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Bounds on Condition Number of Singular Matrix
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Abstract. For each vector norm ||x||,, a matrix A € C"" has its operator norm [|A[|,, = ma o Hm“‘f IfAis
nonsingular, we can define the condition number of A € C™" as P(A) = ||AllnllA7!|l,,. If A is singular, the

condition number of matrix A € C"" may be defined as P+(A) = ||Al| WIIA*IIW. Let U be the set of the whole
self-dual norms. It is shown that for a singular matrix A € C"*", there is no finite upper bound of P:+(A),
while ||.|| varies on U. On the other hand, it is shown that inf [1A]| w,llA*Ilw, = a4 \where 01(A) and 0,(A)

e T a4’
are the largest and smallest nonzero singular values of A, respectively.

1. Introduction

Throughout this paper C"*" denotes the set of all m X n matrices over the complex field C and C/*"
denotes the set of all m X n complex matrices with rank 7. Oy, is the m X n matrix of all zero entries (if
no confusion occurs, we will drop the subscript). For a matrix A € C"", A* and r(A) denote the conjugate
transpose and the rank of the matrix A, respectively. Furthermore, let ||.||,, be a operator norm on C™",
IIll; be a operator norm on C"™, ||.||; be a vector norm on C" and ||.||,, be a vector norm on C".

Let A € C™", then the unique matrix X € C"™" satisfying the following four Penrose equations [8]:
AXA=A, XAX =X, (AX)'=AX, (XA)' =XA,

is called the Moore-Penrose inverse of A and is denoted by At

For any A € C™" and k = Ind(A) = min{p : r(AP*™!) = r(AP)}, there exists a matrix X € C"™" satisfying [4]:

XAX = X, XA =AX, AX = Ak

2010 Mathematics Subject Classification. Primary 65F15; Secondary 65F10, 65C40

Keywords. Moore-Penrose inverse; Condition number; Singular value decomposition; Self-dual norm

Received: 08 September 2013; Accepted: 19 February 2014

Communicated by Dragana Cvetkovic Ilic

Research supported by the NSFC (Grant No: 11301397) and the Foundation for Distinguished Young Talents in Higher Education

of Guangdong, China (Grant No: 2012LYM-0126) and the Basic Theory and Scientific Research of Science and Technology Project of
Jiangmen City, China, 2013

Email address: xzpwhere@163. com (Zhiping Xiong)



Zhiping Xiong / Filomat 28:8 (2014), 1653-1660 1654

then X is called the Drazin inverse of A and denoted by AP . The reader can refer to [1, 4, 8, 10] for basic
results on these generalized inverses.
Let ||x]l, be a vector norm defined on the linear space C". Then for a matrix A € C"™", we define its

operator norm as [9]:

lAx]l,

All,, = max , 1

WAl = 0 i, @
where x € C". If A € C"™" is nonsingular, we can define the condition number of A as:

PA) = Al A - )

Obviously, [lAll, > p(A), P(A) > p(A)p(A™1), where p(A) denotes the spectral radius of A.

Condition number is a basic concept in numerical algebra and is important in some other fields of
numerical analysis, see [3, 5, 7, 9]. The normwise relative condition number measures the sensitivity of
matrix inversion and the solution of linear systems. It has attracted considerable attentions and many
interesting results have been obtained, see [2, 3, 6, 11, 12].

Let V be the set of the whole norms defined on C". In 1984, Huang [6] has shown that for a nonsingular
matrix A € C"", there is no finite upper bound of P(A) while ||.||, varies on V and there is a further relation
between P(A) and p(A)p(A™):

||ilrlefvIII‘XIIWIIA_lllw = p(A)p(A7). 3)

Let A € C"™" be singular and have Drazin inverse. In 2005, Cui [11] defined another condition number
of A as:

Pp(A) = |AllwlIAP b, 4)
and shown that

||illflefvIIAIIWIIAD Il = p(A)p(AP). (5)

The Moore-Penrose inverse plays an important role on the theoretical research and numerical computa-
tions in the areas of optimization, statistics, ill-posed problem and matrix analysis, see [1, 10]. Actually, for
a singular matrix A € C"™", At e ™™ is existence and unique. Obviously, when A € C™" is nonsingular,

At = A71. Then for a matrix A € C"™", we can define a new condition number:
Pi(A) = [|AlluwlA - (6)
Definition 1.1 Let y € C" and ||.||, is a norm defined on C". Then we call ||.||, a self-dual norm on C", if

_ *
[yll, = max|yx].

[lxlly=1



Zhiping Xiong / Filomat 28:8 (2014), 1653-1660 1655

Let U = {||ll.v, u, v} be the set of the whole self-dual norms on C"™*", where ||.||, is a self-dual norm
on C" and [|.||, is a self-dual norm on C”, the next lemma shows that U is not an empty set. In fact, some
well-known operator norms such as ||.|l2, |-/l and ||.||r are self-dual norm.

Lemma 1.1 Lety = (y1,Y2,- -+, Ym) € C" and |lyll. = L1z, lyil*>. Then ||.|; is a self-dual norm on C™.

Proof. According to the Definition 1.1, we only need to show

[Iyll2 = max|y"x|. )

IIxllp=1

Let x = (x1,%2, -+, xp)" € C" and ||xll = VX1 [xi> = 1. Then

X1
X2
lyxl = v )| . | =x + yaxe + o+ vl
X
<yl + el + -+ [yl < Dyhllal + lyslleal + - + [y lxm]
m m
< A X A Y ®)
i=1 i=1

Since x varies on C™, it follows that

max |y"x| < llylla- )
H);’Hz:l
On the other hand, taking x’ = Hyillz’ we have ¥’ € C" and ||x’|l, = 1. Then
. vy _lyyl
ly' x| = 7= = =—— = lyll. 10
A= = g, =W {10

Combining (7), (8), (9) with (10), we proved lemma 1.1. O
Let U = {||.ll.v, u, v} be the set of the whole self-dual norms and A € C"™". In this article we will show
that there is no finite upper bound of P+(A) while ||.|,, |.Il, vary on U and

. 01(A)
inf Al AT, = —==%,
ILluel, et AT A o.(A)

(11)
where 01(A) and 0,(A) are the largest and smallest nonzero singular values of A, respectively.

In order to get the main result of this paper, we need the following lemma, which will be used in this
paper.

Lemma 1.2 [1, 10] Let A € C}™*", then there exist unitary matrices P € C"™" and Q € C™" such that

Y O\ ..
A:p@ JQ, (12)

where * = diag(o1,02,++ ,04), 0; = VAi, Ay = Ay > --- > A, > 0 are the nonzero eigenvalues of A*A, and

01> 03 2 -++ 2 0, > 0 are the nonzero singular values of A. The Moore-Penrose inverse of A is

!l 0\,
A*:Q(O O)P, (13)

11 ... 1)

o1’ 027 70,/

where 7! = diag(
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2. Main Results

LetU = {||.[l.v, u, v}be the set of the whole self-dual norms and A € C"™", we define a condition number
Pi(A) = ||Al| yv||A+||w, of A, while ||.|| varies on U. In this section, we will show that there is no finite upper

bound of P+(A) and
01(A)
o, (A)

Theorem 2.1 Let A = [a;;] € C]™" be a nonzero matrix. Then there is no finite upper bound of P+(A),

inf  [AllwllATlly, =
Ieeld et e

while ||.|| varies on U.

Proof. Let x = (x1,x2,--+ ,x,)* € C" and ||x|l, = v/Y-; |xil%, then the corresponding norm of the matrix is

lAll2. According to the definition of the norm of matrices [9], we have

1

1
1Al = —[IAllF = = (14)
r r

Suppose a;; # 0, then we take
1 1

1 1
where Q; = [g;;] € C™", Qf = [qlfj] € C"™m and s = qj; # 0, = ), # 0. With the notice of the non-singularity

of Qs and Q;, we can define two norm ||.||,(q,) and .||y, with a parameter s:

Ixllv@) = 1Qsxll2 and. [Iylluqy = 1Q¢Yllz,

where x € C" and y € C".

By the formula (1), we have

[1Ax]u0z) [1Q5AX]|2 1Q:AQ5 vl -
IAllu@v@) = max ———— = max —=—— = max ———>—=— = [QIAQ;"[l, (15)
w0 Iy  x#0 IQsxll2 y=Quzo  lyll2

and

QAQ' = diag(1,1,---,1, ,1,-~-,1)Adiag(1,1,-~-,1,%,1,-.-,1)

all oo galj .« aln
1 1 1
= |saa - Z@ o S| (16)
1,
aml oo ;am] oo amn

From (14), (15) and (16), we have

, _ 1, ., _ 1.1
IAllu@ymo, = 1QLAQS I > ;HQSAQS Yig > ;|S—261i,‘|~ (17)
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According to the formula (17), we get the conclusion that when [s| — 0, [|Ally)v(q.) has no finite upper
bound.
On the other hand, for any norm, the following statement holds [9],

1
5 = PUATY AN S A A"l < A" A (18)

r

where o, is the smallest nonzero singular value of A.
From the formula (1), we have
1Ay, = max |Ax]l, (19)
[Ixllp =1
where ||.||, on C" and |||, on C" are the self-dual norms of the set U.

According to the formula (1) and Definition 1.1, we have

A"l = max||Ax]l, = max max|x*(A")"y, (20)
t xeCm xeCm yeCh
Il =1 Idlu=1" flylly=1
and
Ty* _ Ty* _ * At — 1
A My = max[I(A7) Yl = max maxly"A’x] = [|Ally,. (21)

Ilylly=1 lyly=1" lxllu=1

Combining (18), (19), (20) with (21), we have
1
— < 1AM, 22
5, S A ]y (22)
By (17) and (22), we have the conclusion that
P+(A) = ||A||yv||A+”v[u

has no finite upper bound, while ||.|| varies on the self-dual norms set U. O

Theorem 2.2 Let A = [a;;] € C]™" be a nonzero matrix. Then the condition number of A: P+(A) =
Al lIA Ty > 29, while ||| varies on U.

Proof. From [9], we know that G% is the spectral radius of A*A (i.e, G% = p(A*A)). Thus

0} = p(A"A) < A" Allw < A"yl All- (23)

By (1), we have
JAlly = max [|Ax]).
Iy =1
Since ||.||, and [|.||,, are self-dual norms, then according to Definition 1.1, we have
[ Allus = max|lAx], = max max x'A"yl. 4)
xeC’ xeC! eC!
lIxdly=1 Ilellv=1" iyl =1
and

”A*”vy = max ||A*y||v = max max |y*Ax| = ”A”yv- (25)
yeCcm yeCm xeCl

Iyl =1 lyllg=1 " lIxdllvy=1
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Combining (23), (24) with (25) yields G% < |IA]?,, that is

wvs
01 < ”A”yv (26)

By analogy with above proof, we have

1
— < 1AMl 27
= <A I (27)

¥

From the formulas (26) and (27), we obtain the conclusion that

_ s 2 (A)
P+(A) = lAll 1A Ny = @A)
holds while ||.|| varies on U. O

In the above part, we shown that for a singular matrix A there is no finite upper bound of P;(A), while

|Il.]| varies on U. In the following theorem we will show that

inf Pr(4) = Ziéﬁ)) (28)
Theorem 2.3 Let A = [a;;] € C}™" be a nonzero matrix. Then

i P = ||.||,1eLifl|f||veuHA”“ ATy = ZEZ‘;' 29)
Proof. Let P € C"™", Q € C'"™" be two unitary matrices, such that

PAQ= (czj 8)' (30)

where L = diag(01,02,- -+ ,0,) and 01 > -+ > 0, > 0. Then from Lemma 1.2, we have
1 O
+ _ %
A= Q( 0 O)P '

11 ... 1
g1’ gy’ 7 o,/

where 27! = diag(

Let D, and D/, be two diagonal matrices as follow:

! e &
€
Dé = ’ D, = 7
En—l ém—Z gm—l
em=1
where ¢ is a positive real number.
Suppose x € C" and y € C", we define
Ixllyp,) = ID;'Q"xlleo and ylluoy = 1D, P'Ylleo-
Corresponding, we have
IAXlluoy ID. 7P Axlleo ID; ' P*AQD.z]lw

Al oo wip,) = max =D, 'P'AQD. |l (31)

= — = max
Ilxllv,) #0  ||D7'Q*x|le z=D:'Q-x#0 1]l
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and
1AM vpouw:) = IDe Q" ATPD|co. (32)

According to the above proof, we obtain

_1(01
1 ¢ ! 1
e &2 .
r=1p» —_ . . GV — H O
DE PAQDé_ °. ‘.2 . 0 .. _(O O)r (33)
emn” i::l En—l
0
Gl —602 e e O(g)
(o)) —E&03
where H = . . - |.and
Or-1 —E&0y
Or
1
01
1 be
el 1 € ¢ T O
D.'QA'PD, = | o = (O O), (34)
i 1 0 gm—Z Sm—l
& - Em—l
0
1 &
A
where T = 22
l' £
Oy Oy
Combining the formulas (31), (32), (33) with (34), we have
Bim 1Al oo, AT = lim(o1 + O(e))(— + e—) = 2 (35)
AN @) A Doy = 1m0 o )T o
That is, there exists some self-dual norms such that
. . a1(A)
f P+(A) = inf |A|lwlIA |, = .o 36
||-l|féu +( ) ”ﬁ;u” ”yv” ||vy Gr(A) ( )
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