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Abstract. In this paper we study the Arens triadjoints of some bilinear maps on vector lattices. In particular,
we prove that, for Archimedean vector lattices A and B, the Arens triadjoint i) T∗∗∗ : A′′ × A′′ → B′′ of a
positive orthosymmetric bilinear map T : A×A→ B is positive orthosymmetric, and ii) T∗∗∗ : A′′×A′′ → A′′

of a bi-orthomorphism T : A × A→ A is a bi-orthomorphism. These generalize results on the order bidual
of f -algebras and almost f -algebras in [4].

1. Introduction and Preliminaries

The Arens multiplication introduced in [3] on the bidual of various lattice ordered (or Riesz) algebras
has been well documented (see, e.g., [4]). The more general question about Arens triadjoints of bilinear
maps on products of vector lattices has recently aroused considerable interest (see, e.g., [7]). In Theorem
2.1 in [7] several properties of the Arens triadjoint maps are collected. For example, the adjoint of a bilinear
map of order bounded variation is of order bounded variation and the triadjoint of such a map is separately
order continuous. In this direction, as the extensions of the notions of classes of almost f -algebras [6] (a
lattice ordered algebra A for which a∧ b = 0 in A implies ab = 0) and f -algebras [5] (a lattice ordered algebra
A with the property that a ∧ b = 0 implies ac ∧ b = ca ∧ b = 0 for all c ∈ A+), we study the Arens triadjoints
of some classes of bilinear maps on vector lattices (or Riesz spaces); mainly, orthosymmetric bilinear maps
and bi-orthomorphisms: Let A and B be vector lattices. A bilinear map T : A × A→ B is said to be

(1) orthosymmetric if x ∧ y = 0 implies T(x, y) = 0 for all x, y ∈ A (first appeared in a paper by G. Buskes
and A. van Rooij in [10] in 2000).

(2) a bi-orthomorphism if it is a separately order bounded bilinear map such that x ∧ y = 0 in A implies
T(z, x) ∧ y = 0 for all z ∈ A+, when A = B (first appears a paper by G. Buskes, R. Page, Jr. and R. Yilmaz
in [11] in 2009).

It is obvious that every bi-orthomorphism is orthosymmetric. The class of orthosymmetric bilinear
maps was introduced in [10] by G. Buskes and A. van Rooij. Subsequent developments have been made as
a result of contributions by the same authors [9], G. Buskes and A. G. Kusraev [8], and M. A. Toumi [14].
In [14] it is proved that if A and B are Archimedean vector lattices, (A′)′n, (B′)′n are their respective order
continuous biduals and T : A × A → B is a positive orthosymmetric bilinear map, then the triadjoint
T∗∗∗ : (A′)′n × (A′)′n → (B′)′n of T is a positive orthosymmetric bilinear map. In particular, in Section 2 we
extend this result to the whole A′′ × A′′; that is, if A and B are Archimedean vector lattices, A′′ and B′′ are
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the order biduals of A and B respectively, then T∗∗∗ : A′′ × A′′ → B′′ is a positive orthosymmetric bilinear
map whenever T : A × A → B is so. It can be obtained similar results for the class of the Arens triadjoint
of bi-orthomorphisms when A = B. So, all the results on the bidual of an f -algebra in the paper [4] can be
reformulated and in Section 3 we obtain the following result: Let A be a vector lattice and T : A × A → A
be a bi-orthomorphism. Then the bilinear map T∗∗∗ : A′′ ×A′′ → A′′ is a bi-orthomorphism. In other words,
if T ∈ Orth(A,A), then T∗∗∗ ∈ Orth(A′′,A′′), where Orth(A,A) denotes the space of all bi-orthomorphisms on
A.

R. Yilmaz and K. Rowlands in [15] in 2006 were the first to study bi-orthomorphisms what they called
quasi-orthomorphisms. The notion of bi-orthomorphism, as given here, first appears in a paper by G.
Buskes, R. Page, Jr. and R. Yilmaz in [11] in 2009. where it is proved that the space Orth(A,A) of
bi-orthomorphisms is a vector lattice, which contains the space Orth(A) of orthomorphisms as a vector
sublattice in case that A is a semiprime f -algebra. Moreover Orth(A) is an ideal in the vector lattice
Orth(A,A) in case A is a semiprime Dedekind complete f -algebra. When exactly Orth(A,A) is an f -algebra
is indeed unclear. However, if A is an f -algebra which is also a Banach algebra with a minimal ultra-
approximate identity, then Orth(A,A) is a Banach f -algebra (see Theorem 4.6 in [15] and Proposition 3.14
in [11]).

From here on, let A,B, and C be Archimedean vector lattices and A′,B′,C′ be their respective duals.
A bilinear map T : A × B→ C can be extended in a natural way to the bilinear map T∗∗∗ : A′′ × B′′ → C′′

constructed in the following stages:

T∗ : C′ × A→ B′,
T∗∗ : B′′ × C′ → A′,
T∗∗∗ : A′′ × B′′ → C′′,

T∗( f , x)(y) = f (T(x, y))
T∗∗(G, f )(x) = G(T∗( f , x))
T∗∗∗(F,G)( f ) = F(T∗∗(G, f ))

for all x ∈ A, y ∈ B, f ∈ C′,F ∈ A′′,G ∈ B′′ (so-called the first Arens adjoint of T).
Another extension of a bilinear map T : A × B → C is the map ∗∗∗T : A′′ × B′′ → C′′ constructed in the

following stages:

∗T : B × C′ → A′,
∗∗T : C′ × A′′ → B′,
∗∗∗T : A′′ × B′′ → C′′,

∗T(y, f )(x) = f (T(x, y))
∗∗T( f ,F)(y) = F(∗T(y, f ))
∗∗∗T(F,G)( f ) = G(∗∗T( f ,F))

for all x ∈ A, y ∈ B, f ∈ C′,F ∈ A′′,G ∈ B′′ (so-called the second Arens adjoint of T) [3].
A bilinear operator T : A × B→ C is said to be of order bounded variation if, for all (x, y) ∈ A+

× B+, the set

{ N,M∑
n,m

|T(an, bm)| : an ∈ A+, bm ∈ B+ and
N∑

n=1

an = x,
M∑

m=1

bm = y (N,M ∈N)
}

is order bounded in C. T is said to be order bounded if for all (x, y) ∈ A+
× B+ we have that{

T(a, b) : 0 ≤ a ≤ y, 0 ≤ b ≤ y
}

is order bounded. A bilinear map T : A × B→ C is said to be separately disjointness preserving if

(a1, b1) ⊥ (a2, b2) in A × B implies T(a1, b) ⊥ T(a2, b) and T(a, b1) ⊥ T(a, b2)

for all a ∈ A and b ∈ B. A bilinear operator T : A × A→ A is called separately band preserving if

x ⊥ y in A implies T(x, z) ⊥ y and T(z, x) ⊥ y

for all z ∈ A, where x ⊥ y means |x| ∧ |y| = 0. A bilinear operator T : A × B → C is called separately order
bounded (respectively separately order continuous) if the operators

a 7→ T(a, y) (a ∈ A) and b 7→ T(x, b) (b ∈ B)
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are order bounded (respectively order continuous) for each x ∈ A+ and each y ∈ B+. If the above operators
are Riesz homomorphisms, then the bilinear operator T is called a Riesz bimorphism. T is a Riesz bimorphism
if and only if |T(a, b)| = T(|a| , |b|) for all a ∈ A and b ∈ B. We also observe that if T : A × B → C is positive,
then T is of order bounded variation, and so T∗∗∗ : (A′)′n × (B′)′n → (C′)′n is separately order continuous and
a Riesz bimorphism (see, e.g., Theorem 2.1 in [7]).

In the sequel we make use of the fact that T∗∗∗ (̂a, b̂) = T̂(a, b) for all a ∈ A and b ∈ B. Indeed, for all f ∈ A′,

T∗∗∗ (̂a, b̂)( f ) = â(T∗∗ (̂b, f )) = T∗∗(̂b, f )(a) = b̂(T∗( f , a))

= T∗( f , a)(b) = f (T(a, b)) = T̂(a, b)( f ).

In this work we shall concentrate on the first Arens adjoint. Similar results hold for the second.
All vector lattices under consideration are Archimedean.
For the elementary theory of vector lattices and terminology not explained here we refer to [1, 13, 16].

2. The Triadjoint of an Orthosymmetric Bilinear Map

In this section we prove that the extension T∗∗∗ of a positive orthosymmetric bilinear map T : A×A→ B
is again a positive orthosymmetric bilinear map.

Definition 2.1. Let A and B be vector lattices. A bilinear map T : A × A→ B is said to be orthosymmetric if
x ∧ y = 0 implies T(x, y) = 0 for all x, y ∈ A. T is called positively semidefinite if T(x, x) ≥ 0 for all x ∈ A and
symmetric if T(x, y) = T(y, x) for all x, y ∈ A.

Every positive orthosymmetric bilinear map T : A × A→ B is positively semidefinite; for,

T(x, x) = T(x+
− x−, x+

− x−) = T(x+, x+) + T(x−, x−) ≥ 0,

as T(x+, x−) = T(x−, x+) = 0. Moreover, if A is Archimedean, then T is symmetric by [10, Corollary 2].

Theorem 2.2. Let A, B be vector lattices and T : A × A → B be positive orthosymmetric. Then the triadjoint
T∗∗∗ : (A′)′n × (A′)′n → (B′)′n is positive orthosymmetric.

Proof. Let T be positive orthosymmetric. Then clearly T∗∗∗ is positive. We have to show that T∗∗∗ is
orthosymmetric. We first show that if x ∈ A+ and 0 ≤ G,H ∈ (A′)′n satisfy G,H ≤ x̂ and G ∧ H = 0, then
T∗∗∗(G,H) = 0, which is the main step of the proof. This result is also proved in [14] by the technique used
in [4, Theorem 2.12]. Here we obtain the result by means of the approximation by components ([12]), as
follows.

First we observe some notations: Let A be a vector lattice and let a be a fixed element of A. If
E := {F ∈ (A′)′n : ∃λ > 0, |F| ≤ λâ}-the ideal generated in (A′)′n by â. Consider the Boolean algebra R
generated by the set of all band projections of E onto principal bands generated by positive elements of Â
in E. If we denote the band projection onto the band generated in E by the element F ∈ E by PF, then R is
generated by the set G := {Px̂ : x ∈ A+

}-the set of all band projections onto the principal ideals generated by
elements x̂ with x ∈ A+. Also, Gâ := {Px̂â : x ∈ A+

}.
Now we prove that if 0 ≤ G,H ∈ (A′)′n satisfy G,H ≤ x̂ for some x ∈ A+ and G∧H = 0, then T∗∗∗(G,H) = 0.

For this, it is sufficient to prove that T∗∗∗(PGx̂,PHx̂) = 0 since 0 ≤ G ≤ PGx̂ and 0 ≤ H ≤ PHx̂. (Note that,
as band projections are positive, 0 ≤ G ∧ H = PGG ∧ PHH ≤ PGx̂ ∧ PHx̂, and so PGx̂ ∧ PHx̂ = 0 implies
G∧H = 0. Hence T∗∗∗(G,H) ≤ T∗∗∗(PGx̂,PHx̂) by the positivity of T∗∗∗.) But, to do this, it is sufficient to proof
that T∗∗∗(̂x − F,F) = 0 for any component F of x̂; that is, (̂x − F) ∧ F = 0.

The proof of this is in four steps, as follows.
Step 1. Let F ∈ Gâ, say F = Pâx̂ = supn(n̂a ∧ x̂). Then it follows from

x̂ − F = x̂ − sup
n

(n̂a ∧ x̂) = inf
n

(̂x − n̂a ∧ x̂) = inf
n

(̂x − n̂a)+
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that for each fixed n

T∗∗∗(̂x − F, (n̂a − x̂)+) ≤ T∗∗∗((̂x − n̂a)+, (n̂a − x̂)+) = ̂T((x − na)+, (na − x)+) = 0,

as (x − na)+
∧ (na − x)+ = (x − na)+

∧ (x − na)− = 0 and T is orthosymmetric. Hence

T∗∗∗ (̂x − F, (n̂a − x̂)+) = 0,

and so
nT∗∗∗ (̂x − F, (n̂a − x̂)+) = 0.

This implies that for each n

T∗∗∗ (̂x − F, (̂a −
1
n

x̂))+ = 0.

Therefore
T∗∗∗ (̂x − F, â) = 0, as n→∞.

It follows that for each n
nT∗∗∗ (̂x − F, â) = 0; i.e., T∗∗∗ (̂x − F, n̂a) = 0.

Hence,
0 ≤ T∗∗∗ (̂x − F, n̂a ∧ x̂) ≤ T∗∗∗ (̂x − F, n̂a) = 0;

i.e., T∗∗∗(̂x − F, n̂a ∧ x̂) = 0.

Since this holds for each n, we get
sup

n
T∗∗∗(̂x − F, n̂a ∧ x̂) = 0,

which leads that, by the separate order continuity of T∗∗∗ as T is positive,

T∗∗∗ (̂x − F,F) = T∗∗∗ (̂x − F, sup
n

(n̂a ∧ x̂)) = sup
n

T∗∗∗ (̂x − F, n̂a ∧ x̂) = 0;

that is,
T∗∗∗ (̂x − F,F) = 0.

Step 2. Let F =
∧m

i=1 Fi where either Fi ∈ Gâ or x̂ − Fi ∈ Gâ. Then

x̂ − F =

m∨
i=1

(̂x − Fi),

and so

0 ≤ T∗∗∗(̂x − F,F) = T∗∗∗(
m∨

i=1

(̂x − Fi),
m∧

i=1

Fi)

≤ T∗∗∗(
m∑

i=1

(̂x − Fi),Fi)

=

m∑
i=1

T∗∗∗((̂x − Fi),Fi)

= 0 (by Step 1);

i.e., T∗∗∗ (̂x − F,F) = 0.
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Step 3. Let F =
∨n

i=1 Fi where each Fi is of the form F had in Step 1 (that is, Fi =
∧m

j=1 Fi j,∀i = 1, 2, · · · ,n,
and so F =

∨n
i=1

∧m
j=1 Fi j). Then, in the same way as Step 2,

x̂ − F =

m∧
i=1

(̂x − Fi),

and so

0 ≤ T∗∗∗(̂x − F,F) = T∗∗∗(
m∧

i=1

(̂x − Fi),
m∨

i=1

Fi)

≤ T∗∗∗(̂x − Fi,
m∨

i=1

Fi)

≤ T∗∗∗(̂x − Fi,
m∑

i=1

Fi)

=

m∑
i=1

T∗∗∗ (̂x − Fi,Fi)

= 0 (by Step 2);

i.e., T∗∗∗ (̂x − F,F) = 0.

Step 4. Let F ∈ Rx̂, If F = supα Fα or F = infα Fα with each Fα is a component of x̂ (that is, (̂x− Fα)∧ Fα = 0
for each α) having the property that T∗∗∗(̂x − Fα,Fα) = 0, then using the separate order continuity of T∗∗∗ we
show that F has the same property;

i.e., T∗∗∗ (̂x − F,F) = 0.

Indeed, suppose that F = supα Fα. For each fixed β

T∗∗∗(̂x − Fα,Fβ) = T∗∗∗(̂x − Fβ,Fβ) + T∗∗∗(Fβ − Fα,Fβ)
= 0 + T∗∗∗(Fβ − Fα,Fβ) (by hypothesis)
= T∗∗∗(Fβ,Fβ) − T∗∗∗(Fα,Fβ);

i.e., T∗∗∗ (̂x − Fα,Fβ) = T∗∗∗(Fβ,Fβ) − T∗∗∗(Fα,Fβ) ∀α. (1)

Since F = supα Fα, −F = infα(−Fα), and so, by the separate order continuity of T∗∗∗,

inf
α

(−T∗∗∗(Fα,Fβ)) = inf
α

T∗∗∗(−Fα,Fβ)

= T∗∗∗(inf
α

(−Fα),Fβ)

= T∗∗∗(−F,Fβ) (fixed β);

i.e., inf
α

(−T∗∗∗(Fα,Fβ)) = T∗∗∗(−F,Fβ).

Hence
inf
α

(T∗∗∗(Fβ,Fβ) − T∗∗∗(Fα,Fβ)) = T∗∗∗(Fβ,Fβ) − T∗∗∗(F,Fβ),

and so it follows from (1) that

inf
α

T∗∗∗(̂x − Fα,Fβ) = T∗∗∗(Fβ − F,Fβ) (fixed β). (2)

This holds for all β, and moreover we have

sup
β

T∗∗∗(Fβ − F,Fβ) = 0.
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To see this, first note that F = supβ Fβ, and so Fβ − F ≤ 0 for each β. Hence

T∗∗∗(Fβ − F,Fβ) ≤ 0.

since T∗∗∗ is positive. Now take some fixed β0. Then ∀β ≥ β0 we have Fβ0 ≤ Fβ (as Fβ ↑). Therefore, again
since T∗∗∗ is positive,

T∗∗∗(Fβ − F,Fβ0 ) ≤ T∗∗∗(Fβ − F,Fβ) ≤ 0.

Using the separate order continuity of T∗∗∗, we have

0 = T∗∗∗(F − F,Fβ0 ) = T∗∗∗(sup
β

Fβ − F,Fβ0 ) = sup
β

T∗∗∗(Fβ − F,Fβ0 )

≤ sup
β

T∗∗∗(Fβ − F,Fβ) ≤ 0;

i.e., sup
β

T∗∗∗(Fβ − F,Fβ) = 0.

It follows from this and (2) that

sup
β

(inf
α

T∗∗∗ (̂x − Fα,Fβ)) = 0. (3)

Also, again using the separate order continuity of T∗∗∗, for fixed β

inf
α

T∗∗∗(̂x − Fα,Fβ)) = T∗∗∗(inf
α

(̂x − Fα),Fβ)

= T∗∗∗((̂x − sup
α

Fα),Fβ)

= T∗∗∗((̂x − F),Fβ);

i.e., inf
α

T∗∗∗ (̂x − Fα,Fβ) = T∗∗∗ (̂x − F,Fβ).

This is true for all β, and also for all α. Therefore, by (3) and once more using the separate order continuity
of T∗∗∗, we get

0 = sup
β

(inf
α

T∗∗∗ (̂x − Fα,Fβ)) = sup
β

T∗∗∗(̂x − F,Fβ)

= T∗∗∗ (̂x − F, sup
β

Fβ)

= T∗∗∗ (̂x − F,F)

i.e., T∗∗∗(̂x − F,F) = 0.

In exactly the same way above we now show that if F = infα Fα such that (̂x − Fα) ∧ Fα = 0 and
T∗∗∗(̂x − Fα,Fα) = 0 for each α, then

i.e., T∗∗∗(̂x − F,F) = 0.

Let β be fixed. Then

T∗∗∗ (̂x − Fα,Fβ) = T∗∗∗ (̂x − Fβ,Fβ) + T∗∗∗(Fβ − Fα,Fβ)
= 0 + T∗∗∗(Fβ − Fα,Fβ) (by hypothesis)
= T∗∗∗(Fβ,Fβ) − T∗∗∗(Fα,Fβ);

i.e., T∗∗∗(̂x − Fα,Fβ) = T∗∗∗(Fβ,Fβ) − T∗∗∗(Fα,Fβ) ∀α. (4)
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Since F = infα Fα, −F = supα(−Fα), and so, by the separate order continuity of T∗∗∗,

sup
α

(−T∗∗∗(Fα,Fβ)) = sup
α

T∗∗∗(−Fα,Fβ)

= T∗∗∗(sup
α

(−Fα),Fβ)

= T∗∗∗(−F,Fβ) (fixed β);

i.e., sup
α

(−T∗∗∗(Fα,Fβ)) = T∗∗∗(−F,Fβ).

Hence
sup
α

(T∗∗∗(Fβ,Fβ) − T∗∗∗(Fα,Fβ)) = T∗∗∗(Fβ,Fβ) − T∗∗∗(F,Fβ),

and so it follows from (4) that

sup
α

T∗∗∗ (̂x − Fα,Fβ) = T∗∗∗(Fβ − F,Fβ) (fixed β). (5)

This holds for all β, and moreover we have

inf
β

T∗∗∗(Fβ − F,Fβ) = 0.

To see this, first note that F = infβ Fβ, and so Fβ − F ≥ 0 for each β. Hence

T∗∗∗(Fβ − F,Fβ) ≥ 0.

since T∗∗∗ is positive. Now take some fixed β0. Then ∀β ≥ β0 we have Fβ ≤ Fβ0 (as Fβ ↓). Therefore, again
since T∗∗∗ is positive,

0 ≤ T∗∗∗(Fβ − F,Fβ) ≤ T∗∗∗(Fβ − F,Fβ0 ).

Using the separate order continuity of T∗∗∗, we have

0 = T∗∗∗(inf
β

Fβ − F,Fβ) = inf
β

T∗∗∗(Fβ − F,Fβ) ≤ inf
β

T∗∗∗(Fβ − F,Fβ0 )

= T∗∗∗(inf
β

Fβ − F,Fβ0 ) = 0;

i.e., inf
β

T∗∗∗(Fβ − F,Fβ) = 0.

It follows from this and (5) that

inf
β

(sup
α

T∗∗∗(̂x − Fα,Fβ)) = 0. (6)

Also, again using the separate order continuity of T∗∗∗, for fixed β

sup
α

T∗∗∗ (̂x − Fα,Fβ)) = T∗∗∗(sup
α

(̂x − Fα),Fβ)

= T∗∗∗((̂x − inf
α

Fα),Fβ)

= T∗∗∗((̂x − F),Fβ);

i.e., sup
α

T∗∗∗ (̂x − Fα,Fβ)) = T∗∗∗ (̂x − F,Fβ).

This is true for all β, and also for all α. Therefore, by (6) and once more using the separate order continuity
of T∗∗∗, we get

0 = inf
β

(sup
α

T∗∗∗(̂x − Fα,Fβ)) = inf
β

T∗∗∗ (̂x − F,Fβ)

= T∗∗∗ (̂x − F, inf
β

Fβ)

= T∗∗∗ (̂x − F,F)
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i.e., T∗∗∗ (̂x − F,F) = 0,

from which the result follows.

Summarizing we have proved so far that if 0 ≤ G,H ∈ (A′)′n satisfy G,H ≤ x̂ for some x ∈ A+ and
G ∧H = 0, then T∗∗∗(G,H) = 0. In the general case when 0 ≤ G,H ∈ (A′)′n be arbitrary such that G ∧H = 0,
the result follows from the fact that the band IÂ = {F ∈ (A′)′n : |F| ≤ x̂ for some x ∈ A+

} generated by Â is
order dense in (A′)′n (for details see [14, Theorem 1]).

Our aim now is to extend the above result; in other words, we aim to prove that if A,B are vector lattices
and T : A × A→ B is a positive orthosymmetric bilinear map, then the bilinear map T∗∗∗ : A′′ × A′′ → B′′ is
positive orthosymmetric. First we require some preliminaries.

Lemma 2.3. Let A,B be vector lattices and 0 ≤ f ∈ B′. If T : A ×A→ B is a positive orthosymmetric bilinear map,
then

(i) ( f (T(x, y)))2
≤ f (T(x, x)) · f (T(y, y)), ∀x, y ∈ A.

(ii) (T∗∗∗(F,G)( f ))2
≤ T∗∗∗(F,F)( f ) · T∗∗∗(G,G)( f ), ∀F,G ∈ (A′)′n.

Proof. (i) Given 0 ≤ f ∈ B′, it is easy to see that the map

(x, y) 7→ f (T(x, y))

is a positive orthomorphism bilinear form (that is, the map f ◦ T : A × A→ R is a positive orthomorphism
bilinear map) and so it is positively semidefinite and symmetric. Now the result follows from the Cauchy-
Schwarz Inequality (see, e.g., [10]).

(ii) Since T∗∗∗ : (A′)′n × (A′)′n → (A′)′n a positive orthomorphism bilinear map by Theorem 2.2, in (i)
replacing A by (A′)′n we see that, given 0 ≤ f ∈ A′, the map

(F,G) 7→ f̂ (T∗∗∗(F,G))

is a positive orthosymmetric bilinear form (that is, the map f̂ ◦ T∗∗∗ : (A′)′n × (A′)′n → R is a positive
orthomorphism bilinear map), where f̂ (F) := F( f ) for all F ∈ (A′)′n as usual, and satisfies the Cauchy-
Schwarz Inequality.

Lemma 2.4. Let A,B be vector lattices and 0 ≤ f ∈ B′. If T : A×A→ B is a positive orthosymmetric bilinear map,
then for all x ∈ A

(i) (T∗( f , x))+ = T∗( f , x+).
(ii) The map T f : A→ A′ defined by T f (x) = T∗( f , x) is a Riesz homomorphism and the adjoint T′f : A′′ → A′ of

T f satisfies T′f (F) = T∗∗(F, f ) for all F ∈ A′′.

Proof. (i) Since T is positive, T(x+, y) ≥ T(x, y) for all y ∈ A. Hence

T∗( f , x+)(y) = f (T(x+, y)) ≥ f (T(x, y)) = T∗( f , x)(y)

for all y ∈ A, and so T∗( f , x+) ≥ T∗( f , x). Also, since T∗ is positive by [7, Theorem 2.1], we have T∗( f , x+) ≥ 0.
It follows that

T∗( f , x+) ≥ T∗( f , x) ∨ 0 = (T∗( f , x))+.

Conversely, let y ∈ A+. It follows from

x+
∧ (x− ∧ y) = 0 and (x− − x− ∧ y) ∧ (y − x− ∧ y) = 0

that
T(x+, x− ∧ y) = 0 and T(x− − x− ∧ y, y − x− ∧ y) = 0
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since T is orthosymmetric. Hence

T(x−, y − x− ∧ y) − T(x− ∧ y, y − x− ∧ y) = 0,

and so, by the positivity of T,

T(x−, y − x− ∧ y) = T(x− ∧ y, y − x− ∧ y) ≤ T(y, y);

i.e., T(x−, y − x− ∧ y) ≤ T(y, y).

Therefore, since 0 ≤ f ∈ B′,

(T∗( f , x))+(y) ≥ (T∗( f , x))+(y − x− ∧ y) ≥ T∗( f , x)(y − x− ∧ y)
= f (T(x, y − x− ∧ y)) = f (T(x+

− x−, y − x− ∧ y)
= f (T(x+, y) − T(x+, x− ∧ y) − T(x−, y) + T(x−, x− ∧ y))
= f (T(x+, y) − (T(x−, y) − T(x−, x− ∧ y)))
= f (T(x+, y) − (T(x−, y) + T(x−,−x− ∧ y)))
= f (T(x+, y) − T(x−, y − x− ∧ y))
= f (T(x+, y)) − f (T(x−, y − x− ∧ y))
≥ f (T(x+, y)) − f (T(y, y))
= T∗( f , x+))(y) − (T∗( f , y))(y).

Now replacing 1
n y by y we obtain

(T∗( f , x))+(y) ≥ (T∗( f , x+))(y) −
1
n

(T∗( f , y))(y) (n = 1, 2, · · · ),

and so
(T∗( f , x))+(y) ≥ (T∗( f , x+))(y), as n→∞.

Since this hold for all y ∈ A+, we have

(T∗( f , x))+
≥ T∗( f , x+), as n→∞.

This proves that (T∗( f , x))+ = T∗( f , x+), as required.
(ii) That the map T f is a Riesz homomorphism follows immediately from (i). Note that

(T′f (F))(x) = F(T f (x)) = F(T∗( f , x)) = T∗∗(F, f )(x)

for all x ∈ A and F ∈ A′′; that is, T′f (F) = T∗∗(F, f ) for all F ∈ A′′.

Lemma 2.5. Let A,B be vector lattices, T : A × A → B be a positive orthosymmetric bilinear map, 0 ≤ f ∈ B′ and
0 ≤ F ∈ A′′. If 1 ∈ A′ satisfies 0 ≤ 1 ∈ T∗∗(F, f ), then 1 = T∗∗(G, f ) for some 0 ≤ G ≤ F ∈ A′′. Also, if F ∈ (A′)′n,
then G ≤∈ (A′)′n. That is, the adjoint T′f , as defined above, is interval preserving.

Proof. Since the adjoint T′f of the Riesz homomorphism T f is interval preserving (see, e.g., [1, Theorems 7.4
and 7.8]), we have

T′f [0,F] = [0,T′f (F)] = [0,T∗∗(F, f )].

Therefore, if 0 ≤ 1 ∈ T∗∗(F, f ), there exists some 0 ≤ G ≤ F ∈ A′′ such that 1 = T′f (G) = T∗∗(G, f ). We observe
that if 0 ≤ G ≤ F ∈ A′′ with F ∈ (A′)′n, then G ∈ (A′)′n since (A′)′n is solid (indeed a band in A′′).

Lemma 2.6. Let A,B be vector lattices and T : A × A → B be a positive orthosymmetric bilinear map. If Fα ↓ 0 in
A′′, then

(i) T∗∗∗(Fα,Fα) ↓ 0.
(ii) T∗∗∗(F,Fα) ↓ 0 for all 0 ≤ F ∈ A′′.
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Proof. (i) Let 0 ≤ f ∈ B′ and β be fixed. Then for all α ≥ β we have Fα ≤ Fβ as Fα ↓, and so Fα( f ) ↓. In
particular, for 0 ≤ T∗∗(Fβ, f ) ∈ A′,

Fα(T∗∗(Fβ, f )) ↓ 0 i.e., T∗∗∗(Fα,Fβ)( f ) ↓ 0

for all 0 ≤ f ∈ B′. Therefore we have T∗∗∗(Fα,Fβ) ↓ 0. it follows from

0 ≤ T∗∗∗(Fα,Fα) ≤ T∗∗∗(Fα,Fβ)

that
0 ≤ inf

α
T∗∗∗(Fα,Fα) ≤ inf

α
T∗∗∗(Fα,Fβ) = 0; i.e., T∗∗∗(Fα,Fα) ↓ 0.

(ii) Let 0 ≤ f ∈ B′ and Fα ↓ 0 ∈ (A′)′n. Then it follows from (i) that

T∗∗∗(Fn,Fn)( f ) ≤
1
n4 (n = 1, 2, · · · )

for some subsequence (Fn) of the net (Fα). By Lemma 2.3, for all x ∈ A+ we have

0 ≤ T∗∗∗(Fn, f )(x) ≤
√

T∗∗∗(Fn,Fn)( f ) ·
√

f (T(x, x)) (x ∈ A+),

and so

0 ≤
∞∑

n=1

T∗∗(Fn, f )(x) ≤

∞∑
n=1

(√
T∗∗∗(Fn,Fn)( f ) ·

√
f (T(x, x))

)
≤

√
f (T(x, x)) ·

∞∑
n=1

1
n2

< ∞;

that is, the series
∑
∞

n=1 T∗∗(Fn, f )(x) is convergent in R+. So the functional 1 : A+
→ R+ defined by

1(x) =

∞∑
n=1

T∗∗(Fn, f )(x) (x ∈ A+),

is additive on A+ and has a positive linear extension (see, e.g., [1, Theorem 1.7]) to the whole of A, which is
denoted by 1 again.

We have to show that T∗∗∗(F,Fn)( f ) ↓ 0. So let m ∈N be arbitrary. Then
m∑

n=1

T∗∗∗(F,Fn)( f ) =

m∑
n=1

F(T∗∗(Fn, f ))

= F
( m∑

n=1

(T∗∗(Fn, f ))
)

≤ F
( ∞∑

n=1

T∗∗(Fn, f )
)

= F(1),

which implies
∞∑

n=1

T∗∗∗(F,Fn)( f ) ≤ F(1), as m→∞.

This shows that the series
∑
∞

n=1 T∗∗∗(F,Fn)( f ) is convergent in R+, and so

lim
n→∞

T∗∗∗(F,Fn)( f ) = 0.

It follows that T∗∗∗(F,Fn)( f ) ↓ 0 for all 0 ≤ f ∈ B′, and so T∗∗∗(F,Fn) ↓ 0.
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Theorem 2.7. If A,B are vector lattices and T : A × A → B is a positive orthosymmetric bilinear map, then
T∗∗∗(F,G) = 0 for all F ∈ (A′)′s and G ∈ (A′)′n.

Proof. Suppose that 0 ≤ F ∈ (A′)′s and 0 ≤ G ∈ (A′)′n. Fix 0 ≤ f ∈ B′ and set

J = {L ∈ (A′)′n : L ≥ 0, T∗∗∗(F,L)( f ) = F(T∗∗(L, f )) = 0}.

Then J is a solid subspace of the positive cone of (A′)′n. It is easily seen that J is closed under addition and
multiplication by positive scalars. Now if 0 ≤ L2 ≤ L1 in (A′)′n with L1 ∈ J, then we have 0 ≤ T∗∗∗(F,L2) ≤
T∗∗∗(F,L1). Hence

0 ≤ T∗∗∗(F,L2)( f ) ≤ T∗∗∗(F,L1)( f ) = 0

for all 0 ≤ f ∈ A′, which shows that L2 ∈ J. Also if L1,L2 ∈ J, then it follows from 0 ≤ L1 ∨ L2 ≤ L1 + L2 that

0 ≤ T∗∗∗(F,L1 ∨ L2) ≤ T∗∗∗(F,L1 + L2) = T∗∗∗(F,L1) + T∗∗∗(F,L2).

Hence for all 0 ≤ f ∈ A′ we have

0 ≤ T∗∗∗(F,L1 ∨ L2)( f ) ≤ T∗∗∗(F,L1)( f ) + T∗∗∗(F,L2)( f ) = 0 + 0 = 0;

that is, L1 ∨ L2. This shows that J is a lattice ideal in the positive cone of (A′)′n Moreover, J is order dense in
the positive cone of (A′)′n; that is, for each 0 < M ∈ (A′)′n there exist an element L ∈ J such that 0 < L ≤ M),
as follows.

If 0 < M ∈ (A′)′n and T∗∗∗(F,M)( f ) = 0, then we may choose L = M. Therefore assume that T∗∗∗(F,M)( f ) > 0,
i.e., F(T∗∗(M, f ) > 0 (note that F , 0). Since F ∈ (A′)′s, Ndd

F = A′ (⇔ Nd
F = A′), i.e., NF is order dense in A′

since A′ is Archimedean by [4, Theorem 1.1 (iii)]. Hence there exists 1 ∈ NF (i.e., H(1) = 0) such that
0 < 1 ≤ T∗∗(M, f ). Note that F is singular; that is, F ∈ (A′)′s = ((A′)′n)d and F , 0. Thus, by Lemma 2.5, there
exists L ∈ (A′)′n with 0 < L ≤ M such that 1 = T∗∗(L, f ). This implies that L ∈ J since F(T∗∗(L, f )) = F(1) = 0.
Note that clearly it has to be that L > 0 as 1 > 0.

Now we consider the set

JG = {L ∈ J : L ≤ G}.

It follows that JG is an upwards directed net (i.e., JG ↑) in J, which is bounded above by G. Since (A′)′n is
Dedekind complete, there exists an element G0 in (A′)′n such that G0 = sup JG and G0 ≤ G. Observe that
0 ≤ G0 − L for all L ∈ JG since JG ↑, and so (G0 − L) ↓JG 0 in (A′)′n. It follows from Lemma 2.6 (ii) that

0 ≤ T∗∗∗(F,G0 − L) ↓JG 0

for all 0 ≤ F ∈ (A′)′s, and so

0 ≤ T∗∗∗(F,G0 − L)( f ) ↓JG 0

for all 0 ≤ f ∈ B′. This implies immediately that T∗∗∗(F,G0 − L)( f ) = 0 since L ∈ J. Hence G0 ∈ J, which
shows that G0 ∈ JG since G0 ≤ G. Now we claim that G0 = G. Suppose that G − G0 > 0. Since J is order
dense in the positive cone of (A′)′n, there exists L ∈ J such that 0 < L ≤ G − G0. Thus 0 < L + G0 ≤ G, and
so L + G0 ∈ JG since L + G0 ∈ J. But G0 = sup JG, and so we have L + G0 ≤ G0. This is a contradiction since
L > 0. Therefore G = G0 ∈ J. Hence T∗∗∗(F,G)( f ) = 0 for all 0 ≤ f ∈ B′, showing that T∗∗∗(F,G) = 0 for all
0 ≤ F ∈ (A′)′s and 0 ≤ G ∈ (A′)′n.

The general case follows from the decompositions F and G into positive and negative parts; for, if
F ∈ (A′)′s and G ∈ (A′)′n, then

T∗∗∗(F,G) = T∗∗∗(F+
− F−,G+

− G−)
= T∗∗∗(F+,G+) − T∗∗∗(F+,G−) − T∗∗∗(F−,G+) + T∗∗∗(F−,G−)
= 0,

as required.
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Corollary 2.8. If A,B are vector lattices and T : A × A → B is a positive orthosymmetric bilinear map, then
T∗∗∗(F,G) = 0 for all F ∈ A′′ and G ∈ (A′)′s. In particular, T∗∗∗(G,G) = 0 for all G ∈ (A′)′s. In other words,

T∗∗∗|A′′×(A′)′s = 0 (hence T∗∗∗|(A′)′s×(A′)′s = 0 and T∗∗∗|(A′)′n×(A′)′s = 0).

Proof. Let G ∈ (A′)′s. It follows from the fact that x̂ ∈ (A′)′n for all x ∈ A that T∗∗(G, x̂) = 0 by Theorem 2.7.
Since T is a symmetric bilinear map, we have

(T∗∗(G, f ))(x) = x̂(T∗∗(G, f )) = T∗∗(̂x,G)( f ) = T∗∗∗(G, x̂)( f ) = 0

for all x ∈ A and f ∈ B′. Hence T∗∗(G, f ) = 0 for all f ∈ B′, and so

T∗∗∗(F,G)( f ) = F(T∗∗(G, f ) = F(0) = 0

for all f ∈ A′ and F ∈ A′′. Therefore T∗∗∗(F,G) = 0 for all F ∈ A′′, and so the result holds for all F ∈ A′′ and
G ∈ (A′)′s.

Before moving on to the main result of this section, we remark that (A′)′n and its disjoint complement
(A′)′s are band in the Dedekind complete vector lattice A′′, and so they themselves are Dedekind complete
vector lattices. Hence the order direct sum is

A′′ = (A′)′n ⊕ (A′)′s.

Theorem 2.9. If A,B are vector lattices and T : A × A → B is a positive orthosymmetric bilinear map, then the
bilinear map T∗∗∗ : A′′ × A′′ → B′′ is positive orthosymmetric.

Proof. Clearly if the bilinear map T is positive, then so is T∗∗∗.
Let 0 ≤ F,G ∈ A′′ and F ∧ G = 0. By the order direct sum of A′′, we decompose F,G ∈ A′′ as

F = Fn + Fs and G = Gn + Gs,

where 0 ≤ Fn,Gn ∈ (A′)′n and 0 ≤ Fs,Gs ∈ (A′)′s. Then it follows from from Theorem 2.7 and Corollary 2.8
that

T∗∗∗(F,G) = T∗∗∗(Fn,Gn) + T∗∗∗(Fn,Gs) + T∗∗∗(Fs,Gn) + T∗∗∗(Fs,Gs)
= T∗∗∗(Fn,Gn) + 0 + 0 + 0
= T∗∗∗(Fn,Gn);

i.e., T∗∗∗(F,G) = T∗∗∗(Fn,Gn).

But Fn ∧ Gn = 0 since 0 ≤ Fn ∧ Gn ≤ Fn + Fs ∧ Gn + Gs = F ∧ G = 0, and so T∗∗∗(Fn,Gn) = 0 since the bilinear
map T∗∗∗ : (A′)′n × (A′)′n → (B′)′n is is orthosymmetric by Theorem 2.2. Therefore we have T∗∗∗(F,G) = 0, as
required.

Corollary 2.10. If A,B are vector lattices and T : A × A → B is a positive orthosymmetric bilinear map, then
T∗∗∗(F,G) ∈ (A′)′n for all F,G ∈ A′′; in other words, T∗∗∗(A′′ × A′′) ⊂ (B′)′n.

Proof. The result is true for the positive elements of A′′ as in the proof of the previous theorem. For the
general case, let F,G ∈ A′′ be arbitrary. Then F = F+

− F− and G = G+
− G− with 0 ≤ F+,F−,G+,G− ∈ A′′ =

(A′)′n ⊕ (A′)′s, and so
F+ = F+

n + F+
s

F− = F−n + F−s 0 ≤ F+
n ,F−n ,G+

n ,G−n ∈ (A′)′n
G+ = G+

n + G+
s 0 ≤ F+

s ,F−s ,G+
s ,G−s ∈ (A′)′s

G− = G−n + G−s .

Hence
F = (F+

n + F+
s ) − (F−n + F−s ) = (F+

n − F−n ) + (F+
s − F−s )

G = (G+
n + G+

s ) − (G−n + G−s ) = (G+
n − G−n ) + (G+

s − G−s ).
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We also have that

Fn ∧ Fs = 0
Gn ∧ Gs = 0,

where
Fn := F+

n − F−n , Gn := G+
n − G−n ∈ (A′)′n

Fs := F+
s − F−s , Gs := G+

s − G−s ∈ (A′)′s.

As in the proof of preceding theorem, it follows that

T∗∗∗(F,G) = T∗∗∗(Fn + Fs,Gn + Gs) = T∗∗∗(Fn,Gn).

3. The Triadjoint of a Bi-Orthomorphism

In this section we prove that if A is a vector lattice and T : A × A→ A is a bi-orthomorphism, then so is

1. the bilinear map T∗∗∗ : (A′)′n × (A′)′n → (A′)′n by the technique used in [12].
2. the bilinear map T∗∗∗ : A′′ × A′′ → A′′ by the technique used in [4], which generalizes the first.

We observe that every separately band preserving bilinear operator is disjointness preserving. A sepa-
rately band preserving bilinear operator which is also separately order bounded is called a bi-orthomorphism
and the set of all bi-orthomorphisms of A × A into A is denoted by Orth(A,A). We also observe that every
bi-orthomorphism is a Riesz bimorphism, and so is positive. Hence every bi-orthomorphism is of order
bounded variation, and so order bounded [11]. It follows that if T : A×A→ A is a bi-orthomorphism, then
T∗∗∗ : (A′)′n × (A′)′n → (A′)′n is separately order continuous and a Riesz bimorphism since T is positive. So
we can give the following

Definition 3.1. Let A be a vector lattice. A separately order bounded bilinear map T : A ×A→ A is said to
be a bi-orthomorphism if x ∧ y = 0 in A implies T(z, x) ∧ y = 0 for all z ∈ A+.

Lemma 3.2. Let A be a vector lattice and T : A×A→ A be a bilinear map such that x ⊥ y in A implies T(z, x) ⊥ y
for all z ∈ A. Then T is orthosymmetric. In particular, every bi-orthomorphism is orthosymmetric (and hence
symmetric).

Proof. Suppose x⊥y in A. Then T(x, y)⊥x and T(x, y)⊥y, and so T(x, y) ∈ {x}dd
∩ {y}dd = {0} since x⊥y.

Therefore T(x, y) = 0 whenever x⊥y, as required.

Theorem 3.3. Let A be vector lattices and T : A × A → A be a bi-orthomorphism. Then the bilinear map
T∗∗∗ : (A′)′n × (A′)′n → (A′)′n is a bi-orthomorphism.

Proof. Let T be a bi-orthomorphism. Then we first show that if x ∈ A+ and 0 ≤ G,H ∈ (A′)′n satisfy F,G,H ≤ x̂
and G∧H = 0, then T∗∗∗(F,G)∧H = 0, which is the main step of the proof. To do this, it is sufficient to proof
that for any component F of x̂; that is, x̂ − F ∧ F = 0, we have

x̂ − F ∧ T∗∗∗ (̂x − F) = 0.

The proof of this is in four steps, as follows.
Step 1. Suppose that F ∈ Gâ, where G is as before, say F = Pâx̂ = supn(n̂a ∧ x̂). Then it follows from

x̂ − F = x̂ − sup
n

(n̂a ∧ x̂) = inf
n

(̂x − n̂a ∧ x̂) = inf
n

(̂x − n̂a)+

that for each fixed n
0 ≤ (̂x − F) ∧ (n̂a − x̂)+) ≤ (̂x − n̂a)+

∧ (n̂a − x̂)+) = 0;
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i.e., (̂x − F) ∧ (n̂a − x̂)+) = 0.

0 ≤ (̂x − F) ∧ T∗∗∗((̂x, (n̂a − x̂)+) ≤ (x − na)+
∧ T∗∗∗((̂x, (n̂a − x̂)+)

= ̂(x − na)+ ∧ T∗∗∗(̂x, ̂(na − x)+)

= ̂(x − na)+ ∧ ̂T∗∗∗(x, (na − x)+)

= ̂(x − na)+ ∧ T∗∗∗(x, (na − x)+)
= 0

since (x − na)+
∧ (na − x)+ = (x − na)+

∧ (x − na)− = 0 and T is a bi-orthomorphism. Hence for each fixed n

(̂x − F) ∧ T∗∗∗((̂x, (n̂a − x̂)+) = 0,

and so
n(̂x − F) ∧ T∗∗∗((̂x, (n̂a − x̂)+) = 0.

This implies that for each n

(̂x − F) ∧ T∗∗∗ (̂x, (̂a −
1
n

x̂)+) = 0.

Therefore
(̂x − F) ∧ T∗∗∗ (̂x, â) = 0, as n→∞.

It follows that for each n
(̂x − F) ∧ nT∗∗∗ (̂x, â) = 0.

Hence it follows from this and the fact that T∗∗∗ a Riesz bimorphism as observed earlier that

0 ≤ (̂x − F) ∧ T∗∗∗((̂x, n̂a − x̂) = (x − na)+
∧ (nT∗∗∗((̂x, â) ∧ T∗∗∗(̂x, x̂)

= ( ̂(x − na)+ ∧ nT∗∗∗(̂x, â)) ∧ T∗∗∗(̂x, x̂)
= 0 + T∗∗∗(̂x, x̂)
= 0

i.e., (̂x − F) ∧ T∗∗∗(̂x, n̂a − x̂) = 0.

Since this holds for each n, we get

sup
n

((̂x − F) ∧ T∗∗∗ (̂x, n̂a − x̂)) = 0,

which leads that, by the separate order continuity of T∗∗∗,

0 ≤ (̂x − F) ∧ T∗∗∗ (̂x − F,F) = (̂x − F) ∧ T∗∗∗ (̂x, sup
n

(n̂a ∧ x̂))

= sup
n

((̂x − F) ∧ T∗∗∗(̂x, sup
n

(n̂a ∧ x̂)))

= 0;

that is,
(̂x − F) ∧ T∗∗∗(̂x − F,F) = 0.

Step 2. Let F =
∧m

i=1 Fi where either Fi ∈ Gâ or x̂ − Fi ∈ Gâ. Then

x̂ − F =

m∨
i=1

(̂x − Fi),
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and so

0 ≤ (̂x − F) ∧ T∗∗∗ (̂x,F) =

m∨
i=1

(̂x − Fi) ∧ T∗∗∗(̂x,
m∧

i=1

Fi)

≤

m∑
i=1

(̂x − Fi) ∧ T∗∗∗(̂x,
m∧

i=1

Fi)

≤

m∑
i=1

(̂x − Fi) ∧ T∗∗∗(̂x,
m∑

i=1

Fi)

=

m∑
i=1

(̂x − Fi) ∧
m∑

i=1

T∗∗∗ (̂x,Fi)

≤

m∑
i=1

((̂x − Fi) ∧ T∗∗∗ (̂x,Fi))

= 0 (by Step 1);

i.e., (̂x − F) ∧ T∗∗∗(̂x,F) = 0.

Step 3. Let F =
∨n

i=1 Fi where each Fi is of the form F had in Step 1 (that is, Fi =
∧m

j=1 Fi j,∀i = 1, 2, · · · ,n,
and so F =

∨n
i=1

∧m
j=1 Fi j). Then, in the same way as Step 2,

x̂ − F =

m∧
i=1

(̂x − Fi),

and so

0 ≤ (̂x − F) ∧ T∗∗∗ (̂x,F) =

m∧
i=1

(̂x − Fi) ∧ T∗∗∗(̂x,
m∨

i=1

Fi)

≤

m∑
i=1

(̂x − Fi) ∧ T∗∗∗(̂x,
m∨

i=1

Fi)

≤

m∑
i=1

(̂x − Fi) ∧ T∗∗∗(̂x,
m∑

i=1

Fi)

=

m∑
i=1

(̂x − Fi) ∧
m∑

i=1

T∗∗∗ (̂x,Fi)

≤

m∑
i=1

((̂x − Fi) ∧ T∗∗∗ (̂x,Fi))

= 0 (by Step 2);

i.e., (̂x − F) ∧ T∗∗∗(̂x,F) = 0.

Step 4. Let F ∈ Rx̂, where R is as before. If F = supα Fα or F = infα Fα with each Fα is a component of x̂
(that is, (̂x−Fα)∧Fα = 0 for each α) having the property that (̂x−Fα)∧T∗∗∗(̂x,Fα) = 0, then using the separate
order continuity of T∗∗∗ we show that F has the same property;

i.e., (̂x − F) ∧ T∗∗∗(̂x,F) = 0.

as follows.
Suppose that F = supα Fα. Then it follows from

T∗∗∗ (̂x − F) = T∗∗∗ (̂x,Fα)
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for each x ∈ A+ that

0 ≤ (̂x − F) ∧ T∗∗∗ (̂x,F) = sup
α

((̂x − F) ∧ T∗∗∗(̂x,Fα))

≤ sup
α

((̂x − Fα) ∧ T∗∗∗ (̂x,Fα))

= 0 (by hypothesis);

i.e., (̂x − F) ∧ T∗∗∗(̂x,F) = 0.

We now show that if F = infα Fα such that (̂x − Fα) ∧ Fα = 0 and (̂x − Fα) ∧ T∗∗∗ (̂x,Fα) = 0 for each α, then

i.e., (̂x − F) ∧ T∗∗∗(̂x,F) = 0.

For some fixed α and for all β ≥ α we have

0 ≤ (̂x − Fα) ∧ T∗∗∗(̂x,Fβ) ≤ (̂x − Fα) ∧ T∗∗∗ (̂x,Fβ) = 0.

Hence for all β ≥ α
(̂x − Fα) ∧ T∗∗∗(̂x,Fβ) = 0,

and so
inf
β≥α

((̂x − Fα) ∧ T∗∗∗(̂x,Fβ)) = 0.

By the separate order continuity of T∗∗∗,

(̂x − Fα) ∧ T∗∗∗ (̂x, inf
β≥α

Fβ) = 0,

i.e., (̂x − Fα) ∧ T∗∗∗ (̂x,F) = 0.

Since this is true for all α,
sup
α

((̂x − Fα) ∧ T∗∗∗(̂x,F)) = 0.

It follows from
(̂x − inf

α
Fα) ∧ T∗∗∗(̂x,F) = 0,

that
(̂x − F) ∧ T∗∗∗(̂x,F) = 0,

which completes the proof.

Next we aim to extend the above result; that is, if A is a vector lattice and T : A × A → A is a
bi-orthomorphism, then the triadjoint T∗∗∗ : A′′ × A′′ → A′′ is also a bi-orthomorphism.

Theorem 3.4. Let A be a vector lattice and T : A × A → A be a bi-orthomorphism. Then the bilinear map
T∗∗∗ : A′′ × A′′ → A′′ is a bi-orthomorphism. In other words, if T ∈ Orth(A,A), then T∗∗∗ ∈ Orth(A′′,A′′).

Proof. Suppose that T : A × A → A is a bi-orthomorphism. We first observe that, since every bi-
orthomorphism is orthosymmetric by Lemma 3.2, all results in the previous section are true for the bi-
orthomorphism T. We also recall that the triadjoint T∗∗∗ : A′′ × A′′ → A′′ is separately order bounded
whenever T is a bi-orthomorphism. Now let G ∧H = 0 in A′′ and 0 ≤ F ∈ A′′. Then we have

F = Fn + Fs, G = Gn + Gs and H = Hn + Hs

with 0 ≤ Fn,Gn,Hn ∈ (A′)′n and 0 ≤ Fs,Gs,Hs ∈ (A′)′s as A′′ = (A′)′n ⊕ (A′)′s. It follows that, by Corollary 2.10,
T∗∗∗(Fn,Gn) ∈ (A′)′n, and so

T∗∗∗(Fn,Gn) ∧Hs = 0
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as 0 ≤ Hs ∈ (A′)′s. On the other hand, Gn ∧Hn = 0 since G ∧H = 0, which gives that

T∗∗∗(Fn,Gn) ∧Hn = 0,

as the map T∗∗∗ : (A′)′n × (A′)′n → (A′)′n is a bi-orthomorphism by Theorem 3.3. Therefore we have

0 ≤ T∗∗∗(F,G) ∧H = T∗∗∗(Fn,Gn) ∧Hn + Hs

≤ T∗∗∗(Fn,Gn) ∧Hn + T∗∗∗(Fn,Gn) ∧Hs

= 0;

i.e., T∗∗∗(F,G) ∧H = 0,

as required.

We conclude our work with the following consequences.

Corollary 3.5. The order bidual A′′ of an Archimedean almost f -algebra (respectively f -algebra) A is a Dedekind
complete almost f -algebra (respectively f -algebra).

Proof. We recall that the order bidual of any Archimedean lattice ordered algebra is a Dedekind complete
lattice ordered algebra, equipped with the Arens multiplication [2, 3]. It is not difficult to see that the map
T∗∗∗ : A′′ × A′′ → A′′ defined by

T∗∗∗(F,G) = F · G (F,G ∈ A′′)

is positive orthosymmetric by Theorem 2.9. Hence if F ∧ G = 0 in A′′, then F · G = T∗∗∗(F,G) = 0.

Corollary 3.6. Every Archimedean almost f -algebra (and so f -algebra) A is commutative.

Proof. The map T : A × A→ A defined by

T(x, y) = xy (x, y ∈ A)

is positive orthosymmetric, and so symmetric since every positive orthosymmetric bilinear map is sym-
metric, as observed before. Hence

xy = T(x, y) = T(y, x) = yx

for all x, y ∈ A, as required.
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