
Filomat 28:6 (2014), 1143-1151
DOI 10.2298/FIL1406143M

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Recently, Wardowski [15] introduced the concept of F-contraction on complete metric space.
This type contraction is proper generalization of ordinary contraction. In the present paper, we give some
fixed point results for generalized F-contractions including Ćirić type generalized F-contraction and almost
F-contraction on complete metric space. Also, we give some illustrative examples.

1. Introduction and Preliminaries

Fixed point theory contains many different fields of mathematics, such as nonlinear functional analysis,
mathematical analysis, operator theory and general topology. The fixed point theory is divided into two
major areas: One is the fixed point theory on contraction or contraction type mappings on complete metric
spaces and the second is the fixed point theory on continuous operators on compact and convex subsets of a
normed space. The beginning of fixed point theory in normed space is attributed to the work of Brouwer in
1910, who proved that any continuous self-map of the closed unit ball ofRn has a fixed point. The beginning
of fixed point theory on complete metric space is related to Banach Contraction Principle, published in 1922.
Let (X, d) be a metric space and T : X → X be a mapping. Then T is said to be a contraction mapping if
there exists a constant L ∈ [0, 1), called a contraction factor, such that

d(Tx,Ty) ≤ Ld(x, y) for all x, y ∈ X. (1)

Banach Contraction Principle says that any contraction self-mappings on a complete metric space has a
unique fixed point. This principle is one of a very power test for existence and uniqueness of the solution of
considerable problems arising in mathematics. Because of its importance for mathematical theory, Banach
Contraction Principle has been extended and generalized in many directions (see[1–3, 6, 7, 9–14, 16]). One
of the most interesting generalization of it was given by Wardowski [15]. First we recall the concept of
F-contraction, which was introduced by Wardowski [15], later we will mention his result.

Let F be the set of all functions F : (0,∞)→ R satisfying the following conditions:
(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β,F(α) < F(β),
(F2) For each sequence {αn} of positive numbers limn→∞ an = 0 if and only if limn→∞ F(an) = −∞
(F3) There exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.

2010 Mathematics Subject Classification. Primary 54H25 ; Secondary 47H10
Keywords. Fixed point, F-contraction, generalized F-contraction, complete metric space
Received: 9 May 2013; Accepted: 5 December 2013
Communicated by Ljubomir Ćirić
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Definition 1.1 ([15]). Let (X, d) be a metric space and T : X→ X be a mapping. Then T is said to be an F-contraction
if F ∈ F and there exists τ > 0 such that

∀x, y ∈ X [d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(d(x, y))]. (2)

When Wardowski considered in (2) the different type of the mapping F then we obtain the variety of
contractions, some of them are of a type known in the literature. We can examine the following examples:

Example 1.2 ([15]). Let F1 : (0,∞) → R be given by the formulae F1(α) = lnα. It is clear that F1 ∈ F . Then each
self mappings T on a metric space (X, d) satisfying (2) is an F1-contraction such that

d(Tx,Ty) ≤ e−τd(x, y), for all x, y ∈ X,Tx , Ty. (3)

It is clear that for x, y ∈ X such that Tx = Ty the inequality d(Tx,Ty) ≤ e−τd(x, y) also holds. Therefore T
satisfies (1) with L = e−τ, thus T is a contraction.

Example 1.3 ([15]). Let F2 : (0,∞) → R be given by the formulae F2(α) = α + lnα. It is clear that F2 ∈ F . Then
each self mappings T on a metric space (X, d) satisfying (2) is an F2-contraction such that

d(Tx,Ty)
d(x, y)

ed(Tx,Ty)−d(x,y)
≤ e−τ, for all x, y ∈ X,Tx , Ty. (4)

We can find some different examples for the function F belonging to F in [15]. In addition, Wardowski
concluded that every F-contraction T is a contractive mapping, i.e.,

d(Tx,Ty) < d(x, y), for all x, y ∈ X,Tx , Ty.

Thus, every F-contraction is a continuous mapping.
Also, Wardowski concluded that if F1,F2 ∈ F with F1(α) ≤ F2(α) for all α > 0 and G = F2 − F1 is

nondecreasing, then every F1-contraction T is an F2-contraction.
He noted that for the mappings F1(α) = lnα and F2(α) = α + lnα, F1 < F2 and a mapping F2 − F1 is

strictly increasing. Hence, it obtained that every Banach contraction (3) satisfies the contractive condition
(4). On the other side, Example 2.5 in [15] shows that the mapping T which is not F1-contraction (Banach
contraction), but still is an F2-contraction. Thus, the following theorem, which was given by Wardowski, is
a proper generalization of Banach Contraction Principle.

Theorem 1.4 ([15]). Let (X, d) be a complete metric space and let T : X → X be an F-contraction. Then T has a
unique fixed point in X.

The aim of this paper is to introduce the generalized F-contractions, by combining the ideas of Wardowski
[15] and Ćirić [8], also to introduce the almost F-contractions, by combining the ideas of Wardowski [15]
and Berinde [2], and give some fixed point result for these type mappings on complete metric space.

2. The Results

Definition 2.1. Let (X, d) be a metric space and T : X→ X be a mapping. Then T is said to be a Ćirić type generalized
F-contraction if F ∈ F and there exists τ > 0 such that

∀x, y ∈ X [d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(M(x, y))], (5)

where

M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty),
1
2

[d(x,Ty) + d(y,Tx)]}.
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By the considering F(α) = lnα,we can say that every Ćirić type generalized contraction is also Ćirić type
generalized F-contraction.

One of our main result is as follows:

Theorem 2.2. Let (X, d) be a complete metric space and T : X → X be a Ćirić type generalized F-contraction. If T
or F is continuous, then T has a unique fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point and define a sequence {xn} in X by xn = Txn−1 for n ∈ {1, 2, · · · }. If
xn0+1 = xn0 for some n0 ∈ {0, 1, · · · }, then Txn0 = xn0 , and so T has a fixed point. Now let xn+1 , xn for every
n ∈ {0, 1, · · · } and let γn = d(xn+1, xn) for n ∈ {0, 1, · · · }. Then γn > 0 for all n ∈ {0, 1, · · · }. Now using (5), we
have

F(γn) = F(d(xn+1, xn)) = F(d(Txn,Txn−1))
≤ F(M(xn, xn−1)) − τ
= F(max{d(xn, xn−1), d(xn, xn+1)}) − τ
= F(max{γn−1, γn}) − τ. (6)

If γn ≥ γn−1 for some n ∈ {1, 2, · · · }, then from (6) we have F(γn) ≤ F(γn) − τ, which is a contradiction since
τ > 0. Thus γn < γn−1 for all n ∈ {1, 2, · · · } and so from (6) we have

F(γn) ≤ F(γn−1) − τ.

Therefore we obtain

F(γn) ≤ F(γn−1) − τ ≤ F(γn−2) − 2τ ≤ · · · ≤ F(γ0) − nτ. (7)

From (7), we get limn→∞ F(γn) = −∞.Thus, from (F2), we have

lim
n→∞

γn = 0.

From (F3) there exists k ∈ (0, 1) such that

lim
n→∞

γk
nF(γn) = 0.

By (7), the following holds for all n ∈ {1, 2, · · · }

γk
nF(γn) − γk

nF(γ0) ≤ −γk
nnτ ≤ 0. (8)

Letting n→∞ in (8), we obtain that

lim
n→∞

nγk
n = 0. (9)

From (9), there exits n1 ∈ {1, 2, · · · } such that nγk
n ≤ 1 for all n ≥ n1. So, we have, for all n ≥ n1

γn ≤
1

n1/k
. (10)

In order to show that {xn} is a Cauchy sequence consider m,n ∈N such that m > n ≥ n1.Using the triangular
inequality for the metric and from (10), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · · + d(xm−1, xm)
= γn + γn+1 + · · · + γm−1

=

m−1∑
i=n

γi

≤

∞∑
i=n

γi

≤

∞∑
i=n

1
i1/k
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By the convergence of the series
∞∑

i=1

1
i1/k , passing to limit n → ∞, we get d(xn, xm) → 0. This yields that {xn}

is a Cauchy sequence in (X, d). Since (X, d) is a complete metric space, the sequence {xn} converges to some
point z ∈ X, that is,limn→∞ xn = z.

Now, if T is continuous, then we have z = limn→∞ xn+1 = limn→∞ Txn = T(limn→∞ xn) = Tz and so z is a
fixed point of T.

Now, suppose F is continuous. In this case, we claim that z = Tz. Assume the contrary, that is, z , Tz.
In this case, there exist an n0 ∈ N and a subsequence {xnk } of {xn} such that d(Txnk ,Tz) > 0 for all nk ≥ n0.
(Otherwise, there exists n1 ∈ N such that xn = Tz for all n ≥ n1, which implies that xn → Tz. This is a
contradiction, since z , Tz.) Since d(Txnk ,Tz) > 0 for all nk ≥ n0, then from (5), we have

τ + F(d(xnk+1,Tz)) = τ + F(d(Txnk ,Tz))
≤ F(M(xnk , z))

≤ F(max{d(xnk , z), d(xnk , xnk+1), d(z,Tz),
1
2

[d(xnk ,Tz) + d(z, xnk+1)]}).

Taking the limit k → ∞ and using the continuity of F we have τ + F(d(z,Tz)) ≤ F(d(z,Tz)), which is a
contradiction. Therefore we claim is true, that is z = Tz.

The uniqueness of the fixed follows easily from (5).

Example 2.3. Let X = { 1
n2 : n ∈ N} ∪ {0} and d(x, y) =

∣∣∣x − y
∣∣∣, then (X, d) is complete metric space. Define a map

T : X→ X,

Tx =


1

(n+1)2 , x = 1
n2

0 , x = 0
.

First, let us consider the mapping F1 defined by F1(α) = lnα. Then T is not generalized F1-contraction (which actually
means that T is not the generalized contraction of Ćirić type (see page 69 of [8])). Indeed, we get

sup
x,y∈X,x,y

d(Tx,Ty)
M(x, y)

= 1.

On the other side, taking F2 with

F2(α) =


lnα
√
α

, 0 < α < e2

α − e2 + 2
e , α ≥ e2

.

It is easy to see that the conditions (F1), (F2) and (F3) (for k = 2
3 ) are satisfied (Also note that F is continuous). We

obtain that T is generalized F2-contraction with τ = ln 2. To see this, let us consider the following calculations: Note
that supx,y∈X d(x, y) = 1 < e2.

T is generalized F2-contraction with τ = ln 2 if and only if

∀x, y ∈ X[d(Tx,Ty) > 0⇒ ln 2 + F2(d(Tx,Ty)) ≤ F2(M(x, y))]. (11)

To see (11), it is sufficient to show that (by the (F1))

∀x, y ∈ X[d(Tx,Ty) > 0⇒ ln 2 + F2(d(Tx,Ty)) ≤ F2(d(x, y))].

⇔ ∀x, y ∈ X[d(Tx,Ty) > 0⇒ d(Tx,Ty)
1√

d(Tx,Ty) d(x, y)
−

1√
d(x,y) ≤

1
2 ]

⇔ ∀x, y ∈ X[
∣∣∣Tx − Ty

∣∣∣ > 0⇒
∣∣∣Tx − Ty

∣∣∣ 1√
|Tx−Ty|

∣∣∣x − y
∣∣∣− 1√

|x−y| ≤
1
2 ].
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Now if x = 1
n2 and y = 1

m2 with m > n, then

∣∣∣Tx − Ty
∣∣∣ 1√
|Tx−Ty|

∣∣∣x − y
∣∣∣− 1√

|x−y| =

(
1

(n + 1)2 −
1

(m + 1)2

) 1√
1

(n+1)2
−

1
(m+1)2

( 1
n2 −

1
m2

)− 1√
1

n2 −
1

m2

=

(
(m + 1)2

− (n + 1)2

(n + 1)2(m + 1)2

) (n+1)(m+1)
√

(m+1)2−(n+1)2
(

m2
− n2

n2m2

)− nm√
m2−n2

=

(
(m + 1)2

− (n + 1)2

(n + 1)2(m + 1)2

) (n+1)(m+1)
√

(m+1)2−(n+1)2
(

m2
− n2

n2m2

m + n + 2
m + n + 2

)− nm√
m2−n2

=

(
(m + 1)2

− (n + 1)2

(n + 1)2(m + 1)2

) (n+1)(m+1)
√

(m+1)2−(n+1)2

×(
(m + 1)2

− (n + 1)2

(n + 1)2(m + 1)2

(m + n)(n + 1)2(m + 1)2

(m + n + 2)n2m2

)− nm√
m2−n2

=

(
(m + 1)2

− (n + 1)2

(n + 1)2(m + 1)2

) (n+1)(m+1)
√

(m+1)2−(n+1)2
−

nm√
m2−n2

(
(m + n + 2)n2m2

(m + n)(n + 1)2(m + 1)2

) nm√
m2−n2

.

On the other hand, since

(m + 1)2
− (n + 1)2

(n + 1)2(m + 1)2 ≤
1
2
,

(n + 1)(m + 1)√
(m + 1)2 − (n + 1)2

−
nm

√

m2 − n2
≥ 1

and

(m + n + 2)n2m2

(m + n)(n + 1)2(m + 1)2 < 1

then we have∣∣∣Tx − Ty
∣∣∣ 1√
|Tx−Ty|

∣∣∣x − y
∣∣∣− 1√

|x−y| ≤
1
2
.

Therefore (11) is satisfied.
Now if x = 1

n2 and y = 0, then

∣∣∣Tx − Ty
∣∣∣ 1√
|Tx−Ty|

∣∣∣x − y
∣∣∣− 1√

|x−y| =

∣∣∣∣∣ 1
(n + 1)2

∣∣∣∣∣
1√∣∣∣∣∣∣ 1

(n+1)2

∣∣∣∣∣∣
∣∣∣∣∣ 1
n2

∣∣∣∣∣− 1√∣∣∣∣∣ 1
n2

∣∣∣∣∣

=
n2n

(n + 1)2(n+1)

=
n2(n+1)

(n + 1)2(n+1)

1
n2

=
( n

n + 1

)2(n+1) 1
n2

≤
1
2
.

Therefore (11) is satisfied. Thus all conditions of Theorem 2.2 are satisfied and so T has a unique fixed point in X.
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For the second result, we recall the concept of almost contraction on metric space (see [3] and [4] for
detailed information).

Definition 2.4. Let (X, d) be a metric space and T : X → X is a self operator. T is said to be an almost contraction
(or (δ,L)-weak contraction) if there exist a constant δ ∈ (0, 1) and some L ≥ 0 such that

d(Tx,Ty) ≤ δd(x, y) + Ld(y,Tx) (12)

for all x, y ∈ X.

Note that, by the symmetry property of the distance, the almost contraction condition implicitly includes
the following dual one

d(Tx,Ty) ≤ δd(x, y) + Ld(x,Ty) (13)

for all x, y ∈ X. So, in order to check the almost contractiveness of a mapping T, it is necessary to check both
(12) and (13).

In [3] and [4], Berinde shows that any Banach, Kannan, Chatterjea and Zamfirescu mappings are almost
contraction. Using the concept of almost contraction mappings, Berinde [4] proved the following fixed
point theorem:

Theorem 2.5. Let (X, d) be a complete metric space and T : X→ X an almost contraction, then T has a fixed point.

Also, Berinde shows that any almost contraction mapping is a Picard operator. Again, Berinde [5]
introduced the nonlinear type almost contraction using a comparison function and obtained some fixed
point results

In the parallel manner we introduce the following definition.

Definition 2.6. Let (X, d) be a metric space and T : X→ X be a mapping. Then T is said to be an almost F-contraction
if F ∈ F and there exist τ > 0 and L ≥ 0 such that

∀x, y ∈ X [d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(d(x, y) + Ld(y,Tx))]. (14)

In order to check the almost F-contractiveness of a mapping T, it is necessary to check both (14) and

∀x, y ∈ X [d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(d(x, y) + Ld(x,Ty))]. (15)

Remark 2.7. By the considering F(α) = lnα, we can say that every almost contraction is also almost F-contraction.
But the converse may not be true. To see this, we can take x = 1

n2 and y = 1
(n+1)2 in Example 2.3, then we have

d(y,Tx) = 0 and

sup
n∈N

d(T 1
n2 ,T 1

(n+1)2 )

d( 1
n2 ,

1
(n+1)2 )

= 1.

Thus we can not find δ ∈ (0, 1) and L ≥ 0 satisfying (12). But, by the same example, T is an almost F-contraction.

Using the concept of almost F-contraction, we can give the following fixed point result. Note that, T (or
F) need not be continuous in the following theorem.

Theorem 2.8. Let (X, d) be a complete metric space and T : X → X be an almost F-contraction, then T has a fixed
point in X.
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Proof. Let x0 ∈ X be an arbitrary point and define a sequence {xn} in X by xn = Txn−1 for n ∈ {1, 2, · · · }. If
xn0+1 = xn0 for some n0 ∈ {0, 1, · · · }, then Txn0 = xn0 , and so T has a fixed point. Now let xn+1 , xn for every
n ∈ {0, 1, · · · } and let γn = d(xn+1, xn) for n ∈ {0, 1, · · · }. Then γn > 0 for all n ∈ {0, 1, · · · }. Now using (14), we
have

F(γn) = F(d(xn, xn+1))
= F(d(Txn−1,Txn))
≤ F(d(xn−1, xn)) − τ

Therefore we obtain

F(γn) ≤ F(γn−1) − τ ≤ F(γn−2) − 2τ ≤ · · · ≤ F(γ0) − nτ.

and so we get limn→∞ F(γn) = −∞.Thus, from (F2), we have

lim
n→∞

γn = 0.

By the same way as in the proof of Theorem 2.2, we can show that {xn} is a Cauchy sequence in (X, d). Since
(X, d) is a complete metric space, the sequence {xn} converges to some point z ∈ X, that is, limn→∞ xn = z.

On the other hand, from (F2) and (14), it is easy to conclude that

d(Tx,Ty) < d(x, y) + Ld(y,Tx)

for all x, y ∈ X with Tx , Ty. Therefore, for all x, y ∈ X

d(Tx,Ty) ≤ d(x, y) + Ld(y,Tx) (16)

is satisfied. Thus, from (16),

d(Tz, xn+1)) = d(Tz,Txn)
≤ d(xn, z) + Ld(z,Txn)
= d(xn, z) + Ld(z, xn+1).

Taking the n→∞we have d(z,Tz) = 0 and so so z = Tz.

In Remark 2.7 we give an example that the mapping T is almost F-contraction but not almost contraction.
Now we give an example showing that T is almost F-contraction but not F-contraction. Therefore Theorem
2.8 can be applied to this example but Theorem 1.4 can not.

Example 2.9. Let X = [0, 1] ∪ {2, 3} and d(x, y) =
∣∣∣x − y

∣∣∣, then (X, d) is complete metric space. Define a map
T : X→ X,

Tx =


1−x

2 , x ∈ [0, 1]

x , x ∈ {2, 3}
.

Since d(T2,T3) = 1 = d(2, 3), then for all F ∈ F and τ > 0 we have

τ + F(d(T2,T3)) > F(d(2, 3)).

Therefore, T is not F-contraction, and so Theorem 1.4 can not be applied to this example.
Now, let us consider the mapping F defined by F(α) = lnα. Then T is almost F-contraction with τ = ln 2 and

L = 4. Note that if d(Tx,Ty) > 0, then x , y, and so

∀x, y ∈ X[d(Tx,Ty) > 0⇒ τ + F(d(Tx,Ty)) ≤ F(d(x, y) + Ld(y,Tx))]
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is equivalent to

∀x, y ∈ X[x , y⇒ d(Tx,Ty) ≤ e−τd(x, y) + Le−τd(y,Tx)]

and so

∀x, y ∈ X[x , y⇒ d(Tx,Ty) ≤
1
2

d(x, y) + 2d(y,Tx)] (17)

Now we consider the following cases:

Case 1. Let x, y ∈ [0, 1], then d(Tx,Ty) = 1
2

∣∣∣x − y
∣∣∣, d(x, y) =

∣∣∣x − y
∣∣∣ and d(y,Tx) =

∣∣∣∣ 2y+x−1
2

∣∣∣∣. It is clear that (17)
is satisfied.

Case 2. Let x, y ∈ {2, 3}, then d(Tx,Ty) =
∣∣∣x − y

∣∣∣, d(x, y) =
∣∣∣x − y

∣∣∣ and d(y,Tx) =
∣∣∣x − y

∣∣∣. It is clear that (17) is
satisfied.

Case 3. Let x ∈ [0, 1] and y ∈ {2, 3}, then d(Tx,Ty) =
∣∣∣∣ 2y+x−1

2

∣∣∣∣, d(x, y) =
∣∣∣x − y

∣∣∣ and d(y,Tx) =
∣∣∣∣ 2y+x−1

2

∣∣∣∣. It is
clear that (17) is satisfied.

Case 4. Let x ∈ {2, 3} and y ∈ [0, 1], then d(Tx,Ty) =
∣∣∣∣ 2x+y−1

2

∣∣∣∣, d(x, y) =
∣∣∣x − y

∣∣∣ and d(y,Tx) =
∣∣∣x − y

∣∣∣. Therefore

d(Tx,Ty) =
2x+y−1

2 and 1
2 d(x, y) + 2d(y,Tx) = 5

2 (x − y). Since 2x+y−1
2 ≤

5
2 (x − y), (17) is satisfied.

In Theorem 2.8, we show that if T is an almost F-contraction, then it has a fixed point. But in order to
guarantee the uniqueness of the fixed point of T, we have to consider an additional condition, as in the
following theorem.

Theorem 2.10. Let (X, d) be a complete metric space and T : X → X be an almost F-contraction. Suppose T also
satisfies the following condition: there exist G ∈ F and some L1 ≥ 0 and τ1 > 1 such that

∀x, y ∈ X [d(Tx,Ty) > 0⇒ τ1 + G(d(Tx,Ty)) ≤ G(d(x, y) + L1d(x,Tx))] (18)

holds. Then T has a unique fixed point in X.

Proof. Suppose that, there are two fixed point z and w of T. If d(z,w) = 0, it is clear that z = w. Assume that
d(z,w) > 0. By (18) with x = z and y = w, we have

τ1 + G(d(z,w)) = τ1 + G(d(Tz,Tw))
≤ G(d(z,w) + L1d(z,Tz))
= G(d(z,w)),

which is a contradiction. Therefore T has a unique fixed point.
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