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The least squares n-Hermitian problems of quaternion matrix equation
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Abstract. For any A = A; + Ayj € Q™" and 11 € {i, j,k}, denote AM = —nAHn If ATH = A, A is called an
n-Hermitian matrix. If A™ = —A, A is called an n-anti-Hermitian matrix. Denote n-Hermitian matrices and
n-anti -Hermitian matrices by 7HQ™" and nAQ™", respectively.

In this paper, we consider the least squares n-Hermitian problems of quaternion matrix equation A# XA +
BRYB = C by using the complex representation of quaternion matrices, the Moore-Penrose generalized
inverse and the Kronecker product of matrices. We derive the expressions of the least squares solution
with the least norm of quaternion matrix equation A"XA + B?YB = C over [X, Y] € nHQ™" x nHQ"*,
[X, Y] € nAQ™" x nAQP*, and [X, Y] € nHQ™" x nAQ"*, respectively.

1. Introduction
For convenience, we list some notations as follows:

R™", C™" . m X n real matrix set and m X n complex matrix set, respectively;

SR™" . n X n real symmetric matrix set;

ASR™": 5 xnreal anti-symmetric matrix set;

Q, Q™" :  the set of quaternions and m X n quaternion matrix set, respectively;
ReA : real part of the complex matrix A;

ImA : imaginary part of the complex matrix A;

A AT conjugate matrix and transpose matrix of A, respectively;

Al the conjugate transpose matrix of A, respectively;

At the Moore-Penrose generalized inverse of A;

0,1, : zero matrix of suitable size and identity matrix of order n, respectively;
e : the i-th column of I,;;

A®B: Kronecker product of A and B.
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A quaternion a can be uniquely expressed as a = ay + 11 + a, j + ask with real coefficients ag, a1, a, a3, and
2 = j* =k* = —1,ij = —ji = k, and a can be uniquely expressed as a = ¢ + ¢»j, where ¢; and ¢, are complex
numbers. The following quaternion involutions of a quaternion a = ag + a1i + a,j + azk, defined as [3]
a=—igi = ag+ayi- ayj — ask,
al = —jaj
a" = —kak

ag — ﬂ]i + ﬂzj - El3k,

ap — ai— azj + a3k.

For any A € Q™", A can be uniquely expressed as A = A; + Aj, where A;,A; € C™", and AH =
(ReA1)" — (ImA1)"i — (ReAz)"j — (ImAy) k. Thus A = Al — AT} The complex representation matrix of
A =A; +Ayj € Q™" is denoted by

=] 22 e 1)
= _— —|e .

-Ay A
Notice that f(A) is uniquely determined by A. For A € Q"™*", B € Q™°, we have f(AB) = f(A)f(B) (see [37]).
We define the inner product: (A, By=tr(BZA) for all A, B € Q"™". Then Q™" is a right Hilbert inner product
space and the norm of a matrix generated by this inner product is the quaternion matrix Frobenius norm
II-|]. For matrix A € Q"™", let a; = (@15, 42, - ..,ami)(i = 1,2,...,n), and denote by vec(A) the vector containing
all the entries of matrix A:

vec(A) = (a1,az, ... ,an)T.

Definition 1.1. ([3, 5, 21, 35]) A matrix A € Q™" is n-Hermitian if A™ = A, and a matrix A € Q™" is n-anti-
Hermitian if AT = —A, where AT = —nAHn, n € {i, j, k}. n-Hermitian matrices and n-anti -Hermitian matrices are
denoted by nHQ™" and nAQ"™", respectively.

Denote the right linear space over the skew field of quaternions
THQ™" x nHQ™* = {[X, Y]IX € nHQ™", Y € nHQ"*}.
Thus we can define the inner product as follows:
(X1, V1], [X2, VoD = XXl + (Y3 V1], [X;, Vi € gHQ™ x nHQ™, (i = 1,2).

Then nHQ™" x nHQ"* is a right Hilbert inner space.

Similarly, nAQ™" x nAQ"* and nHQ™" x nAQ™* are also the right linear spaces and the right Hilbert
inner space over the skew field of quaternions. The associated Frobenius norms of matrix pairs [X, Y] €
NHQ™" x nHQM*, [X, Y] € nAQ™" x nAQ™* and [X, Y] € nHQ™" x nAQ"* can be described as follows:

X, YT = (X, YL IX, YD)? = ([ XPX] + e [YHY])2 = (IXIP + (1YIP)2.

Many authors have devoted to the study of the real, complex, and quaternion matrix equations such as
AXB=C AX+XB=C AXB+CXD =E, (AXB,CXD) = (E,F), AXB+CYD = Eand X - AXB = C, and we
refer to [4, 6-12, 16-19, 24-36]. For the real matrix equation

AXAT + BYBT =, )

there are many important results about their solutions. For example, Chang and Wang [2] studied the
necessary and sufficient conditions and derived and the expressions for the symmetric solutions of matrix
equation (2). Liao and Bai [13] studied the least squares symmetric problem of matrix equation (2) by
using the canonical correlation decomposition of matrix pairs. Furthermore, Liao and Bai [14] studied the
least squares symmetric solution of matrix equation (2) with the least norm by using the singular value
decomposition and generalized singular value decomposition. For the complex matrix equation

APXA + BEYB = C, (3)
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Zhang [38] investigated the necessary and sufficient conditions and derived the expressions for the Her-
mitian nonnegative-definite and positive-definite solutions of matrix equation (3). Recently, different con-
strained solutions to multi-variables real and quaternion matrix equations are concerned by some authors.
See [30, 36] for details.

In this paper, we consider the least squares constrained problems of quaternion matrix equation (3).
Our motives are twofold: (i) nHQ™" is an important class of matrices applied in widely linear modelling
and convergence analysis in statistical signal processing due to the quaternion involution properties (see
[20-23] for details). (ii) Motivated by the work mentioned above and the recent increasing interesting
in n—Hermitian matrices, this article can extend the results for the least-squares problems of real matrix
equation (3) to the least-squares problem of quaternion matrix equation (3). we describe the related problems
as follows.

Problem I. Given A € Q"™, B € Q5 and C € Q%%, let

Hy = {[X YIX enHQ™, Y e nHQ"",

IAEXA + BRYB - (|| = min IIAEX,A + BYyB - CJ|).
XoGr]Hann,YoET]HQka

Find [Xy, Yy] € H; such that
2 _ 2 2 _ . 2 2
WX, Yu]II® = Xl + [ Yall© = [XI,{/IIIGI}{L(”X” + [IY][%). 4)

Problem II. Given A € Q™, B € QP and C € Q%%, let

AL = {[X,Y]X € AQ™",Y € nAQ™,
IAFXA + BRYB - C|| = min IAFX,A + B7YB - CJ|}.
XoEr]AQ”X”,YUET]AQka
Find [X4, Y4] € AL such that

2 _ 2 2 _ : 2 2
I[Xa, Yalll = IXall” + [[Yall —[XI}Q]ler}qL(IIXII +{[YI). (5)

Problem III. Given A € Q™, B € Q*¢, and C € Q%, let

St = {[XY]IX € gHQ™, Y € nAQ™,
IAHFXA + BHYB - C|| = min IAFX,A + BHY,B - C||}.
XoGT}Hann,YQET[AQka
Find [Xy, Y] € St such that

X, YAIIP = IXul? + 1Y Al? = min (IXIP + [[Y]). (6)
[X,Y]eS,

Our approach to solving the problem is to make use of the complex representation of quaternion matrices,
the Moore-Penrose generalized inverse, the Kronecker product of matrices, and the matrix structures of
nHQ™" and nAQ™" in [35, 36], and turns Problems I, II, IIl into the least squares unconstrained problems
of a real matrix equation, respectively.

This paper is organized as follows. In Section 2, we give some preliminary lemmas for the solutions of
Problems I, I, III. In Sections 3, 4, and 5, we derive the explicit expression of the solutions of Problems I, II,
and III, respectively.
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2. Preliminary lemmas

1156

In order to study the solution of problems I, II, III, we first introduce the structures of 7THQ™" and

nAQ™" and give some preliminary lemmas in this section.

Definition 2.1. For matrix A € Q™" let ay = (a11, \/Eazl,..., \/Eam), a = (ap, \/Eagz,
(A(n=1)(n-1), \/Ean(n_l)), Ay = Apy, and denote by vecs(A) the following vector:

n(n+1)

vecs(A) = (al,az,...,an_l,an)T €Q 2

Definition 2.2. For matrix B € Q™", let by = (by1,b31,...,b1), ba = (bzp, ban, ..., bi2), ...

bun-2)), bu—1 = buu-1), and denote by vec(B) the following vector:

n(n—-1)

...,\/5(1,,2),...,:1,7,1 =

(7)

s buo = (bu-1)(n-2),

veca(B) = V2(b1, by, .., bya,by1) €Q7T ®
Lemma 2.3. ([34]) Suppose X € R™", then
(i) X e SR™" < vec(X) = Ksvecs(X), 9)
where vecs(X) is represented as (7), and the matrix Kg € R i of the following form
- L
Ks = A
[ V2e1 e2 - e 6o O 0 - 0 0 -0 0 0
0 e - 0 0 \/Eez e3 -+ ey_1 ey
0 o --- 0 0 0 e -~ 0 0
0 0 - e 0 0 0 -+ e 0 -+ V2,1 e 0
0 0 - 0 e 0 0 -« 0 e - 0 e V2e, |
(i) X € ASR™" & vec(X) = Kaveca(X), (10)

where veca(X) is represented as (8), and the matrix Ky € RO g of the following form

€2 €3 €n—1 ey 0 0 0
% 0 - 0 0 e - epq e
0 —e 0 0 -e 0 0 0
Ky = =
V2 0 0 0
0 0 -+ — 0 0 - —e 0 - e
0 0 - 0 - 0 -+ 0 =—e - —euq |

ObUiOMSZy, KgKS = Im, K};KA = IM.
2 2

We identify g € Q with a complex vector § € C?, and denote such an identification by the symbol =, that

is,
a+aj=q=q=/(a,c).
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Similarly, for A = A; + Ayj € Q™", denote 4 = (A1, Az), wehave A = Dy,

A= @4l = VIIReA1] + [ImA; |2 + [[ReAs|[2 + [[ImA, |,
and @4, = P4 + Op. Furthermore,
vec(A) = vec(A; + Azj) = vec(Aq) + vec(Az)j,

thus we have

) = O = vec(Aj)
vec(A) = vec(®Py) = vec(Ay)
and
Al = IIvec(@® )||—|| veeth) H
[[vec(A)|| = |[vec(®A)|| = vec(y) ||
We denote 1_4) = (ReA1,ImA1, ReA;, ImA)),
vec(ReA1)
vec(z_4))= vec(ImA,)
vec(ReA;)
vec(ImAj;)

Notice that |[vec(D,)|| = ||VeC(1—4))||. In particular, for A = Aj + Ayi € C"™" with A;,A, € R™", we have
H
A=A =(A1,A), and

' N vec(A)
vec(Ar) + vec(Az)i = vec(A) = vec(A) = [ vec(Az) ]
2

Addition of two quaternion matrices A = A; + Ayj and B = By + B,j satisfies
(A1 +B1)+(Ay+B)j=(A+B) =Dy + Pg = (A1 + By, Ax + By),
whereas multiplication satisfies
AB = (A1 + A2j)(B1 + Baj) = (A1B1 — A2B)) + (A1Bs + AsBy)j.

So AB = @45, moreover, @4p can be expressed as

(A1B1 — A2B,, A1By + A3By)
By B>

(A, A) | — —
-B, By

D4 f(B).

Lemma 2.4. ([36]) If X = X; + Xpj € Q™" then

Dap

X e nHQ™" Vec(?) = Kfﬁvecgﬁ(?), (11)
where
Ks 0 0 0 vecs(ReXl)
0 Kg4 0 O veca(ImXy)
K™ = , vecl(ﬁ)(i)) = 4 !

iH 0 0 KS 0 H VeCS(ReXZ)
0 0 0 Ks vecs(ImX>)
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[ Ks 0 0 0 ] [ vecs(ReXq) ]
o 0 Ks 0 0 e = vecs(ImX;)
jH 0 0 Kia O | jH vecs(ReX) |’
0 0 0 Kg | vecs(ImXy) |
[ Ks 0 0 0 ] [ vecs(ReX;) 1]
o 0 Ks 0 0 Vec(n)(?) ~ vecs(ImXy)
H 0 0 K¢ 0 | kH vecs(ReX5)
0 0 0 Ky | veca(ImX5) |
Lemma 2.5. ([36]) If Y = Y1 + Yaj € QP then
Y € 1AQ™ = vec(Y) = Ks;)‘vecfg(?)), (12)
where . .
Kae 0 0 O [ veca(ReY7) ]
K(k) ~ 0 Kg O 0 VeC(k>(_Y)) B vecs(ImYy)
iA 0 0 K4 0 [’ iA veca(ReY?) ’
0 0 0 Ky | veca(ImY?) |
[ Ka O 0 0 ] [ veca(ReY7) ]
K(k) ~ 0 Kyqo O 0 Vec(k)(_Y)) B veca(ImY;)
jA 0 0 Kg 0 ! jA VeCs(ReYZ) ’
0 0 0 Ky | | veca(ImY>) |
[ K4 0 0 0 ] [ vecs(ReY) ]
K(k) ~ 0 KA 0 0 Vec(k) (—Y)) B VecA(ImYl)
kA 0 0 K4 0} kA veca (ReY?)
0 0 0 Kg | | vecs(ImY;) |

Lemma 2.6. ([34]) Let A=A;+Ayje Q™" B=B+ByjeQ™,andC=Cy+ Cyj € Q! be given. Then

T K vec(Pp)
vec(Papc) = (f(C) ® Ay, f(C))" ® Az) : (13)
VeC(—CD]‘B]')
Let

L il,2 0 0
0 0 L il 2

Wo=l1, i1, 0 0 (14)
0 0 Lpe —il,p

nxn kxk

We now get the structures of vec(®41x4) over X € nHQ"™™" and vec(®piyg) over Y € nAQ

Lemma 2.7. Given A € Q™, let Kf;z and Vecf;z(y()) are in the form of (11), and W, is in the form of (14). Then

. n n ~
vec@unxa) = (F(A)" ® A}, —f(A)j)" ® AW, K Jvec (X). (15)
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Proof. For A = A1 + Azj, A" = AH — AT By (11), (13), and Lemma 2.6, we have
vec(Py) ]

VeC(—(D]'X]')

vec(Panxa) (fA @AY, —f(A)) ® A}) (

= (FA)T @ AL — f(Aj)T & ATYW,vec(X)

. n n =
FAT oAl -fAj)l e A{)WHK;;Ivecf]l;(X). n

Lemma 2.8. If B = By + Byj € Q%, Kg?l and vecflkf)‘(?)) are in the form of (12), and Wy is in the form of (14). Then
vee(@piys) = (F(B) ® B, —f(Bj)" ® B} WK vec) ). (16)
Lemma 2.9. ([1]) The matrix equation Ax = b, with A € R™" and b € R", has a solution x € R" if and only if
AATb =, (17)
in this case it has the general solution
x=A"b+(I-A*A)y, (18)
where y € R" is an arbitrary vector.

Lemma 2.10. ([1]) The least squares solutions of the matrix equation Ax = b, with A € R™" and b € R", can be
represented as

x=A"b+(-ATA)y, (19)
where y € R" is an arbitrary vector, and the least squares solution of the matrix equation Ax = b with the least norm
isx=A"b.

3. The solution of problem I

Based on our earlier discussions, we now turn our attention to Problem I. The following notations are
necessary for deriving the solutions of Problem I. For A = A1 + A;j € Q™°,B = B1 + Byj € Qs C e Q% set

P=[f(A) @ A, —f(Aj) ® ATIW,K")

nH’
Q=1[f(B)" ®BY,-f(Bj)" ® BIIW,K'}).
Let
vec(Re®d()
Tl = [REP/ RQQ], TZ = [ImP/ ImQ], e= VeC(ImCDC) ’ (20)
and

R = (Lypinsoesk — T;Tl)TzT/

Z = (Le+ (Le - R'R)LTIT'T) (e — R*R) ™,

H = R"+(Ly - R RZTT{ T (Lyzpnsaesk — THRY),
S = Le-TT{ + T T} Z(I,e - R*R)T. TS,
Sz = -T;'Ti(Ie - R*R)Z,
Sy = (L —R'R)Z



S.-F.Yuan et al. / Filomat 28:6 (2014), 1153-1165 1160

From the results in [15], we have

T | T[T
| =@ -HT s EY, | ] "= +RRY,
T2 TZ TZ

. T: 1 S11 S12
n2+n+2k2+k — = .
2n?+n+2k>+k T, T, S{Z Sy

Theorem 3.1. Let A € Q™,B e QX, C e Q¥. Let M = diag(K(") K(k)) and Tq, T,, e be as in (20). Then

nH’
_)
VeC(X) + T + T + +
Hp ={[X,Y] @ | MIT - H'T, T, H' le + MlIyp ek — Ti Tr = RR']z ¢, (21)
vec

2 2 . .
where z € R 24K is an arbitrary vector.

Proof. By Lemmas 2.7, 2.8, we have

IAEXA + BEYB - C|1?
= ||[Panxa + Dpuyp — Ocl?
= |lvec(®auxa) + vec(Dpuyp) — vec(@c)|l*

= IPvec’y(X) + Quec) (Y) = vec(@o)|

= ||[ReP + iImP]Vec(")(X ) + [ReQ + zImQ]vec (?) — [vec(Re®¢) + ivec(Imdc)]|?

2
ReP ReQ vec;H () (X ) vec(Re®c)
= ImP ImQ vecy® (7) vec(Im®Pc)
[ ] VeCnH (X)
= —e
Vec,,H(k)(Y

By Lemma 2.10, it follows that

= 4 +
vec,q™(X) T, T: T
- | = e+ |- zZ.
vec,zu®(Y) T> T, T,
Thus
H
vec(X) + T + 19T + +
— |=M(T] —H T,T{,H" )e + M(I = T{T; — RR")z.
vec(Y)
|
By Lemma 2.9 and Theorem 3.1, we get the following conclusion.
Corollary 3.2. The quaternion matrix equation (3) has a solution X € fHQ™", Y € nHQY* if and only if
Su Sw
. e=0. (22)
51 52
In this case, denote by Hg the solution set of (3). Then
ﬁ
vec(X)
Hp ={[X,Y — | =MIT; — H'ToT, He + (I snsagesk = Ty Tt = RR¥)z] ¢, (23)
vec(Y)
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where z € R4k s an arbitrary vector.
Furthermore, if (22) holds, then the quaternion matrix equation (3) has a unique solution [X, Y] € H if and only

if

T
rank [ !

}=2n2+n+2k2+k. (24)
2

In this case,

ﬁ
vec(X)
ﬁ

HE = {[X/ Y]
vec(Y)

= M(T} - HTT2T+,HT)e} . (25)
Theorem 3.3. Problem I has a unique solution [Xy, Y] € Hy. This solution satisfies

= M(T} — H'T,T{,H")e. (26)

—

[ vee(Xp)
vec(Yy)

Proof. From (21), it is easy to verify that the solution set Hy is nonempty and is a closed convex set.
Hence, Problem I has a unique solution [Xy, Y] € H.

We now prove that the solution [Xp, Y] can be expressed as (26). Since

i XY 2 1 X 2 + Y 2
[Xf{(l]ler}{L(ll[ Y1) [xr,ryl]ler}ﬂ(n =+ 11Y117)

. 12 2
min ([[vec(X)||° + [[vec(Y)I%)
,Y]eH,

XY
— 2
) vec(X)
= min N ,
XYIHL I vece(Y)

by Lemma 2.10 and (21), we obtain

> +
VeC(XH) [ T1 ]
— |=M e.
vec(Yy) T>
Thus,
(Xi)
vec(Ay
., | =M(T} -H'T,T,H e.
vec(Yy)

Corollary 3.4. The least norm problem

I Xe, YullP = 1Xull® + IYal? = min (IXIP + YIP)
[X,Y]eHE

has a unique solution [Xy, Yu] € Hg and [ Xy, YH] can be expressed as (26).
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4. The solution of problem II

Based on our earlier discussions, we now turn our attention to Problem II. The following notations are
necessary for deriving the solutions of Problem II. For A = Ay + Ayj € Q™",B = By + Byj € Qs C e Q¥,
set

P’ = [f(A) @AY, —f(A)" ® ATIW,KT),

Q' =[f®)" & B, —f(B))" ® BJIW,K).

Let
vec(Re®¢)
Qi = [ReP',ReQ’], Qo =[P, ImQ], e=| g q, (27)
and
Ri = (Iye_paer —Q7Q1)Q;,
Zi = (he+ (e - RIR)QQ7QITQ) (e — RfR1) ™,
Hy = R+ (e -RIR)Z1Q2Q7 Q7 (Iyppsmpe — QARY),
Air = bLe-QiQ7 +0Q7Q) Zi(le — RfR1)Q207,
A = -QTQN(Ie - R*R)Z,
Ap = (Le —R{R1)Z.
From the results in [15], we have
ol Q[ %
= (Qf - H{ Q01 H)), = Q7 Q1 + RiRY,
[ Q> PoorETEe Q2 Q2 ! !
’ A11 A1z
I2n2 n+2k>—k Ay .
Theorem 4.1. Let A € Q"™ B € QFS, C € Q. Let M; = diag(K(”) 1<<k "), and Q1,Qs, e be as in (27). Then
ﬁ
eC(X) + T + T + +
={[X Y] N =M [Q1 - H1 Q2Q1 rH1 le + My [12nz+n+2k2+k - T1 T1 - RR")z ¢, (28)
vec(Y)
where z € R =2~k js an arbitrary vector.
Corollary 4.2. The quaternion matrix equation (3) has a solution X € nAQ™", Y € nAQ®* if and only if
A1y Arp
T e=0. (29)
A, Ax
In this case, denote by Ag the solution set of (3). Then
ﬁ
ec(X) + T + T + +
= [X/ Y] (_Y>) = Ml[(Q1 - H1 Q2Q1 ’ H1 )E + (12712—71+2k2—k - Q1 Ql - R1R1 )Z] ’ (30)
vec

2_ 2_1 . .
where z € R¥" =28~k is an arbitrary vector.
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Furthermore, if (29) holds, then the quaternion matrix equation (3) has a unique solution [X,Y] € Ag if and only

if
rank 2 =2n® —n+2k* -k (31)
Q2
In this case,
ﬁ
vee(X) owor T
Ap =<[X Y] — | =Mi(Q —H;Q20Q7,Hj)e ;. (32)
vec(Y)
Theorem 4.3. Problem II has a unique solution [Xa,Ya] € Ar. This solution satisfies
(X2)
vec(Xa
_, | =Mi(Qf —H{Q:Qf H))e. (33)
vec(Yy)

Corollary 4.4. The least norm problem
IXa, YAIIP = IXAIP + 1Y al? = min (IXI? +[IYI?)
[X,YIeAE

has a unique solution [Xa,Ya] € Ag and [Xa, Y] can be expressed as (33).

5. The solution of problem III

In this section, we now turn our attention to Problem III. The following notations are necessary for
deriving the solutions of Problem III. For A = A; + A;j € Q™°,B =By + Byj € Q"s, C e Q¥ set

P’ = [f(A) @ A, —f(AD" ® ATIW,KS,
Q" =I[f(®" ®BY,~f(Bj)" ® BJIWK).
Let
vec(Redc)

vec(Imd¢) |’ (34)

Q3 = [ReP”,ReQ”], Q4 =[ImP”,ImQ"], e= [

and

Ry = (Lyzswsoe— — Q3Qu)Q;,
Zy = (e +(he — RjR)Q:Q;Q5"Q; (b — RIR2) ™,
Hy = R} + (L —RIR2)Z2QuQ3 Q5" (layzsnsai—k — Q4R3),
An = Lo -Q305 + Q3701 Za(le — R3R2)Q4QF,
A = —QTQi (L — RiR2)Z,,
Apn = (hLe —R{R1)Z:.

From the results in [15], we have

Qs Q[ Qs
[ Qs Qs } [ Q4

. _[Q3HQ3]+_[A11 A12:|
2n2+n+2k2—k Q4 Q4 = AIZ A22 .

] = (Q; - H§Q4Q§/Hg)/ [ ] = Q;QS + RZR;/
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Theorem 5.1. Let A € Q",B € Q, C € Q¥ Let M, = diag(K;'}}, Kffg), and Qsz, Qa, €2 be as in (34). Then

ﬁ
vec(X)
q

SL=11XY] = Ma[Q3 — Hy QaQ3, Hyle + Mol snioie — Q3 Q3 — RoR3 1z ¢, (35)

vec(Y)
2 2 . .
where z € R 2K is an arbitrary vector.

Corollary 5.2. The quaternion matrix equation (3) has a solution X € fHQ™", Y € nAQ"* if and only if

A Ap
T e=0. (36)
A12 Az
In this case, denote by Sg the solution set of (3). Then
—_
VeC(X) + T + T + +
SE = [X/ Y] (7) = MZ[(Q3 - Hz Q4Q3/H2 )e + (12n2+n+2k2—k - Q3 Q3 - R2R2 )Z] ’ (37)
vec

where z € R2*+2° K js a arbitrary vector.
Furthermore, if (36) holds, then the quaternion matrix equation (3) has a unique solution [X, Y] € Sg if and only

if
rank{ Qs ] =2n® +n+2k* -k (38)
Q4
In this case,
H
vee(X) o oor i
Se =4[X,Y] — | =M2(Q; —H,Q4Q;3,Hy)e ¢ (39)
vec(Y)

Theorem 5.3. Problem I has a unique solution [Xy, Y al € Si. This solution satisfies

= Ma(Q3 — H;Q4Q3, Hy )e. (40)

—

[ vec(Xn)
vec(Yy)

Corollary 5.4. The least norm problem
Xk, YAIIP = IXul? +11YaIP = min (IXIP + (Y1)
[X,Y]eSe

has a unique solution [ Xy, Ya] € Sg and [ Xy, Y 4] can be expressed as (40).
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