

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

(ψ, φ) -weak Contraction on Ordered Uniform Spaces

Duran Turkoglu^{a,b}, Vildan Ozturk^c

^aDepartment Of Mathematics, Faculty Of Science, Gazi University, Teknikokullar, 06500, Ankara, Turkey
 ^bFaculty Of Science and Arts, Amasya University, Amasya, Turkey
 ^cDepartment Of Mathematics, Faculty Of Science and Art, Artvin Coruh University, 08000, Artvin, Turkey

Abstract. In this paper, we prove a fixed point theorem for (ψ, φ) –contractive mappings on ordered uniform space.

1. Introduction

We call a pair (X, ϑ) to be a uniform space which consists of a non-empty set X together with an uniformity ϑ of wherein the latter begins with a special kind of filter on $X \times X$ whose all elements contain the diagonal $\Delta = \{(x, x) : x \in X\}$. If $V \in \vartheta$ and $(x, y) \in V$, $(y, x) \in V$ then x and y are said to be V-close. Also a sequence $\{x_n\}$ in X, is said to be a Cauchy sequence with regard to uniformity ϑ if for any $V \in \vartheta$, there exists $N \ge 1$ such that x_n and x_m are V-close for m, $n \ge N$. An uniformity ϑ defines a unique topology $\tau(\vartheta)$ on X for which the neighborhoods of $x \in X$ are the sets $V(x) = \{y \in X : (x, y) \in V\}$ when V runs over ϑ .

A uniform space (X, ϑ) is said to be Hausdorff if and only if the intersection of all the $V \in \vartheta$ reduces to diagonal Δ of X i.e. $(x, y) \in V$ for all $V \in \vartheta$ implies x = y. Notice that Hausdorffness of the topology induced by the uniformity guarantees the uniqueness of limit of a sequence in uniform space. An element V of uniformity ϑ is said to be symmetrical if $V = V^{-1} = \{(y, x) : (x, y) \in V\}$. Since each $V \in \vartheta$ contains a symmetrical $W \in \vartheta$ and if $(x, y) \in W$ then X and Y are both Y and Y and Y are not uniform space and then one may assume that each $Y \in \vartheta$ is symmetrical. When topological concepts are mentioned in the context of a uniform space (X, ϑ) , they are naturally interpreted with respect to the topological space (X, τ) .

Aamri and El Moutawakil [2] proved some common fixed point theorems for some new contractive or expansive maps in uniform spaces by introducing the notions of an E-distance. Some other authors proved fixed point theorems using this concept ([4],[8],[10],[11],[16],[17]). In [5],[6] and [19] authors used the order relation on uniform space.

Existence of fixed points in partially ordered metric spaces was first investigated in 2004 by Ran and Reurings [18] and then by Nieto and Lopez [15]. Further results in this direction under weak contraction conditions were proved, e.g. ([3],[7],[9],[12],[14]).

In this paper, we establish a fixed point theorem satisfying (ψ, φ) –contractive condition on ordered uniform space. We also give an example.

2010 *Mathematics Subject Classification*. Primary 54H25; Secondary 54E15 *Keywords*. fixed point, uniform space, S-complete space, (ψ, φ) –contraction

Received: 06 June 2013; Accepted: 25 June 2014

Communicated by Ljubomir Ciric

Email addresses: dturkoglu@gazi.edu.tr (Duran Turkoglu), vildan_ozturk@hotmail.com (Vildan Ozturk)

2. Preliminaries

Definition 2.1. ([2]) Let (X, ϑ) be a uniform space. A function $p: X \times X \longrightarrow \mathbb{R}^+$ is said to be an A-distance if for any $V \in \mathcal{Y}$, there exists $\delta > 0$, such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ for some $z \in X$ imply $(x, y) \in V$.

Definition 2.2. ([2]) Let (X, ϑ) be a uniform space. A function $p: X \times X \longrightarrow \mathbb{R}^+$ is said to be an E-distance if (p1) p is an A- distance,

 $(p2) p(x, y) \le p(x, z) + p(z, y) \text{ for all } x, y, z \in X.$

Example 2.3. ([2]) Let $X = [0, +\infty)$ and $p(x, y) = \max\{x, y\}$. The function p is an A-distance. Also, p is an E-distance.

The following lemma embodies some useful properties of E- distance.

Lemma 2.4. ([1], [2]) Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let $\{x_n\}$ and $\{y_n\}$ be arbitrary sequences in X and $\{\alpha_n\}_n$ be sequences in \mathbb{R}^+ converging to 0. Then, for x, y, $z \in X$, the following holds (a) If $p(x_n, y) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for all $n \in \mathbb{N}$, then y = z. In particular, if p(x, y) = 0 and p(x, z) = 0, then y = z.

- (b) If $p(x_n, y_n) \le \alpha_n$ and $p(x_n, z) \le \beta_n$ for all $n \in \mathbb{N}$, then $\{y_n\}$ converges to z.
- (c) If $p(x_n, x_m) \le \alpha_n$ for all m > n, then $\{x_n\}$ is a Cauchy sequence in (X, ϑ) .

Let (X, ϑ) be a uniform space equipped with E- distance p. A sequence in X is p-Cauchy if it satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2.5. ([1], [2]) Let (X, ϑ) be a uniform space and p be an E-distance on X.Then

- i) X is said to be S-complete if for every p-Cauchy sequence $\{x_n\}$ there exists $x \in X$ with $\lim p(x_n, x) = 0$,
- ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence $\{x_n\}$ there exists $x \in X$ with $\lim x_n = x$ with respect to $\tau(\vartheta)$,
- iii) $f: X \longrightarrow X$ is p-continuous if $\lim_{n \to \infty} p(x_n, x) = 0$ implies $\lim_{n \to \infty} p(fx_n, fx) = 0$, iv) $f: X \longrightarrow X$ is $\tau(\vartheta)$ -continuous if $\lim_{n \to \infty} x_n = x$ with respect to $\tau(\vartheta)$ implies $\lim_{n \to \infty} fx_n = fx$ with respect to $\tau(\vartheta)$.

Remark 2.6. ([2]) Let (X, ϑ) be a Hausdorff uniform space and let $\{x_n\}$ be a p-Cauchy sequence. Suppose that X is S-complete, then there exists $x \in X$ such that $\lim_{n \to \infty} p(x_n, x) = 0$. Lemma 2.4 (b) then gives $\lim_{n \to \infty} x_n = x$ with respect to the topology $\tau(\vartheta)$. Therefore S-completeness implies p-Cauchy completeness.

We shall also state the following definition of altering distance function which is required in the sequel to establish a fixed point theorem in uniform space.

Definition 2.7. ([6]) A function $\psi:[0,\infty)\to[0,\infty)$ is called an altering distance function if the following properties are satisfied:

- (i) ψ (0) = 0,
- (ii) ψ is continuous and monotonically nondecreasing.

3. Fixed Point Result

Theorem 3.1. Let (X, ϑ) be a Hausdorff uniform space, " \leq " be a partial order on X. Suppose p be an E-distance on S-complete space X. Let $T: X \to X$ be a p-continuous or $\tau(\vartheta)$ -continuous nondecreasing mapping such that for all comparable $x, y \in X$ with

$$\psi\left(p\left(Tx,Ty\right)\right) \le \psi\left(p\left(x,y\right)\right) - \varphi\left(p\left(x,y\right)\right),\tag{1}$$

where $\psi, \varphi : [0, \infty) \to [0, \infty)$ are altering distance functions.

If there exists $x_0 \in X$ with $x_0 \leq T(x_0)$ then T has a fixed point.

Proof. If $T(x_0) = x_0$ then the proof is finished. Suppose that $T(x_0) \neq x_0$. Since $x_0 \leq T(x_0)$ and T is nondecreasing, we obtain by induction that

$$x_0 \le T(x_0) \le T^2(x_0) \le T^3(x_0) \le \cdots \le T^n(x_0) \le T^{n+1}(x_0) \le \cdots$$

Put $x_{n+1} = Tx_n$, for all $n \ge 1$. If there exists a positive integer N such that $x_N = x_{N+1}$, then x_N is a fixed point of T. Now, we may assume that $x_n \ne x_{n+1}$, for all $n \ge 0$.

From (1), we have for all $n \ge 0$,

$$\psi(p(x_{n+2}, x_{n+1})) = \psi(p(Tx_{n+1}, Tx_n))
\leq \psi(p(x_{n+1}, x_n)) - \varphi(p(x_{n+1}, x_n))$$
(2)

Together with that ψ is nondecreasing implies that the sequence $\{p(x_{n+1}, x_n)\}$ is monotone decreasing and hence there exists an $r \ge 0$ such that

$$\lim_{n\to\infty}p(x_{n+1},x_n)=r.$$

Letting $n \to \infty$ in (2) and using the continuity of ψ and φ , we obtain

$$\psi\left(r\right)\leq\psi\left(r\right)-\varphi\left(r\right)$$

which is a contradiction unless r = 0. Hence,

$$\lim_{n\to\infty}p(x_{n+1},x_n)=0.$$

Similarly, we can show $\lim_{n\to\infty} p(x_n, x_{n+1}) = 0$.

Next we show that $\{x_n\}$ is a p-Cauchy sequence. Assume $\{x_n\}$ is not p-Cauchy. Then there exists an $\varepsilon > 0$ for which we can find subsequences $\{x_{m(k)}\}$ and $\{x_{n(k)}\}$ of $\{x_n\}$ with m(k) > n(k) > k such that

$$p\left(x_{n(k)}, x_{m(k)}\right) \ge \varepsilon. \tag{3}$$

Further, corresponding to n(k), we can choose m(k) in such a way that it is the smallest integer with m(k) > n(k) and satisfying (3). Hence,

$$p\left(x_{n(k)},x_{m(k)-1}\right)<\varepsilon.$$

Then we have

$$\varepsilon \leq p\left(x_{n(k)}, x_{m(k)}\right) \leq p\left(x_{n(k)}, x_{m(k)-1}\right) + p\left(x_{m(k)-1}, x_{m(k)}\right),$$

that is

$$\varepsilon \leq p\left(x_{n(k)}, x_{m(k)}\right) < \varepsilon + p\left(x_{n(k)-1}, x_{n(k)}\right).$$

Taking the limit as $k \to \infty$, we have

$$\lim_{k \to \infty} p\left(x_{n(k)}, x_{m(k)}\right) = \varepsilon. \tag{4}$$

From (p2),

$$p\left(x_{n(k)}, x_{m(k)}\right) \le p\left(x_{n(k)}, x_{n(k)+1}\right) + p\left(x_{n(k)+1}, x_{m(k)+1}\right) + p\left(x_{m(k)+1}, x_{m(k)}\right)$$

and

$$p\left(x_{n(k)+1}, x_{m(k)+1}\right) \le p\left(x_{n(k)+1}, x_{n(k)}\right) + p\left(x_{n(k)}, x_{m(k)}\right) + p\left(x_{m(k)}, x_{m(k)+1}\right).$$

Taking the limit as $k \to \infty$ we have

$$\lim_{k \to \infty} p\left(x_{n(k)+1}, x_{m(k)+1}\right) = \varepsilon. \tag{5}$$

From (1),

$$\psi\left(p\left(x_{n(k)+1},x_{m(k)+1}\right)\right) \leq \psi\left(p\left(x_{n(k)},x_{m(k)}\right)\right) - \varphi\left(p\left(x_{n(k)},x_{m(k)}\right)\right).$$

Letting $k \to \infty$ in the above inequality, using (4), (5) and the continuities of ψ and φ , we have

$$\psi(\varepsilon) \leq \psi(\varepsilon) - \varphi(\varepsilon)$$
,

which is a contradiction by virtue of a property of φ .

Hence $\{x_n\}$ is a *p*-Cauchy sequence. Since *S*-completeness of *X*, there exists a $z \in X$ such that

$$\lim_{n\to\infty}p\left(x_{n},z\right)=0$$

Moreover, the p-continuity of T implies that $\lim_{n\to\infty} p\left(Tx_n,Tz\right)=0$. So, by Lemma 2.4 (a), z=Tz. Using Remark 2.6, the proof is similar when T is $\tau(\vartheta)$ -continuous . \square

Example 3.2. Let X = [0,1] equipped with usual metric d(x,y) = |x-y| and a partial order be defined as $x \le y$ whenever $y \le x$ and suppose

$$\vartheta = \{V \subset X \times X : \Delta \subset V\}.$$

Define the function p as p(x, y) = y for all x, y in X and $T: X \to X$ defined by $T(t) = \frac{t^2}{1+t}$. Consider the functions φ and ψ defined as follows

$$\varphi(t) = \frac{t}{1+t}$$
 and $\psi(t) = t$.

Definition of ϑ , $\cap_{V \in \vartheta} V = \Delta$ and this show that the uniform space (X, ϑ) is Hausdorff uniform space. And also X is S-complete. On the other hand, p is an E-distance. T is p-continuous and φ and ψ are continuous, monotone nondecreasing. For x = 0.5 and y = 0.3, using usual metric, (1) does not hold. However, we have that for all $x, y \in X$

$$\psi\left(p\left(Tx,Ty\right)\right) \leq \psi\left(p\left(x,y\right)\right) - \varphi\left(p\left(x,y\right)\right).$$

And 0 is the fixed point of T.

References

- [1] M. Aamri, S. Bennari, D. El Moutawakil, Fixed points and variational principle in uniform spaces, Siberian Electronic Mathematical Reports 3 (2006)137-142.
- [2] M. Aamri, D. El Moutawakil, Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces, Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis 20 (2004) 83-91.
- [3] M. Abbas, T. Nazir, S. Radenović, Common fixed point theorem for four maps in partially ordered metric spaces, Appl. Math. Lett. 23 (3)(2010) 1520-1526.
- [4] M. Alimohammady, M. Ramzannezhad, On ϕ -fixed point for maps on uniform spaces, J. Nonlinear Sci. and Appl 4 (1) (2008) 241-143.
- [5] I. Altun, Common fixed point theorems for weakly increasing mappings on ordered uniform spaces, Miskolc Mathematical Notes 12 (1) (2011)3–10.
- [6] I. Altun, M. Imdad, Some fixed point theorems on ordered uniform spaces, Filomat, 23 (3) (2009) 15-22.
- [7] S.C. Binayak, A. Kundu, (ψ, α, β) –
- [8] A.O. Bosede, On some common fixed point theorems in uniform spaces, General Mathematics 19 (2) (2011) 41–48.
- [9] L.J. Ćirić, N. Cakić, M. Rajović, J.S. Ume, Monotone generalized nonlinaer contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008) Article ID 131294.

- [10] R. Chugh, M. Aggarwal, Fixed points of intimate mappings in uniform spaces, Int. Journal of Math. Analysis 6 (9) (2012) 429 -436.
- [11] V.B. Dhagat, V. Singh, S. Nath, Fixed point theorems in uniform spaces, Int. Journal of Math. Analysis 3 (4) (2009) 197 202.
- [12] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear Anal. 71 (2009) 3403-3410.
- [13] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bulletin of the Australian Mathematical Society 30 (1) (1984) 1–9.
- [14] H.K. Nashine, B. Samet, Fixed point results for mappings satisfying (ψ, φ) weakly contractive condition in partially ordered metric spaces, Nonlinear Anal. 74 (6) (2011) 2201-2209.
- [15] J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets applications to ordinary differential equations, Order. 22 (2005), 223-239.
- [16] M.O. Olatinwo, On some common fixed point theorems of Aamri and El MoutawakiliIn uniform spaces, Applied Mathematics E-Notes 8 (2008) 254-262.
- [17] M.O. Olatinwo, Some common fixed point theorems for self-mappings in uniform space, Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis 23 (2007) 47-54.
- [18] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2004) 1435-1443.
- [19] D.Turkoglu, D. Binbasioglu, Some fixed-point theorems for multivalued monotone mappings in ordered uniform space, Fixed Point Theory Appl. 2011 (2011) Article ID 186237.