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Oscillation Behavior of Third-Order Nonlinear Neutral Dynamic
Equations on Time Scales with Distributed Deviating Arguments
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Abstract. The aim of this paper is to give oscillation criteria for the third-order neutral dynamic equations
with distributed deviating arguments of the form

A
(e + e |+ [ e ot amac =o,

where y > 0 is the quotient of odd positive integers with r(t) and p(t) real-valued rd-continuous positive
functions defined on T. By using a generalized Riccati transformation and integral averaging technique,

we establish some new sufficient conditions which ensure that every solution of this equation oscillates or
converges to zero.

1. Introduction

In this paper, we deal with the oscillatory behavior of all solutions of the third-order neutral dynamic
equation

A
[z« o) |+ [ estow omac=o, e, 12t )
Define the function by
2(8) = x() + pO(e(D). @

Furthermore, the equation (1) can be written as

A
o =ore) | + f fit, 5ot ODAE =0. ®)

In this paper, we will assume the following hypotheses:
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(h1) ¥ > 0 is the ratio of positive odd integers;
(h2) r : T — (0, o0) is a real valued rd-continous function on T and

f:(%)’im — oo, tyeT; )

(h3) p(t) is real valued rd-continuous positive functionon T, 0 < p(t) <P < 1;

(h4) 7 : T — T is strictly increasing and differentiable function such that

7(t) < t and lim;_,o T(t) = o0;

(h5) ¢(t,&) € Cullto, o) X [c,d], T) is not decreasing function for £ and such that ¢(t,&) < t and
lim;_,co mingee,q) P(t, &) = 00;

(h6) The function f € C(T x R, R) is assumed to satisfy uf(t,u) > 0 and there exists a positive rd-
continuous function 6(f) on T such that [ o(t), for u # 0.

u’

A solution x(t) of (1) is said to be oscillatory if it is neither eventually positive nor eventually negative,
otherwise it is non-oscillatory. The theory of time scales, which has recently received a lot of attention, was
introduced by Hilger [1], in order to unify continuous and discrete analysis. Since then, several authors
have expounded on various aspects of this new theory; see the survey paper by R.P. Agarwal, M. Bohner,
D. O’Regan and A. Peterson [2]. A book on the subject of time scales by M. Bohner and A. Peterson [3] also
summarizes and organizes much of the time scale calculus. In the recent years, there has been increasing
interest in obtaining sufficient conditions for the oscillation and non-oscillation of solutions of various
equations on time-scales; we refer the reader to the papers [4-14]. T. Candan [15] considered second order
nonlinear neutral dynamic equation with distributed deviating arguments

d
(1) + pOYEE))))* + f &y, E))AE =0,

where y > 0 is the ratio of odd positive integers.
To the best of our knowledge, it seems to have few oscillation results for the oscillation of third-order
dynamic equations. L. Erbe, A. Peterson, S.H. Saker [19] considered third-order nonlinear dynamic equation

A
(co@e©r) +qofem) =o,

on a time scale T.
Li, Han, Sun, Zhao [17] considered third-order nonlinear delay dynamic equation

(@B OV + f(t, x(2(#) = 0,

on a time scale T, where y > 0 is quotient of odd positive integers. Grace, Graef, El-Beltagy [18] considered
third-order neutral delay dynamic equation

(r(H(() = a®)x(x () + p(B) (6(1) = 0,

on a time scale T.
Z. H. Yu, Q. R. Wang [16] studied asymptotic behavior of solutions to third-order nonlinear dynamic
equations on time scales of the form

L1 a2
—((—= ()™ ))+ Hf(x() =0.
(malGEeom?) ) +aoeo

In this paper, we consider third-order nonlinear neutral dynamic equation with distributed deviating
arguments on time scales which is not in literature. We obtain some conclusions which contribute to oscil-
lation theory of third order neutral dynamic equations.
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2. Several Lemmas

Before stating our main results, we begin with the following lemmas which play an important role in
the proof of the main results. Throughout this paper, we let

N+ (t) := max{0, n(t)}, n-(t) := max{0, —n(t)},

and
B =555, 0<y <1, BH):= (), y>1,

t ;
Rt ) = [ (75) As,
where, for sufficiently large t. € [fg, co)r.

Lemma 2.1. Let x(f) be a positive solution of (1), z(f) is defined as in (2). Then z(t) has only one of
the following two properties:

(D z(t) > 0,z2(t) > 0, z2%(t) > 0,

(ID) z(t) > 0, z7(t) < 0, 222(t) > 0,

where t > t1, t; sufficiently large.

Proof. Let x(t) be a positive solution of (1) on [ty, o), so that z(t) > x(t) > 0, and

[r(t)(ZAA(t))V]A =— fd f(t, x[o(t, E)DAE < 0.

Then r(t)([z(t)]**)" is a decreasing function and therefore eventually of one sign, so z*(t) is either eventually
positive or eventually negative on t > t; > t;. We assert that Z2(t) > 0ont > t; > ty. Otherwise, assume
that z22(t) < 0, then there exists a constant M > 0, such that

() @A (1) < —M < 0.

By integrating the last inequality from ¢ to ¢, we obtain

t
ZA(t)SZA(tl)_MVf(%)VAS.

Let t — co. Then from (4) , we have z*(f) — —co, and therefore eventually zA(t) < 0.

Since z*4(t) < 0 and z2(t) < 0, we have z(t) < 0, which contradicts our assumption z(t) > 0. Therefore, z(t)
has only one of the two properties (I) and (II).

This completes the proof.

Lemma 2.2. Let x(f) be an eventually positive solution of (1), correspondingly z(t) has the property (II).
Assume that (4) and

ft;m [}‘” [% fuw 6(S)As];AuAv =00 5)

hold. Then lim;_, x(t) = lim;_,« z(t) = 0.



M.T.SENEL , N. UTKU / Filomat 28:6 (2014), 1211-1223 1214

Proof. Let x(t) be an eventually positive solution of (1). Since z(t) has the property (II), then there ex-

ists finite lim;, z(f) = I. We shall prove that I = 0. Assume that I > 0, then for any € > 0, we have
1(1-P)

I+ € > z(t) > I, eventually. Choosing 0 < € < =5~ and using (h3), we obtain

x(t) = z(t) —p)x(z(t)) > I - p(t)z(z(t)) > I - P(I +€) = k(I + €) > kz(t),

[-P(I+e)

where k = ——

> 0. Using the above inequality and (h6), we obtain from (3)

AT = - fd [t x[p(t, E)DAL

IA

- f (x[p(t, O S(HAL

d
< ko [ o aac
Since z*(t) < 0, we have

[r()E )1 < =K7.6(1).lDp(t, D] = K52 (¢ (1), (6)

where ¢1(t) = ¢(t, d). Integrating inequality (6) from ¢ to oo, we obtain

(A1) > kK f ) 5()z" (P1(8))As.

t

Using zV(¢1(s)) = I, we obtain

22(p) > E[ f ) 5(5)]’]’A(s). 7)
t

rY

Integrating inequality (7) from ¢ to co, we have

| © 1
—z2(t) > kI ft [@ f 5(s)A(s)]7 Au.

Integrating the last inequality from t; to co, we obtain

z(t) > kI ft f [% 56)AE)]F AuA. 8)

The last inequality contradict (5), we have I = 0. And since 0 < x(f) < z(t), then lim; x(t) = 0. This
completes the proof.

Lemma 2.3. Assume that x(t) is a positive solution of equation (1), z(t) is defined as in (2) such that
zZ8(t) > 0,z2(t) > 0, on [t., )T, t. > 0. Then

2 = R )17 (). 9)
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Proof. Since r(t)(z**(t))" is strictly decreasing on [t., oo)T, we get for t € [t,, o)

2 > A -2t
(r(s)(zM(t)) )
b r (s)

(HOE D)) f

\%

T(S)
and, hence
ZME) > R(t, £)r7 (Hz(t) on [t., 0o)r.

Lemma 2.4. Assume that x(f) is a positive solution of equation (1), correspondingly z(t) has the prop-
erty (I). Such that z2(t) > 0, z*4(t) > 0, on [t.,, ), t. > to. Furthermore,

| RCECIE (10)
)
where g(t) = 0(t)(1 — p(t))”, ¢P2(t) = ¢(t,c). Then there exists a T € [t., oo)t, sufficiently large, so that

z(t) > tz2(1),

z(t)/t is strictly decreasing, t € [T, 00).

Proof. Let U(t) = z(t) — tz*(t). Hence UA(t) = —o()z*2(t) < 0. We claim there exists a t; € [t., o)t
such that U(t) > 0, z(¢(t,&)) > 0 on [t;, c0)1. Assume not. Then U(t) < 0 on [t1, oo)r. Therefore,

> 0/ te [tll OO)T/

z()\* A —z(t)  U(®)
(T) T te(t) to(d)

which implies that z(t)/t is strictly increasing on [t1, 0o)t. Pick t, € [t1, o)t so that ¢(t, &) > ¢(t, &), fort > to.
Then

Z(qb(t/ E)) > Z(¢(t1r 5))
o) Pt )

so that z(¢(t, &)) > do(t, &), for t > t,. By (2), we obtain
x(t) = z(t) - p(Hx(t(t)) > z(t) — p(t)z(t(t))

=d>0,

2 (1-p®)z(). (11)
Using (11), (h4) and (h5), we have

d
OO = - f £t 2o, ODAE

IA

d
~5()(1 - p(t)y” f S
(01— pOY 2 (1, 0)

IN
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< =412 (Pa(1)), (12)
where g(t) = 8()(1 - p())’, $a(t) = (¢, ).
Now by integrating both sides of last equation from t, to t, we have
¢
OE0) = rE Y + [ 02 Ga)as <o
t

This implies that

t

t
r(t2)(2" (1)) = ft q(s)(z(P2(5)))" As = d” ft q(s)P} (5)As,

which contradicts (10). So U(t) > 0 on ¢ € [t;, o)1 and consequently,

zZ(O\D () - z(F) u(t)
(T) S T o v ielen

and we have that z(t)/t is strictly decreasing on t € [t1, 00)T. The proof is now complete.
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3. Main Results

In this section we give some new oscillation criteria for (1).

Theorem 3.1. Assume that (4), (5) and (10) hold and that, for all sufficiently large T; € [t, 0)T, there
isa T > T such that
¢ A +1
. $2(s) ((p2(s)+)
1 [ i v — ]A = 0o, 13
imsup fT P - e e (13)

where the function p € C ([to, oo)t, R) is a positive function. Then every solution of equation (1) is either
oscillatory or tends to zero.

Proof. Assume (1) has a nonoscillatory solution x(f) on [y, co)r. Then, without loss of generality that
x(t) >0, x(r(t)) >0fort >t and x(¢(t, &) >0, (¢, &) € [t1,00) X [c,d] for all 1 € [ty, co)r. z(t) is defined
as in (2). We suppose that z(t) > 0. We shall consider only this case, since the proof when z(t) is eventually
negative is similar. By Lemmas 2.1 and 2.2, we have

(O] <0, 222> 0, £ € [1, 00,

and either z2(t) > 0 for t > t, > #; or limje z(f) = limye x(f) = 0. Let z2(t) > 0 on [tp, o0). By (11)
and (12), we have

[r()([zB1*)T < —q(t)2 (1)),

where q(t) = 8()(1 - ()Y, ¢a(t) = (¢, 0).

Define the function w(t) by Riccati substitution

AA
() = p " X5 1)
Then
AA AANYY 1A
W) = pA(,g)r(t)([ZZy(éft))] ) | pa(t)[r(f)([;/(z)] )>]
_ rOzO1 o OO T O [014) = (1)
= PA(t)Zy—(t) +p (f)zyg—(t) - p’(h) 20790) :

(From equation (1), the definition of w(t) and using the fact z(t)/t is strictly decreasing for t € [t3, o),
t3 > 1, it follows that

A y
po () w(t) - p"(Ha() Z'(pa(h) (), (O[O @ ()™

wh(t) <

p(t) z7(o(t)) 2V (t)z7(t)
AA A
(i)) p ()q(t)(¢2())) —-p (t)r(t)([zgjzl)zfz((tz)y(t)) . (15)

Now we consider the following two cases: 0 <y < 1 and y > 1. In the first case 0 < y < 1. Using the
Keller’s chain rule(see [3]), we have

1
@) =y f [hz° + (1 = h)z) 7122t dh > p(z° (1) 25 (), (16)
0
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in view of (16), Lemma 2.2, Lemma 2.3 and (9), we have

R 020, (PO oo FOEAH) 2 (B)2(E)
W) < —p OO+ )~y O
oat) |, (pM(1)s . r7 (A H) (f)
S O A L e R e )
o) ) ERaa0)
< =P OIOC ) + )~ yp ORG E) =

In the second case y > 1. Applying the Keller’s chain rule , we have

1
@)t =y f [h2° + (1 = )z 280 dh = y(a(t) ~'2(),
0

in the view of (18), Lemma 2.2, Lemma 2.3 and (9), we have

A . Pat) (PO D)+ o TOLOIY) 28 (B2 ()
WA < = OaOC 7 + ) -yt (07
o Pat) (PP D)+ §R0)
w™(t) < —p°(Hg(t)( ) ) + o) w(t) = yp°(E) (t))yR(f t)p T
By (17), (19) and the definition of S(t), we have, for y > 0,
ph
wh(t) < —p°(Hg (t)(%((t))) 8% w(t) - yp° (HB(HR(E, t*)z:j((:)) ,
where A := % Define A > 0 and B > 0 by
AN = ypP (DB(OR(E 1) 53,
B/\—l = P .
A(yp“(t)ﬁ(t)R(t,t»))%
Then using the inequality [20]
AABY - AY < (A -1)B?
which yields
(p*(1)+ wh(t) _ ((p*®)+)*!
o O VP ORORE )y = G e ORE L)y

1218

(17)

(18)

(19)

(20)

(21)
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¢(From this last inequality and (20), we find

(P )
(7 + 1 BMHp  (OR(E L))

P2(t)

w(t) < —p°(B)gt)( o0

)’ +

Integrating both sides from T to t , we get

oo 26 (p 6D
J oSy - Ry 1 = ) - ) < (D),

which contradicts to assumption (13). This completes the proof of Theorem 3.1.

Theorem 3.2. Assume that (4), (5) and (10) hold. Furthermore, suppose that there exist functions
H,h € Cy(ID,R), where D = (t,s) : t > s > ty such that

H(t,t)=0,t>0

H(t,s) >0, t>s >t

and H has a nonpositive continous A-partial derivative H*(t,s) with respect to the second variable and
satisfies

pi(s) _h(t,s) S)
pGs) — pGs)

H™(a(t),s) + H(o(t), 0(s)) H(o(t), o))", (22)

and for all sufficiently large T; € [ty, )T, there is a T > T; such that
1 a(t)
limsup ———— f X(t,s)As = oo, (23)
D Ho®),T) Jr

where p is a positive A-differentiable function and

P2(s) .,
a(s)

(h-(t, )

X(t,9) = H(o(0), 0)p6)n(s) TG ORET

) =

Then every solution of equation (1) is either oscillatory or tends to zero.

Proof. Suppose that x(t) is a nonoscillatory solution of (1) and z(t) is defined as in (2). Without loss
of generality, we may assume that there is a t; € [to, oo) sufficiently large so that the conclusions of Lemma
2.1. hold and (22) holds for t, > t;. If case (I) of Lemma 2.1. holds then proceeding as in the proof of
Theorem 3.1. , we see that (20) holds for t > t,. Multiply both sides of (20) by H(o(t), 0(s)) and integrating
from T to o(t), we get

a(t) (]52( A a(t) N
. H(a(t), a(s))p"(s)q(s o) —)VAs < - . H(a(t), a(s))w"(s)As

a(t) A
f Ho®), 06) - w(s)As
T p(s)

o(t) A( )

- H(O(f),O(S))Vp"(S)ﬁ(S)R(s,Tl)?;)\(ss) As, (A =

y+1

) (24)
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Integrating by parts and using H(t, t) = 0, we obtain

o (t) o (t)
H(o(t), o(s))w™(s)As = —H(o(t), T)w(T) — H2(a(t), s)w(s)As.
T

It then follows from (24) that

a(t) a(t)
H(o(t>,a(s))pf’(s)q(s)(qf((;’)msSH<a<t>,T>w<T>+ f H(o(0), syo(s)As
, W)
f H(o(h), o(s)) w( s - f (o), a)yp OBOIRE T o5 s

Then, we have

a(t)
Hio (), o0 0o 2

) As < H(a(t), T)w(T)

a(t) A o(t)
As P (S) _ (S)
o J 0,9 + HeO 00 S foeas - [ HO0), 0o ©BORE TH TS A

It then follows from (22) that

a(t)
" 2(s)
- HO®,00)p ) (s

)Y'As < H(o(t), T)w(T)

o) . (®) '
+fT [_h;t(,s;)H(a(t),a(S))V“]W(S)As— : H(o<t>,U(S>>VPJ<S>5(S>R‘S'Tl)Z:A((sS))AS

h_(t,s)
p(s)

a(t)
< H(o(t), w(T) + f [ H(o(b), a(s))m]w(s)As

o(t) )\()
- [ e peRE T S A

Therefore, as in Theorem 3.1. , by letting

AN = H(o(t), o(s)yp° (OBOR(E, T1) 5,

Bilo M9
= _
Alyp?(HBOR(E,T1)) 4

1220
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Then using the inequality [20]
AABM — AY < (A - 1)B.

We have

W)
A()

“Orh_(t,s y ()
f [ H(o(t»o(s»m]w(s)m— - HOW,0@)yp" OBORG,T))

o (h-(t, 9/
- fT O+ DO ORE T

a(t)
Hio), 00 N2

) As

“ (h-(t, )Y

H(o(t), T)w(T) + r (r+ D7 Bs)po (5)R(E, Th))

Then for T > T; we have

(h-(t, )"

¢2(s) ] As
(o + D7+ (B(s)p° ()R (s, T1))

a(s)

) - < H(o(t), T)w(T),

a(t)
f [H(a(t) a(s))p”(s)q(s)(

and this implies that

ff@ (s (h_(t, )
H (), T)f H(o(®), NP €E) (V+1)”“(13(5)100(5)13(5,Tl))”]

for all large T, which contradicts (23). This completes the proof of Theorem 3.2.

b

) As < w(T),

Remark 3.1. ;From Theorem 3.1, we can obtain different conditions for oscillation of equation (1.1) with
different choices of p(t).

Remark 3.2. The conclusion of Theorem 3.1 remains intact if assumption (13) is replaced by the two
conditions

$2(5)
a(s)

. f ((pA($)), !
hrfli?pr O+ DGO ORG LY S <

lim sup f p°(8)g(s)(——=)"As =

t—oo
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Remark 3.3. The conclusion of Theorem 3.2 remains intact if assumption (23) is replaced by the two
conditions

Pa(s)
a(s)

a(t)
limsup; f H(o(t), 0(5))p’ (5)4(s)(—z ) As = o0,
H(ot),T) Jr

t—oo

lim inf 1 v (h(t, )"
oo H(o(t), T) Jr (y + 1)1 (B(s)p?(s)R(s, T1))”

Example 3.1. Consider the following third order neutral dynamic equation ¢ € [ty, o),

3 t—c-1 s\ a3

(F(a@+ S=na-p2) ) + [ 520 -one=0, 25)
wherey =3, r(t) =£, tw(t)=t-1, ¢t&) =t-& pit) =52, ¢ot) = plt,e) =t—c, () = 4,
a is a positive constant.
It is clear that condition (4), (5) and (10) hold. Thus, we assume T is a time scale satisfying o(f) < kt,
forsomek >1, t> Ty > t.. We will use the formula

1
@) =y f [hx® + (1 = h)x]Lx2(t)dh, (26)
0

where x(t) is delta differentiable and eventually positive or eventually negative, which is a simple conse-
quence of Keller’s chain rule [3, Theorem 1.90]. When y > 1, by Theorem 3.1, pick p(t) = £, by (26), we
have that (#)* < yo?~!(t). Therefore

. s (026,
lim sup fT [y - O+ DO GRE L)Y Jas

. ‘Ta 3,k
> hmsupj; [g—(z) —]As

t—oo

t
> (a—(§)4k8)limsupf As = oo,
4 T

t—oo S

if & > (3)*k%. Hence, by Theorem 3.1. every solution of (25) is oscillatory or tends to zero if a > (3)*5.
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