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Abstract. It is well-known that the remaining term of any n-point interpolatory quadrature rule such as
Gauss-Legendre quadrature formula depends on at least an n-order derivative of the integrand function,
which is of no use if the integrand is not smooth enough and requires a lot of differentiation for large n. In
this paper, by defining a specific linear kernel, we resolve this problem and obtain new bounds for the error
of Gauss-Legendre quadrature rules. The advantage of the obtained bounds is that they do not depend on
the norms of the integrand function. Some illustrative examples are given in this direction.

1. Introduction

A general n-point quadrature formula is denoted by

b n
[ x =Y wnafn + Rl )
a k=1

where {xk,n}]’(’zland {wk,n};;:lare respectively nodes and weight coefficients and R,[f] is the corresponding
error [2,9].

Let IT; be the set of algebraic polynomials of degree at most 4. The quadrature formula (1) has degree of
exactness d if for every p € II; we have R,[p] = 0. In addition, if R,[p] # O for some Il4;1, formula (1) has
precise degree of exactness d.

The convergence order of quadrature rule (1) depends on the smoothness of the function f as well as on its
degree of exactness. It is well known that for given mutually different nodes {x ,}?_, we can always achieve

k=1
a degree of exactness d = n — 1 by interpolating at these nodes and integrating the interpolated polynomial

instead of f. Namely, taking the node polynomial

W) = [ ] = e,
k=1

by integrating the Lagrange interpolation formula

F&) = Y FrnL 6 Xe) + 1l f),
k=1
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where

W, (x)
\y;l (xk,n)(x - xk,n)

we obtain (1), with

1 bW, (v)
Wiy = dx (k=1,2,...,n),
o \Il;l (xk,n) L X = Xgn ( )

L(x; Xk ) = k=1,2,..,n),

and

b
Rulf] = f o(f: %) dx.

It is clear that if f € IT,—; then r,(f; x) = 0 and therefore R,[f] = 0.

Quadrature formulae obtained in this way are known as interpolatory [9, 16]. A main problem in an n-point
interpolatory quadrature is that the remaining term depends on at least an n-order derivative of the inte-
grand function which is of no use if the integrand is not smooth enough and requires a lot of differentiation
and calculation for large n. Hence, many authors prefer to use other techniques including lower order
derivatives [1, 3, 4, 6, 17, 23]. For example, if only f € C'[a, b], then the error term would strongly tend to
zero for a large class of quadrature rules [5, 7].

One of the important cases of interpolatory quadratures is the Gauss-Legendre formula which can be con-
structed via Hermite interpolation [16]. As we pointed out, since the remaining term of this formula depends
on a high 2n-order derivative of the integrand function [22], many people have used other techniques e.g.
[8, 10, 19-21]. In[11], Gautschi and Varga used the contour integral representation of the remainder term
for analytic integrands. Hunter in [12] improved the results of [11] giving a sharper inequality. However,
a main concern in their technique is that, in most cases, it is hard to obtain the explicit forms of the bounds
due to much complexity [18, p.803].

In this paper, we consider a new approach to estimate the error term of any arbitrary interpolatory quadra-
ture, including Gauss-Legendre rule, which is based on defining a linear generating kernel and the known
values of the nodes and weight coefficients when the first derivative of the integrand function is bounded
between two real functions. In other words, by defining a specific linear kernel we obtain a unified error
bound for any interpolatory quadrature rule and consider the Gauss-Legendre quadrature as a special case
in this direction. The advantage of linear kernels is that one can easily and explicitly compute the values
L'-norm, L®-norm and also their maximum and minimum. In the next section, we describe some notations
and integral inequalities, which are related to results of this paper. We also study the general properties
of a linear kernel in a parametric form. In section 2, we prove three main theorems by which one can
estimate the residue of an interpolatory quadrature rule, independent of the integrand function and its
derivatives. Finally in section 3, the results of the presented theorems are employed on two particular cases
of Gauss-Legendre rules for n = 2, 3.

1.1. Preliminaries and Notations

Let LP[a,b] (1 < p < o0) denote the space of p-power integrable functions on the interval [a, b] with the
standard norm

I, = ([ rora)

and L*[a, b] the space of all essentially bounded functions on [4, b] with the norm

Ifll., = sup [fe)-
x€la,b]
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If h € L'[a,b] and g € L*[a, ], then

b
‘ f h(x) g(x) dx

Let A = (a1,az, ..., aw) and H = (hy, hy, ..., hy—1), where @ < hy < hy < ... < hy—1 < B, be two real sequences.
The following piecewise continuous function is known as a linear generating kernel on the interval [«, §]

<|lnll || 7], -

t—m tela, ],

t—ay  te(,hl,
K, (5A, H) = (2)

t—ap te (hm—lrﬁ]‘

The main advantage of the kernel (2) is that its L' -norm, L*-norm and its maximum and minimum are
explicitly computable on [«, f] as follows

h h
Ll = [P 1K (A, B de = [t —ay | dt+ [ |t —ap| dt + ..+ [ |t -a,|dt

h—ay hy—a; B—am
= zldz+ [, 7 lzldz+ .+ [, " |z dz.

a—ay hm—l —m

And by noting this general fact that
@ -pr»)/2 if p,g>0,
fqlzldz= —(g*>-p*/2 if p,g<0,
' @ +pH/2 if p<0&qg>0,

relation (3) can be computed easily. For L*-norm we have

[l llo = max | K, (t; A, H)| =max{ max |t—ay|, max |[t—ap]|, .., max It—aml}
tela,pl tea,n] te(l ha] te(y-1,B]

=max{la~am|, -l b -al, k=6l . =l

ﬁ—am”.

Finally the maximum and minimum of the kernel (2) can be computed in the forms

max K,, (A, H) = max{ max (t —a;), max (f —ap), .., max (f— am)}
te[a,pl te[a,hq] te(hy hy] te(y-1,B1

=max{h—-a,hpy—ay, .., B—an},

and

min K, (£ A, H) = min{ min (t —a;), min (t—a), ..., min (t—a
telapl m ) {te[a,hl]( ) te(hl,hz]( 2 te(hm_1,[$]( m)}

=min{a—ai, hy—ax, ..., hyp_1 —am } .
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2. Error bounds for interpolatory quadrature rules

Let us consider the error functional of an interpolatory quadrature as

b n
R[] = ‘ f Fdx =Y Wi flia)|
a k=1
wherea < x1, <X24 < ... <X, <band {wn,k}zzo are solutions of the linear system

X bj+1 _aj+1
J _ P
E X nWhn = ]+—1 , (=01,..,n-1),

and then define a particular case of the linear kernel (2) on [g, b] as
uy(t) =t—a tela, xi],
ui (t) =t- (a + wl,n) te (xl,n/ x2,71] ’

K (£ by, foealy) =

n-1
un—l(t) =t- (ﬂ + Z wk,n) te (xn—l,n/ xn,n] ’
k=1

ug(t) =t —b t € (bl

From (6), the following identity can be directly verified

fb f(x)dx - i wk,nf(xk,n) .
a k=1

b
| K (el o) 0

1284

(5)

Theorem 2.1. Let f € Cl'[a,b]. If a(x) < f'(x) < B(x) for any a, B € Cla,b), then by noting the elements of the

kernel (6), the error functional (4) can be bounded as

n b
nl < Y wfun - [ feods <m,
k=1 a
where

k=0 Xk,n

with Xon = a4, Xp41,, = band

MO = Zf o (uk(t) —2|Mk(t)| alt) + uy(t) ‘;|Mk(t)| ﬁ(t)) it

k=0 Xkn
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Proof. By referring to relation (4) and the identity (7) first we have
I Ko (5 by el ) (£ — <259 gt
= R = 3 ([} Koo (5 by o) (@) + B0 ) = R3] ®)
(7 o0 (@) + BN dt + [ ) @0 + FOVE+ .+ [ wa(8) @) + B0 ).

Also, the assumption a(t) < f'(t) < B(t) gives

a(t) + ()| _ p(t) — a(t)
B0 B0~ .
Hence, from (8) and (9) one can conclude that
Ri[f] - %( L7 ug(t) (alt) + B(t)) dt + IN "“ul(t) (a(t) + B() dt + ... + f un(f) (a(t)+/3(t))dt)’
et (B 0l opabl, ) (F/0) - “95E9) a]
(10)

H—a(t
n+1< xkn k= 1/{wkn}k 1)’ Mdt

<[,

( 7 mo®] (@) + B dt + [ lua(B)] (a(t) + B(E)) dt + ... + f lun (O] (alt) + B(1)) dt)

After re-arranging (10) we eventually obtain

= Z ka”'” (uk(f) ‘;|uk(t)| alh) + uy(t) — |uk(t)| ﬁ(t)) it

k=0 Xkn

and

MO = kz_‘s fX:‘”” (”k(t) —Zluk(t)| alt) + uy(t) +2|Mk(t)| 5(t)) it

Remark 2.2. Although a(x) < f’(x) < B(x) is a straightforward condition in theorem 2.1, sometimes one might not
be able to easily obtain both bounds of a(x) and B(x) for f'. In this case, we can make use of two analogue theorems.
The first one would be helpful when f’ is unbounded from above and the second one would be helpful when f’ is
unbounded from below.

Theorem 2.3. Let f € Cl[a,b]. If a(x) < f(x) for any a € [a, b], then by noting the elements of the kernel (6), the
error functional (4) can be bounded as

n b
n <Y wafun - [ feodx <m?, a
k=1 a
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where

m® = z ka””uk(t)at)dt—(f(b) f@ - [, ba(t)dt)

a—Xinul, +a—Xiu|, w1n+a—x2n| ey

xmax{ [l nl ,
L W+ =Xt | £ Wi+ 0 = X, b= X
k=1 k=

with X0, = a, Xys1,0 = band

M = éo L w@yade+ (£6) - £@) - [ at)at)

a—Xinul, nta—Xiul, w1,n+a—x2,n| ey

Xmax{ |1 n-1 .
Zwkn"'a_xn 1n|s Zwkn+a_xnn/b xnn’
k=1 k=

Proof. By referring to relation (4) and the identity (7) first we have
b b
I3 Kor (6 fxally (e ) (F/ () = a(®) dt = Ry[f1 = [ Ky (b, falf_, ) a(t) dt

=R.[f] - (fu’“'" uo(f) a(t) dt + fx’l‘z () a)dt + ... + fxb un(b) a(t) dt) .

Therefore

RiLf] - ( [ wo@yayde + [ @ a@di+ .+ [ () at) dt)‘

n+1( {Xieubi_q, (wrnly, ) (f/(t) — a(t)) dt|

< [ Ko (6 byt )| (7 - @) at (12

<max|1<n+1 iy (ol )| (P10 - ate) de

= max [Kyen (5l i) | (FO) = £0) = [ o))

tela,b]

After re-arranging (12), the main inequality (11) will be derived.  m

Theorem 2.4. Let f € Cl[a,b]. If f'(x) < B(x) for any B € Cla, b], then by noting the elements of the kernel (6), the
error functional (4) can be bounded as

n b
n < Y wafun - [ feodx <m?, (13
k=1 a
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where

m = 3 [ uopeyde ([} podt - £0) + 1)

a—Xinul, nta—Xiul, w1,n+a—x2,,,| veey

Xmax{ |1 ol ,
Z Win + @ = Xn-1,n|, Z Win + @~ Xnpu|, b- xn,n)
k=1 k=1

with Xoy = 4, Xpp1n = b and

m = % [ o poa— ([ poat - £0)+ fo)

|a—x1,n , nta—Xiul, w1,n+a—x2,n| ey
X max -1 -1
Z Wikn +a-— Xn—1n|, Z Wik,n +a-— Xnn| b- xn,n’
k=1 k=1

Proof. Since

I3 Ko (Bl () (£ = ) dt = R = [ Ko (8 nll_y, (il ) B0 dt

=R = ([ wo®pOd+ [ @0t + .+ [ w0 p0at),

Therefore

n+1( xknkll{wkl’l )(f t) ﬁt))di"
<[

< max | Kyt (5 el toeall, )| [ (B0 = £/0)

tela,b]

n+1( {1} k 17 wkn ’ (ﬁ(t t)) dt

—maX|Kn+1 xkn}k 1’{wk”k 1)‘(f B(t)ydt — f(b) + f(a) )

tela,b]

After re-arranging (14), the main inequality (13) will be derived. m

Ri[f] - ( L2 uo@ peyde + [ i e + ..+ [ ua(t)plo dt)‘

1287

(14)

Remark 2.5. Recently in [15] we have applied the results of theorems 2.1, 2.3 and 2.4 for all closed and open

Newton-Cotes quadrature rules, see also [13, 14]. For the closed type of Newton-Cotes formulae residue

fbf(x)dx— i Wiy f(a+ ih)
a i=0

where h = = and {w; ,}_, are solutions of the linear system
n j j+1 i+1
b—a b+t —al .
E (ﬂ+k7) Wkn = ],+—1, (] —0,1,...,71),
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we defined a particular case of the linear kernel (2) on [a, b] as
t—(a+wo,) tela,a+hn],

t—(a+wo, +win) te(@+h,a+2h],

K, (t; {wi,n}?zo) =

F—(@+ T win) e @+ (n—2ha+ (-1,
i=0

F—(@+ T win) te(a+ (n—1)hb].
i=0

And for the residue of the open type of Newton-Cotes formulae

-1

b n
f fx)dx — Vin f(a+ih)

i=1

where h = (b 2)

Zt(u+ib;

we defined a particular case of the linear kernel (2) on [a, b] as

and {v;,,}!-! are solutions of the linear system

j i+1 i+1
b+t —qal .
a) vin——a, (j=0,1,.,n=-2),

j+1

t—a tela,a+h],
t—(a+v1,) te(a+h,a+2h],

t—(@a+vi,+0v2,) te(@a+2h,a+3h],
K, (t {Uzn},n 11)
n-2

t—(@+ Y viy) te(@+m—-2h,a+n-1)h],
i=1

t—b te(@+m—1)hb].

Remark 2.6. An important advantage in all theorems 2.1, 2.3 and 2.4 is that necessary computations for obtaining

the bounds {m (’)} and {M(’)} are just in terms of the two functions a(x), B(x) not in terms of f and its derivatives
while other works ([1 71117, 23]) contain a variety of norms (like |||l || f'll> and ||f' |l ), which are rather difficult
to calculate.

3. Error bounds for Gauss-Legendre quadrature rules

One of the important cases in interpolatory quadrature rules is the Gauss-Legendre quadrature formula
which can be constructed via Hermit interpolation [16]. The Legendre polynomials

[n/2]
P = 57 Y (—1)"( . ) ( 2 -2k ) X,
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orthogonal with respect to the constant weight function have # real and distinct zeros {xy ,}”
ing order on [-1, 1]. The general form of Gauss-Legendre quadrature is denoted by

1 with increas-

1 ~ n 2 22n+1( 1)4 @n)
I b= ) R 0 @D GO CleE<. %)

In [22] it is pointed out that the error in (15) is unsuitable in practice as the derivative of order 2n may be
difficult to calculate and the actual error may be much less than a bound established by a high derivative
of fixed order 2n.

By noting (15), the linear kernel corresponding to Gauss-Legendre quadratures takes the form

u()(t) =t+ 1 te [_1/ xl,n] 7
— 2
w(t)=t+1- T PenE t € (x1,n, X2,n],
Koo (8 (il (@il ) = : 1 : (16)
e
Uy () =t+1- k§l —(1_%/”)53’,1(”,"»2) t € (Xn-1, Xunl,
Mn(t) =t-1 te (xn,n/ 1]

In this section, we consider the results of theorems 2.1, 2.3 and 2.4 for two and three point Gauss-Legendre
rules.

Example 3.1. Error bounds for two point Gauss-Legendre rule.

For n = 2, the residue of 2-point Gauss-Legendre formula is as

1
RFH(f) = f(g) +f(—§) - f_l f(t)dt,

and replacing its values in (16) gives the corresponding linear kernel as
t+1  te[-1,-V3/3],
K (£ xeal2y, (wially) =1t te (-V3/3,V3/3], (17)

t-1  te(V3/3,1].
Hence, by applying theorem 2.1 for (17) we obtain

m21 <R§M(f) < M.%f

where

ngi= [

-1

_ g 0 1
M§%=f 180 dt+f tﬁ(t)dt+f to«(t)dt+f (t-1)adt,
o 0 g ¢

[

V3

3 0 1
(t+1)a(t)dt + f ta(t) dt + f 1B(t) dt + f (t—1)B(t)dt,
0 -3 £

and

[
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provided that a(x) < f'(x) < B(x) for x € [-1, 1]. Similarly, by computing

V3

maX] | Ks (t; {xk,Z}izlf{wkrz}%ﬂ)' -3

te[-1,1
and applying theorem 2.3 for (17) we get

GL GL GL
myy < R7(f) <My,

where

1 - ¥ 1 V3 1
GL _ _ _ Y2 — f(—1) —
my, = j:l ta(t) dt + f:l a(t) dt f‘f a(t) dt 3 (f(l) f(=1) f_l a(t) dt) ,

1 —
MSE = f ta(t) dt + f
-1 -1

provided that a(x) < f'(x) for x € [-1, 1]. Finally applying theorem 3 for (17) yields

[

and

[

1 1
alt)dt — fﬁ at)dt +§ (f(l)— f(=1) - j: a(t)dt),

3 1

GL GL GL
my5 < Ry(f) <Mys,
where

3

1 -3 1 1
st = [ i [ poa- [ poa-2{ [ poa- - se),

It

and

3

1 -3 1 1
st [ wpoars [ poa- [ poas 2 ([ poda- g+ o),

provided that f’(x) < (x) for x € [-1,1].

[

Example 3.2. Error bounds for three point Gauss-Legendre rule.

For n = 3, the residue of 3-point Gauss-Legendre formula is as

5 5. 8 5 15 !
R$M(f) = §f(—T\/_)+§f(0)+§f(T\/_)—f_1f(t)df/

and the linear kernel as
t+1 te[-1,-V15/5],
t+4/9 te(-V15/5,0],

Koy (el (wialiy) = (18)
t—4/9 te (0, V15/5],

t—1 te(V15/5,1].



M. Masjed-Jamei / Filomat 28:6 (2014), 1281-1293

Hence, applying theorem 2.1 for (18) yields

m31 SRGL(f <MGL

3,17
where
mg[{ — f_‘lg t+Da()dt+ f_O% (t+ %)Oé(t) dt + f%g (t- %)Ué(t) dt
# [ G B0+ [ - Dpodt+ [ ¢ =D,
and

MG = f‘ga+nmow+f (t+3 Mﬂﬂ+f (- Hpod

AL+ Bawde+ [ (- Davdt+ [ = Dabdt,

provided that a(x) < f'(x) < B(x) for x € [-1,1]. Similarly, by computing

4

max ‘K4 (f; {xk,S}izlf{wkﬁ}i:l)' Ty

te[-1,1]

and applying theorem 2.3 for (18) one gets

m32 RGL(f <M3Gér

where

ﬁ

L= [ ta( t)dt+f1 a(t)dt+4f e () dt - fTa(t)dt g att)dt

~4(r) - fen - [ atar),
and

V&

flta t)dt+f1 (t)dt+4f 5 a(f)dt - 5[, adt- froz(t)dt

s ( £) = f=1) = [ ag) dt) ,

provided that a(x) < f'(x) for x € [-1,1]. And eventually applying theorem?.4 for (18) yields

GL GL GL
My < Ry (f) < My,

where

=f_11tﬁ(t)dt+f1 ﬁ(t)dt+4f rﬁ(t)dt—— Trﬁ(t)dt—frﬁ(t)dt

-4 ([Lpa - f + ),

1291
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5

MSh = fltﬁ(t)dt+f1 (t)dt+4frﬁ(t)dt 5/, Bwat- fmﬁ(t)dt

+4 ([ poydt - F0 + 1),

provided that f'(x) < (x) for x € [-1,1].
Let us finally add that the residue of 4-point Gauss-Legendre formula is in the form

and

REL(f) 18- \Ff( V525+7o ) 18+rf( \/525;73*0)
2850 (VST | 180 NSOV, _ [ gy,

its linear kernel as
V525470 V30
t+1 te[-1,-=22,
¢4 184730 € (- \/525+70F 55— 70W]
36 , 35
Ks (t; {xk,4}£:1/{ll7k,4}£:1) =4 ¢ € (- V525 70‘/7, \/5253570‘F]

\/525 70«F /525470 V30
( ’ 35 ] ’

f-1 F e (NE570V50 \/525+7o

where
) , 525 — 70 V30
s [ (5l nalt) | = g
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