 1Okl

and Cy7 ([0, T];, H) normed space with the norm

||{6k}kN:_11||cg;”([0,T],,H) = ”{Qk}kN:_ll”C([O,T]T,H)

(kT + nt)*(T — k1)*||Orsn — OkllH
+ sup a :
1<k<k+n<N-1 (n7)

Applying the approximate formula
1A 1A A
u'(A) = (G -D+5(- - [=1%)u'(( - 1))
T 2't 71
H1= (= D)+ (-5 G =1 3G = P+ DD+ o),
T 2'7 2'1
for u"(A) = &, the problem (2.2) is replaced by the third order of accuracy difference scheme
2
- 1 T 1
~T 2 (b () = 20(0) + 1y () + A () + 15 (AR () = () + (),

fh(tk+1/x) - th(tk/ x) + fh(tk—llx)
72

2
HZ(X) = fh(tk/x) + ]7:._2 ( + Ath(tk/ X) ’

b=kt 1<k<N-1, x € Qul(x) = ¢"(x), ul,(x) = P(x),x € O,

GG =D+ 5 =Pl + (= 32 = Do)
+(—%(% -0+ %(% — Pl (x) = E'x), xe Q, (2.6)

Here | = [%], [-] is a notation for greatest integer function.
By using the approximate formula

A A A A
e X (- R St Ly B L

1A i A X 8 A 1A
(DA = 1D + (U= (C = P (0) + (-3 (= =D+ 5 -1
1,1 i 1A 1A ;
4= (C =D+ D)D) + (55 =D = T35 = DA +2)7) + o)

for u"(A) = &, the problem (2.2) is replaced by the fourth order of accuracy difference scheme
2
=12, (%) — 2 (x) + 1]_, (%)) + Aju(x) + I—Z(AZ)zuZ(x) = 0}(x) + " (%),

2 [ (a1, %) = 2" (b %) + f (B, %)

E T2 + Ath(tk/ x) ,

6r(0) = f'(t, %) +
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b=kt 1<k<N-1, x € Qul(x) = ¢"(x), ul,(x) = P'(x),x € O,
(55 =D = 5 =Pl + (5 =D+ (5 =0+ 25 = D ()
U= (= P + (5 =D 55 =7 = 25 = D, (0
+(_é(% —D)+ 11—2(% — Pl () = &), x € Q. 2.7)
Let v and |i| = (/h] + - -- + I3, be sufficiently small positive numbers.

Theorem 2.1. The solutions ({uZ}kN:_ll , ph) of difference schemes (2.6) and (2.7) obey the following stability estimates:
V-1
16 oo, = M@, + 170, + 1,
N-1
- “{f’?}l ||C([O,T]T,L2h)] ’
R O e T
1 N-1
Tal-a) [
N
k=

where M (0) does not depend on 7, a, (ph, gbh, & and {flf} _11 ,1<k<N-1.

cg'T“([o,TlT,Lz,,)] ’

Theorem 2.2. The solutions of difference schemes (2.6) and (2.7) obey the following almost coercive stability estimate:
h hy o h YN N-1
Uppr ~2Up + 1, ()
{ TZ ) A+ 12A Uy o
1 =
# L, <M (=) {0 el(a+Za2)er
Ly = ©+ b IVE T o my, L) 12

2
WZh }

N-1
, 1<k<N-1
k=1

+

C([0,T]e,Lay) C([0,T1e,W2,)

2
WZh

+ +

12

2 2
(A + I—ZAZ) P (A + T—AZ) &h

2
WZh

Here, My(0) is independent of T, a, ", W', &, and { f,f’}

Theorem 2.3. The solutions of difference schemes (2.6) and (2.7) obey the following coercive stability estimate:

N-1

h h h

ul  —2ul+u
k+1 k k-1 N-1
{ - )} + ||{uk}k:1

Cor (10,T1e,Lay)

h
+[IP"]
2 ce(to,mewz,) TPy,

1

1 N
= M) [m ”{fkh}l |CS’T“([0,T]T,Lzh) " ”(ph”“@ " Hlph”"\’ih " thnwih ’

N-1
where M3(0) does not depend on 7, a, (ph, gbh, & and {f}f}kzl ,1<k<N-1.
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Proofs of Theorems 2.1 - 2.3 are based on the symmetry property of operator A* defined by (2.1) and on the
following formulas:

ul(x) = (I = R [(RF = RV F)oli(x) + (RNF = RN*) o ()

N-1
— (RNF = RN*) (1 + tB)(21 + 7B) "B 12 (RN — RN} 0l (x)1]
i=1

N-1
+(+TB)@L + BB Y (RF - R¥) 0l ()t + () - ol),
i=1

() = Axg" () = Ajp(0), o (x) = vh(x) + () - " (),
vh(x) = (%(% -+ %(% = )Gy (RN = RN*1) (1 + 1B)

N-1
(21 + BB Y (RN = RN*) 0l(x)7 + Gy (I - R?)(I + B)
i=1
N-1 . 4 1A
(21 +tB) "B Y (R - R 0 ()7 + (1 - 5= 12)Gy
i=1
N-1 . ‘
x (RN — RN*H1) (1 + 2B)(2I + 7B) B! Z (RN — RN*) 0 ()7
i=1
N-1 ) .
+G1(I - R*™N)(I + tB)(21 + 7B) !B~ ) | (RII-1 - RM1+) gl (x)
i=1

+(—%(% D)+ %(% — DA)Gy (RN = RN*H1) (1 + 7B)

N-1
x(2I + tB)"1B! Z (RN — RN*) ()7 + Gy (1 - R*N)(I + 7B)
i=1
N-1
(21 +7B) BT Y (R - RF) 0l (x) 7 + Gy (1 - R?N) (¢ (x) — £(x))
1

i=

1A 1A s o 1A
+Gu((= =D+ (=D (RVIT =RV 4 (1= (= = 1)

><(RI\I—l—l _ RN+I+1) + (_%(% _ l) + %(% _ 1)2) (RN—I—l _ RN+Z+1))(ll)h(X) _ (Ph(x))/

for difference scheme (2.6),

) = (52 =) = 7 (5 = DG (R¥12 ~ RN2) (1 + B)

Z

x(2I + tB)"1B™ (RN "= RN) 01 ()T + Go(I - RN)(I + TB)

!

Z

x(2I + tB)"1B! (R” 2 - R 0l ()

1]
—_
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1A

6( —1)3)G (RN—I+1 RN+I—1)

8 A 1A o,

+(—ﬁ(; -+ E(; -7+
N-1

x(I + tB)(2I + tB)"'B™! Z (RN = RN*) 0/ (x)7 + Go(I - R*N)(I + 7B)
i=1

Z

-1
(21 +7B) "B Y (R - R 0 ()T + (1 - (% -G,

i

1]
—_

N-1
x (RN — RN*!) (1 + 1B) (21 + B) !B Z (RN — RN*) 0 ()
i=1
N-1
+Go(I = R™N)(I + tB)(2I + tB)"'B! R” i _ R’“ 0" (x)t
i=1

_ 1)3)G2 (RN—I—l _ RN+I+1)

Hs(C =D+ 52 -2~ %(

N- 1
x(I + 7B)(2I + tB)"'B™ — RN¥ eh(x)T + Go(I — R™N)(I + 1B)
z:l

>

Z

-1p-1 ~ |1+1—i| I+1+i\ gh 1 A 1 A 3
(1 +7B) BT Y (R - RIHI) 0l ()7 + (G -D+ (5 -1

i

Il
—_

N-1
XGy (RN172 — RN*42) (1 + 1B)(21 + ©B) B~ 12 (RN — RN*) 0! (x)7
i=1
+Go(I = R*™N)(I + tB)(2I + 1B) "B~ ( 2=l RI2) 9l (x)t
i=1

+Go(I = R (¢ () - €"()) + Gz((ﬁ(; -1 - %(% — 1) (RN2 — RN+#2)
1A
<

A 2\ (PN-I _ pN+I , 1A 3
+1=(C =D (RY =R )+(—<——l)+§<;—l) —==)

Eé_ 1&_ 2 3 N-I+1 N+I-1
Hegp (= D+ (= D7+ (2 = D) (RVH RV

X (RN—I—l _ RN+I+1) + ( 12( _ ) _(% _ 1)3) (RN—I—2 _ RN+I+2))(1/)h(X) _ (ph(X)),

for difference scheme (2.7) and on the following theorem on the coercivity inequality for the solution of the
elliptic difference problem in Ly.

Theorem 2.4. ([29]). For the solution of the elliptic difference problem

A (x) = '(x), x € Oy,
D"(x) =0, x €Sy,

the following coercivity inequality holds :

n
Yl ill,, <M,
=1

where M does not depend on h and o'
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3. Numerical Results

For the numerical result, we consider the inverse problem

T 2 (242) o uct, ) = (1,2 + pl),
f(t,x) = (exp (—t) + 2t) cos(x),0 <x < 1,0 <t < T,

u(0,x) = 2cos(x), u(T, x) = (exp (=T) + T + 1) cos(x), (3.1)
u(A,x) = (exp(-A) + A + 1) cos(x),0 < x < 7,

ue(t,0) = u(t, 1) =0, 0<t <T (T=1,A=2T).

for the two dimensional elliptic equation. It is clear that u(t, x) = (exp (—f) + ¢ + 1) cos(x) and p(x) = 2 cos(x)
are the exact solutions of (3.1).

We represent u(t, x) by formula u(t,x) = v(t,x) + w(t, x), where v(t,x) is the solution of the nonlocal
boundary value problem

—% - %(%) +o(t,x) = f(t,x),0<x<m0<t<T,
v(0,x) —v(A,x) = (1 —exp(-A) —A)cos(x),0 < x <7, (32)
o(T,x) —v(A,x) = (exp (=T) —exp(=A) + T — A)cos(x),0 <x < m,
Ue(t,0) =0 (t, 1) =0,0<t < T,
and w(t, x) is the solution of the boundary value problem
—dzz;’g’x) - % (‘9“;(:(”‘)) +wt,x)=px), 0<x<m,0<t<T,
w(0,x) = (exp (—A) + A + 1) cos(x) —v(A,x), 0 <x < T, (33)
w(T,x) = (exp(=A) + A + 1) cos(x) —v(A,x), 0<x <,
wy(t,0) = wy(t, 1) =0,0<t < T.

Introduce small parameters 7 and & such that Nt = T, Mh = 7. For approximate solution of nonlocal
boundary value problem (3.2), consider the set [0, T], X [0, 7], of a family of grid points

[0, T]. x [0, ]y = {(tx, xu) : tk = k7, k=1,--- N-1,x,=nh,n=1,--- ,M~-1}.
Applying (3.4) and the following formulas for approximation of sufficiently smooth function p :

ﬂﬁﬂg%ytﬁ—ﬁaw=owﬁ

10p(0) — 15p(h) + 6p(2h) — p(3h) B

p(xn+1) - 210}5;(") + P(xn—l) _ P”(xn) — O(hz), (34)

p”(0) = O(?),

h3
=3p(0) + 4p(h) — p(2h
PO 2P _ 0y = 00
10p(7-() — 15p(7‘( - h) +h§p(ﬂ - 2]’1) - P(Ti - 3h) _ p///(n) — O(hz)/
—3p(m) + 4P(712;1 h) = p(n=2h) o' () = 00,

we get, respectively,

k+1 k k-1 ko _ ok k
Oy 2vn + 0y Ve 2071 + Y1 13
- - + v, (3.5)
72 h?

2 k 0ok k k 9ok k
T 1 U, 20n+1 + Uy I3 2 Un+1 2?),, + vn—l k
S|l |-ttt | — — t°vU

h? h? h? "
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1 (o -2 +dk vf g -2k Ok

- kool
2 2 +0,4 2 + 0,

= (exp(—tx) + 2t;) cos(x,) + %(exp(—tk) + 4ty) cos(xy)),

k=1,- ,N-1,n=2,--- ,M-2,

—37)’5 + 40’{ - Ué =0, —30’1‘\4 + 4U§A_1 - U;(\/I—z =0,

100f — 150% + 605 — ok = 108, — 1505, , + 605, , -k, , =0,k=0,--- N,
o)~ (55 =D+ 55 =Dl — (1= 2 ~ 1P,

—(—%(% -+ %(% 1?0 = (1 - exp(=A) = A) cos(x,),n =0,--- , M,

N 1A 1A o 1 1A o 1A 12 i
o = G =D+ (=D = (= 3 =D = (=5(T =D+ (=D
= (exp (—tn) —exp(=A) + ty — A)cos(x,),n=0,--- , M,

the third order of accuracy in t and second order accuracy in x for the approximate solution of the nonlocal
boundary value problem (3.2), and

k+1 k k-1 k ook k
LWy S 2wp +wyT Wy 2wy +w; - (3.6)
T2 h? " '
2 k  _o,k k S k
s _l _wn+2 2wn+1+wn+wk +£ W, 4 2wn+w”1+wk
12| h2 h2 nt ) p2 h? "

2
:p(xn)+%p(xn),k:1,--~,N—l, n=2,---,M-2,

k k k_ .k ko k _
—3w, + 4w; — w, = =3wy,; + 4wy, — Wy, =0,

10wf — 150k + 6wk — wh = 10w}, — 15wk, | + 6w, , —wh, ; =0,k=0,--- N,

w(,), = (exp(—=A) + A + 1) cos(x,,) — (%(% -+ %(% - Z)Z)Ul,,_1

=20~ (2 G =0, M,
27 2°7 2°'7
w = (exp(=A) + A + 1) cos(x,) — (1(& -+ 1(1 .
21T 21

(=20~ (2 G =0 M,
2°7 2°7 2°7

the third order of accuracy difference scheme for the approximate solution of the boundary value problem
(3.3).

By using (2.5) and second order of accuracy in x approximation of A, we get the following values of p
in grid points

P = _(((Pnﬂ - Ugn) -2 (‘Pv;iz_ 09,) + (‘Pn—l B 0271)) 37)
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+((pn —02),71 =1,--- , M-1.
We can rewrite difference scheme (3.5) in the matrix form
AV +BV, 1 +CV,+DV,, 1 +EV,»,=16,, n=2,--- ,M-2, (3.8)
BV 44V Vo= -3V + 4Vt — Vi = 0,

10V =15V +6Vy = Vs = 0,10Va — 15Vay + 6Vis — Vars = 0.

Here, I is the (N + 1) X (N + 1) identity matrix, A, B, C,D,E are (N + 1) X (N + 1) square matrices, 0, is
(N +1) x 1 a column matrix which are defined by the following formulas

0 0 0 O 0 0 0 O
0 a 0 O 0 0 0 O
0 0 a O 0 0 0 O
0 0 0 a 0 0 0 O
A=E=|: 1 © @ . 1 1 1o , (3.9
00 0 O a 0 0 O
00 0 O 0 a 00
00 0 O 0 0 a O
| 0 0 0 O 0 0 0 O Jvs v+
1 0 0 0 0y z g0 0 0 0 O
r ¢ r O 00 0 0O 0 0 0 O
0O r ¢ r 00 0 00O 0 0 0 O
0 0 r ¢ 000 0O 0 0 0 O
C= P SRR AR :
0 0 0 O 00 0 0O c r 00
0 0 0 O 00 0 0O r c¢c r O
0 0 0 O 00 0 0O 0 r ¢ r
0 0 0 O 0y z g0 0 0 0 1 Jv s+
ro 0 0 0 0 0 0 O
0 b 0O 0 0 0 O
0 0 b O 00 0 O
0 0 0 b 0 0 0 O
B=D=|: @t i .. oo : (3.10)
0 0 0O b 00O
0 0 0 O 0 b 0O
0 0 0 O 0 0 b O
0 0 0O 0 0 0 O Jnsnyxvs)
a—T_z b—_l_T_Z_T_ZC—1+£+£_T_2(£+£+1)r—_l
C12pt T R2 3mt ek w2 2 12\t 2 )
__1)\_ 1)\_2 _ _1/\_2 ___1/\_ 1/\_2
y=-GE D5 =Dz = (1= 5 =D = ~(-5(C =D+ 5(Z 1),
90
n T2
0, = o 6’,‘1 = (exp(—tk) + 2t;) cos(x,) + E(exp(—tk) + 4ty) cos(xy)),
QN

k=1,-- ,N-1,n=1,--- ,M—-1,0% = (1 —exp(-A) — 1) cos(xy),
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ON = (exp(—tn) — exp(—A) + ty — A)cos(x,),n=1,-+- ,M -1,

and

Ve=| ,s=n—-1,nn+1.
% lvenpa
For solving (3.8) we use modified Gauss elimination method ([30]). We seek solution of (3.8) by the formula
Vi =anVis1 +BnVir2 + yun=M=2,---,0,

where ay,, f,(n =0,--- ,M —2) are (N + 1) X (N + 1) square matricesand y, (n =0,--- ,M—2)are (N +1) x 1
column matrices. For the solution of difference equation (3.8) we need to use the following formulas for
anl ﬁn/ )/n

F, = (Cn + Dyay-1 + En,Bn—Z + Enan—2an—1) Mm=2,--- ,M-4.

ap = _P;1 (Bn +Dyfn1 + Enan—Zﬁnfl) Bn = _F#Anr

Vn = —Fﬁl (R(Pn - Dnyn—l - Enan—ZVn—l - Enyn—Z) .
where

4 1 8 3
ag = 51,50 = —51, ay = gl,ﬁl = —gl, am— =4I, fm— = =3I,

8 5
3 == 3 =—=]
am-3 3,,31\/13 3l

and yo, y1, Ym-2, Ym-3 are the (N + 1) X 1 zero column vector. For calculation of Vj; and V-1 we can get
formula

Vi = (S11 = 51255, 521) Q1 = S1255,Q2), V-1 = S5, (G2 — S Vm),
where

S11 = —3Am-—2 — 8Bp-2 — 8Cp2am-3 — 3Cp-2Mm-3,

S12 = 4Ap-2 + 9Bp—z + 9CM—2am—3 + 4Crm—2fM-3,

S»1 = =3Bym-1 — 8Cm-1,522 = Am-1 + 4By—1 + 9Ciyi-1,

Q1 =10m-2 - C,,ym-3,Q2 = [Op-1.
For difference scheme (3.6), we get the following matrix form:

AWyi0 + BWyi1 + CW, + DW, i + EW, 0 =1y, n=2,--- ,M -2, (3.11)

~3Wo + AWy — Ws = —3Wi + AWy — Wi = 0,
10Wy — 156W1 + 6W, — W5 = _0>, 10Wu — 15Wh21 + 6Waio — W3 = _0)
Here, A, B, D, E are (N + 1) X (N + 1) which are defined by (3.9),(3.10), and C is the following matrix

1 0 0 O 0 0 0 07
r ¢ r O 00 0 O
0O r ¢ r 00 0 O
0 0 r c 00 0 O
C=|: t it ottt : (3.12)
0 0 0 O cr 00
00 0 O r ¢ r O
00 0 O 0 r ¢ r
0 0 0 O 0 0 0 1

J(N+1)X(N+1)
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u
TZH_ 7
m
1A 1A 1A
0 _ _ (2 (22 -1 _ _ (22 |
1 = (exp(=t) + b+ Dcos(x,) = (5(= =D+ 5(= =DV = (1= 5(E AV,

(-5 =D+ 3G =PV, =0, M,

MY = (expl=t) + ty + Deos() ~ (55 =1+ 55 =PIV}
1= 3G =V = (5 (5 =D+ 2 =V

17’:, = p(x,) + %zp(xn),k: 1,---,N-1,n=1,--- , M-1,

W = : ,s=n—-1,nn+1.

s A(N+1)x1

Second, we return again to the inverse problem (3.1). Applying (3.4) and fourth order approximation in ¢,
we get, respectively,

k+1 k k-1 k ook k
Up = — 2"']n + U Y1 20" * Un-1 k
- - + v, (3.13)
2 2
5 Kk _ ook k kK _ o~k k
P (2720 T ) 2 G T2 O
2| n 2 1| ™ 2 12 "
k _ 0ok k k ook k
1 (o 20, +U,_, R Ui — 20,40, ok
h2 W2 n—1 W2 n

2
= (exp(—tx) + 2t;) sin(x,) + %(exp(—tk) + 4t;) sin(xy,)),
k=1,---,N-1,n=2,--- ,M-2,
—30’5 + 40’1‘ — v’é = —6’)0’]‘\/I + 40154_1 - U’I‘VI_Z =0,

100f — 1505 + 605 — ok = 1004, — 1505, | + 605, , -k, , =0,k=0,--- N,

1 A 1 A _ 8 A 1A 1A -
%= (& D= 3G D - G (T D+ 5(C =D (- =D
A e - Ay T A s LA g
~(1= (=0, — (5 =D+ 5 =D = 2 (- = D)o,

1 A 1 A .
(5 D+ (- 3)0l? = (1 — exp(=A) = A)sin(x,),n = 0,--- , M,

N 1 A 1 A 5 8 A 1A 5, 1A 5 54

T T L R v L A A AP
Aoy 8 A LA o 1A 5

—(1—(?—1) )Un—(ﬁ(;—l)"'z(;—l) —g(;—l) )V,
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1 A 1 A .
(5 D+ 5 - ®)0li? = (exp (~tn) — exp(=A) + ty — A) sin(x,),n = 0,--- ,M

the fourth order of accuracy in t and second order accuracy in x difference scheme for the approximate
solution of the nonlocal boundary value problem (3.2), and

- — S - wh (3.14)
2 1 wh, -2k, +wk 1A 1A
R N n —(——(5 ___l3 1+2
12{ h2[ 2 T |~ (G =D+ (=D
L2 _w’;+1—2w’,‘l+wﬁ_1 Lkl L wh = 2wk +uk \ o

W2 h2 Wy W2 7 Wy

wk = 2wk + ko 2

n+1 hzﬂ n—1 +ZU£:| :p(xn)+gp(xn)l

8 A 1A 1A
~(=(==-D+=(==-D)-=(=-D>dtk=1,--- N-1,n=2,--- ,M=2
(12(T )+2(T ) 6(T ))vn 7 7 /N 7 n 4 /M 4

k k k _ _n k koo k _
=3w, + 4wy — w, = =3wy, + 4wy, ; — Wy, =0,

10wh — 150k + 6wk — wh = 10w}, — 15wk, | + 6wk, , —wh, , =0,k=0,--- Nt

1A 1,1 8 A 1,1
0 _ _ (o o n3y,2 P (212
wy = (exp(=A) + A + D cos(n) = (5 (= =D = 5 (Z = D)o — (=5 (- =D+ 5(= =)
TA it A ol o Aoy LA mpp o LA g
e =D (A= (C =D = (5 (0 — D+ 5 (0 = D7 = 2 (- = D)oy

n s

LA LA s
G DG D

A 1 A - 8 A 1A
S-S - (5 G-+ (E -1

wﬁ’ = (exp(—A) + A + 1) cos(x,,) — (%( (2

1A _ A 8 A 1A 1A N

+g(; ~ Dot - (- (; - )0, - (ﬁ(; -+ E(; — 1) - g(; =)ot
LA LA sy e
IEPAT AR TIC I

the fourth order of accuracy in t and second order accuracy in x difference scheme for the approximate
solution of the boundary value problem (3.3).

For the difference scheme (3.13) we have again matrix form (3.8), where square matrices A, B, D, E are
defined by (3.9),(3.10) and C is the following matrix

(1 0 0 O 0de gy z 0 0 00O
r ¢ r O 00 0 0 0 0 O 0 0 0 O
0O r ¢ r 00 0 00 O0O0 0 0 0 O
0 0 r c 00 0 00 O0O0 0 0 0 O
C= Do R S : Co
00 0 O 00 0 0 0 0O c r 0 0
00 0 O 00 0 0 0 0O r ¢ r O
00 0 O 00 0 0 0 0 O 0 r ¢ r
0 00O 0 de gy =z 0 00 0 T 1y
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Here
LA LA o 8A LA e 1A s
d=~(5(E-D- 5 -Dhe=-(-5(E-D+5(E =D+ (-1,
ca— Aoy B Ay LA e LA s
g=~(1=(=IPy=~A5E -+ 5 -0 =(Z =1,

1 A 1 A
2= - D+ (- D).

Difference scheme (3.13) can be rewritten in matrix form (3.11), where A, B, D, E are defined by (3.9),(3.10),
C is defined by (3.12) and 1), is defined by formulas

h
M = lnzol"'/Mr
m
1 A 1 A
0 — _ AR W AN N W )
1 = (@xp (=) + A + D cos(n) = (55(5 =D = 75(= = D)ol

8 A 1A o, 1A 5 A o
—(—E(; —l)+§(; -+ g(;—l) Wi —(1—(;—1) W

_LaA

8 A 1A
—(ﬁ(;—l)+§(;—l)2 6(

1 A 1 A
Z o3y (2 _ 2 p3yyl+2
DW=+ (DI
1 A 1 A 8 A 1A
N _ _ _ o Lo nN\yI-2 o (212
M = (exp (<) + A+ 1 cos(a) = (57 =D = 5(= = DW= (-5 (= =D+ 5= =1,
2
Tlﬁ=P(xn)+%P(xn),k=1,~-,N—1,n=1,~-,M_1,

Now we give the results of the numerical analysis using by MATLAB programs. The numerical solutions
are recorded for different values of N and M. of represents the numerical solution of difference scheme
for nonlocal boundary value problem (3.2) at (#, x,) and uk represents the numerical solution u of inverse
problem (3.1) at the same point and p, represents the numerical solution p of inverse problem at x,,. For
their comparison, the error computed by

M-1
EU]\I\/II = max (Z )Z)(tk,xn) - 01;1’2 h)%
n=1

1<k<N-1
M-1 5 Ml 2.1
B = g (3 s 0 B = O s <

Tables 1-3 contain the numerical results for N = 6, M = 108; N = 10, M = 300. Hence, third and fourth order
of accuracy difference schemes are more accurate comparing with the second order of accuracy difference
schemes (ADS). Tablel gives the error between the exact solution and solutions derived by difference
schemes for nonlocal problem. Table 2 presents error between the exact p solution and approximate p
derived by difference schemes. Table 3 includes the error between the exact u solution and solutions
derived by difference schemes.

Table 1. Error Ev]\l\/’I

Difference Schemes for v | N=6,M=108 | N=10,M=300
Second order ADS 0.013152 0.0039816
Third order ADS 0.0011632 2.28x107*
Fourth order ADS 1.45x107* 1.04x107°
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Table 2. Error Eppm

Calculation of p N=6,M=108 | N=10,M=300
Second order ADS | 0.025951 0.0079236
Third order ADS 0.0022861 453%x107%
Fourth order ADS | 8.73x107% 1.20x107%

Table 3. Error EuAN/I
Difference Schemes for u | N=6,M=108 | N=10,M=300
Second order ADS 0.0025445 7.55x107%
Third order ADS 1.39x107% 3.76x107°
Fourth order ADS 9.95%x107° 9.63x10~°

961

4. Conclusion

In this paper, inverse problem for the multidimensional elliptic equation with Dirichlet-Neumann

conditions is considered. The third and fourth orders of accuracy difference schemes for approximate
solutions of this problem are presented. Theorems on the stability, almost coercive stability and coercive
stability estimates for the solutions of difference schemes for multidimensional elliptic equation are proved.
Numerical results in a two dimensional case are given. As it can be seen from Tables 1-3, the third and
fourth orders of accuracy difference schemes are more accurate comparing with the second order of accuracy
difference scheme.
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