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Abstract. In this paper, we prove a fixed point theorem for
(
ψ,ϕ

)
−contractive mappings on ordered

uniform space.

1. Introduction

We call a pair (X, ϑ) to be a uniform space which consists of a non-empty set X together with an
uniformity ϑ of wherein the latter begins with a special kind of filter on X × X whose all elements contain
the diagonal ∆ = {(x, x) : x ∈ X}. If V ∈ ϑ and

(
x, y

)
∈ V,

(
y, x

)
∈ V then x and y are said to be V−close. Also

a sequence {xn} in X, is said to be a Cauchy sequence with regard to uniformity ϑ if for any V ∈ ϑ, there
exists N ≥ 1 such that xn and xm are V−close for m,n ≥ N. An uniformity ϑ defines a unique topology τ (ϑ)
on X for which the neighborhoods of x ∈ X are the sets V (x) =

{
y ∈ X :

(
x, y

)
∈ V

}
when V runs over ϑ.

A uniform space (X, ϑ) is said to be Hausdorff if and only if the intersection of all the V ∈ ϑ reduces
to diagonal ∆ of X i.e.

(
x, y

)
∈ V for all V ∈ ϑ implies x = y. Notice that Hausdorffness of the topology

induced by the uniformity guarantees the uniqueness of limit of a sequence in uniform space. An element
V of uniformity ϑ is said to be symmetrical if V = V−1 =

{(
y, x

)
:
(
x, y

)
∈ V

}
. Since each V ∈ ϑ contains a

symmetrical W ∈ ϑ and if
(
x, y

)
∈ W then x and y are both W and V−close and then one may assume that

each V ∈ ϑ is symmetrical. When topological concepts are mentioned in the context of a uniform space
(X, ϑ), they are naturally interpreted with respect to the topological space (X, τ (υ)) .

Aamri and El Moutawakil [2] proved some common fixed point theorems for some new contractive or
expansive maps in uniform spaces by introducing the notions of an E−distance. Some other authors proved
fixed point theorems using this concept ([4],[8],[10],[11],[16],[17]). In [5],[6] and [19] authors used the order
relation on uniform space.

Existence of fixed points in partially ordered metric spaces was first investigated in 2004 by Ran and
Reurings [18] and then by Nieto and Lopez [15]. Further results in this direction under weak contraction
conditions were proved, e.g. ([3],[7],[9],[12],[14]).

In this paper, we establish a fixed point theorem satisfying
(
ψ,ϕ

)
−contractive condition on ordered

uniform space. We also give an example.
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2. Preliminaries

Definition 2.1. ([2]) Let (X, ϑ) be a uniform space. A function p : X × X −→ R+ is said to be an A− distance if for
any V ∈ ϑ, there exists δ > 0, such that p (z, x) ≤ δ and p

(
z, y

)
≤ δ for some z ∈ X imply

(
x, y

)
∈ V.

Definition 2.2. ([2]) Let (X, ϑ) be a uniform space. A function p : X × X −→ R+ is said to be an E− distance if(
p1

)
p is an A− distance,

(p2) p
(
x, y

)
≤ p (x, z) + p

(
z, y

)
for all x, y, z ∈ X.

Example 2.3. ([2]) Let X = [0,+∞) and p
(
x, y

)
= max

{
x, y

}
. The function p is an A−distance. Also, p is an

E−distance.

The following lemma embodies some useful properties of E−distance.

Lemma 2.4. ([1] , [2]) Let (X, ϑ) be a Hausdorff uniform space and p be an E-distance on X. Let {xn} and
{
yn

}
be

arbitrary sequences in X and {αn},
{
βn

}
be sequences in R+ converging to 0. Then, for x, y, z ∈ X, the following holds

(a) If p
(
xn, y

)
≤ αn and p (xn, z) ≤ βn for all n ∈N, then y = z. In partıcular, if p

(
x, y

)
= 0 and p (x, z) = 0, then

y = z.
(b) If p

(
xn, yn

)
≤ αn and p (xn, z) ≤ βn for all n ∈N, then

{
yn

}
converges to z.

(c) If p (xn, xm) ≤ αn for all m > n, then {xn} is a Cauchy sequence in (X, ϑ) .

Let (X, ϑ) be a uniform space equipped with E−distance p. A sequence in X is p−Cauchy if it satisfies
the usual metric condition. There are several concepts of completeness in this setting.

Definition 2.5. ([1] , [2]) Let (X, ϑ) be a uniform space and p be an E− distance on X.Then
i) X is said to be S−complete if for every p−Cauchy sequence {xn} there exists x ∈ X with lim

n→∞
p (xn, x) = 0,

ii) X is said to be p−Cauchy complete if for every p−Cauchy sequence {xn} there exists x ∈ X with lim
n→∞

xn = x
with respect to τ (ϑ) ,

iii) f : X −→ X is p−continuous if lim
n→∞

p (xn, x) = 0 implies lim
n→∞

p
(

f xn, f x
)

= 0,

iv) f : X −→ X is τ (ϑ)−continuous if lim
n→∞

xn = x with respect to τ (ϑ) implies lim
n→∞

f xn = f x with respect to
τ (ϑ) .

Remark 2.6. ([2]) Let (X, ϑ) be a Hausdorff uniform space and let {xn} be a p−Cauchy sequence. Suppose that X is
S−complete, then there exists x ∈ X such that lim

n→∞
p (xn, x) = 0 . Lemma 2.4 (b) then gives lim

n→∞
xn = x with respect

to the topology τ (ϑ) . Therefore S−completeness implies p−Cauchy completeness.

We shall also state the following definition of altering distance function which is required in the sequel
to establish a fixed point theorem in uniform space.

Definition 2.7. ([6]) A functionψ : [0,∞)→ [0,∞) is called an altering distance function if the following properties
are satisfied:

(i) ψ (0) = 0,
(ii) ψ is continuous and monotonically nondecreasing.

3. Fixed Point Result

Theorem 3.1. Let (X, ϑ) be a Hausdorff uniform space, ” � ” be a partial order on X. Suppose p be an E-distance on
S-complete space X. Let T : X → X be a p−continuous or τ (ϑ)−continuous nondecreasing mapping such that for
all comparable x, y ∈ X with

ψ
(
p
(
Tx,Ty

))
≤ ψ

(
p
(
x, y

))
− ϕ

(
p
(
x, y

))
, (1)

where ψ,ϕ : [0,∞)→ [0,∞) are altering distance functions.
If there exists x0 ∈ X with x0 � T (x0) then T has a fixed point.
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Proof. If T (x0) = x0 then the proof is finished. Suppose that T (x0) , x0. Since x0 � T (x0) and T is
nondecreasing, we obtain by induction that

x0 � T (x0) � T2 (x0) � T3 (x0) � · · · � Tn (x0) � Tn+1 (x0) � · · · .

Put xn+1 = Txn, for all n ≥ 1. If there exists a positive integer N such that xN = xN+1 , then xN is a fixed point
of T. Now, we may assume that xn , xn+1, for all n ≥ 0.

From (1), we have for all n ≥ 0,

ψ
(
p (xn+2, xn+1)

)
= ψ

(
p (Txn+1,Txn)

)
≤ ψ

(
p(xn+1, xn)

)
− ϕ

(
p (xn+1, xn)

)
(2)

Together with that ψ is nondecreasing implies that the sequence
{
p(xn+1, xn)

}
is monotone decreasing and

hence there exists an r ≥ 0 such that

lim
n→∞

p(xn+1, xn) = r .

Letting n→∞ in (2) and using the continuity of ψ and ϕ, we obtain

ψ (r) ≤ ψ (r) − ϕ (r)

which is a contradiction unless r = 0. Hence,

lim
n→∞

p(xn+1, xn) = 0.

Similarly, we can show lim
n→∞

p(xn, xn+1) = 0.
Next we show that {xn} is a p−Cauchy sequence. Assume {xn} is not p−Cauchy. Then there exists an

ε > 0 for which we can find subsequences
{
xm(k)

}
and

{
xn(k)

}
of {xn}with m (k) > n (k) > k such that

p
(
xn(k), xm(k)

)
≥ ε. (3)

Further, corresponding to n (k) , we can choose m (k) in such a way that it is the smallest integer with
m (k) > n (k) and satisfying (3). Hence,

p
(
xn(k), xm(k)−1

)
< ε.

Then we have

ε ≤ p
(
xn(k), xm(k)

)
≤ p

(
xn(k), xm(k)−1

)
+ p

(
xm(k)−1, xm(k)

)
,

that is

ε ≤ p
(
xn(k), xm(k)

)
< ε + p

(
xn(k)−1, xn(k)

)
.

Taking the limit as k→∞, we have

lim
k→∞

p
(
xn(k), xm(k)

)
= ε. (4)

From (p2),

p
(
xn(k), xm(k)

)
≤ p

(
xn(k), xn(k)+1

)
+ p

(
xn(k)+1, xm(k)+1

)
+ p

(
xm(k)+1, xm(k)

)
and

p
(
xn(k)+1, xm(k)+1

)
≤ p

(
xn(k)+1, xn(k)

)
+ p

(
xn(k), xm(k)

)
+ p

(
xm(k), xm(k)+1

)
.
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Taking the limit as k→∞we have

lim
k→∞

p
(
xn(k)+1, xm(k)+1

)
= ε. (5)

From (1),

ψ
(
p
(
xn(k)+1, xm(k)+1

))
≤ ψ

(
p
(
xn(k), xm(k)

))
− ϕ

(
p
(
xn(k), xm(k)

))
.

Letting k→∞ in the above inequality, using (4), (5) and the continuities of ψ and ϕ, we have

ψ (ε) ≤ ψ (ε) − ϕ (ε) ,

which is a contradiction by virtue of a property of ϕ.
Hence {xn} is a p-Cauchy sequence. Since S−completeness of X, there exists a z ∈ X such that

lim
n→∞

p (xn, z) = 0

Moreover, the p−continuity of T implies that lim
n→∞

p (Txn,Tz) = 0. So, by Lemma 2.4 (a), z = Tz. Using

Remark 2.6, the proof is similar when T is τ (ϑ)−continuous .

Example 3.2. Let X = [0, 1] equipped with usual metric d
(
x, y

)
=

∣∣∣x − y
∣∣∣ and a partial order be defined as x � y

whenever y ≤ x and suppose

ϑ = {V ⊂ X × X : ∆ ⊂ V} .

Define the function p as p
(
x, y

)
= y for all x, y in X and T : X → X defined by T (t) = t2

1+t . Consider the functions
ϕ and ψ defined as follows

ϕ (t) =
t

1 + t
and ψ (t) = t.

Definition of ϑ, ∩V∈ϑV = ∆ and this show that the uniform space (X, ϑ) is Hausdorff uniform space. And also X
is S−complete.On the other hand, p is an E−distance. T is p−continuous and ϕ and ψ are continuous, monotone
nondecreasing. For x = 0.5 and y = 0.3, using usual metric, (1) does not hold. However, we have that for all x, y ∈ X

ψ
(
p
(
Tx,Ty

))
≤ ψ

(
p
(
x, y

))
− ϕ

(
p
(
x, y

))
.

And 0 is the fixed point of T.
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