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Abstract. In this paper, we introduce a new class of Lipschitzian maps and prove some weak and strong
convergence results for explicit iterative process using a more satisfactory definition of self mappings. Our
results approximate common fixed point of a total asymptotically quasi-I-nonexpansive mapping T and
a total asymptotically quasi-nonexpansive mapping I, defined on a nonempty closed convex subset of a
Banach space.

1. Introduction

Let E be a real normed linear space, K a nonempty subset of E and T : K→ K a mapping. Denote by F(T)

the set of fixed points of T, that is, F (T) = {x ∈ K : Tx = x} and we denote by D(T) the domain of a mapping

T. Throughout this paper, we always assume that E is a real Banach space and F (T) , ∅. Now, we recall

the well-known concept and results. A mapping T : K → K is called asymptotically nonexpansive if there

exists a sequence {kn} ⊂ [1,∞) with kn → 1 such that∥∥∥Tnx − Tny
∥∥∥ ≤ kn

∥∥∥x − y
∥∥∥

for all x, y ∈ K and n ≥ 1. A mapping T : K→ K is said asymptotically quasi-nonexpansive if there exists a

sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that∥∥∥Tnx − p
∥∥∥ ≤ kn

∥∥∥x − p
∥∥∥

for all x ∈ K, p ∈ F(T) and n ≥ 1. Let T : K→ K, I : K→ K be two mappings of nonempty subset K of a real

normed linear space E. Then T is said asymptotically I-nonexpansive if there exists a sequence {kn} ⊂ [1,∞)

2010 Mathematics Subject Classification. 47H09, 47H10, 46B20
Keywords. Total asymptotically quasi-I-nonexpansive self-mappings, total uniformly L-Lipschitzian maps, explicit iterations, weak

and strong convergence, common fixed point, uniformly convex Banach space.
Received: 27 July 2013; Accepted: 03 August 2014
Communicated by Naseer Shahzad
Email addresses: hukmu@atauni.edu.tr (Hukmi KIZILTUNC), yunus.purtas@cbu.edu.tr (Yunus PURTAS)



H. Kiziltunc, Y. Purtas / Filomat 28:8 (2014), 1699–1710 1700

with limn→∞ kn = 1 such that∥∥∥Tnx − Tny
∥∥∥ ≤ kn

∥∥∥Inx − Iny
∥∥∥

for all x, y ∈ K and n ≥ 1. Let T : K→ K, I : K→ K be two mappings of nonempty subset K of a real normed

linear space E. Then T is said asymptotically quasi I-nonexpansive (see [11]) if there exists a sequence

{kn} ⊂ [1,∞) with limn→∞ kn = 1 such that∥∥∥Tnx − p
∥∥∥ ≤ kn

∥∥∥Inx − p
∥∥∥

for all x ∈ K, p ∈ F (T) ∩ F(I) and n ≥ 1.

Remark 1.1. If F (T) ∩ F (I) , ∅ then an asymptotically I-nonexpansive mapping is asymptotically quasi I-

nonexpansive. But, there exists a nonlinear continuous asymptotically quasi I-nonexpansive mappings which is

not asymptotically I-nonexpansive.

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [3]. They

proved that if K is a nonempty closed convex bounded subset of a real uniformly convex Banach space and

T : K → K is an asymptotically nonexpansive mappings, then T has a fixed point. Liu [5] studied iterative

sequences for asymptotically quasi-nonexpansive mappings. The weak and strong convergence of implicit

iteration process to a common fixed point of a finite family of I-asymptotically nonexpansive mappings

were studied by Temir [10]. Temir and Gul [11] defined I-asymptotically quasi-nonexpansive mapping

in Hilbert space and they proved convergence theorem for I-asymptotically quasi-nonexpansive mapping

defined in Hilbert space.

A mapping T : K → K is called a total asymptotically nonexpansive mapping (see [1]) if there exist

nonnegative real sequences
{
µn

}
, {ln} with µn, ln → 0 as n→ ∞ and strictly increasing continuous function

φ : R+
→ R+ with φ(0) = 0 such that for all x, y ∈ K,∥∥∥Tnx − Tny

∥∥∥ ≤ ∥∥∥x − y
∥∥∥ + µnφ(

∥∥∥x − y
∥∥∥) + ln, n ≥ 1. (1)

Let T : K → K, I : K → K be two mappings of a nonempty subset K of a real normed space E. T is said to

be total asymptotically I-nonexpansive mapping (see [6]) if there exist nonnegative real sequences
{
µn

}
, {ln}

with µn, ln → 0 as n→ ∞ and strictly increasing continuous function φ : R+
→ R+ with φ(0) = 0 such that

for all x, y ∈ K,∥∥∥Tnx − Tny
∥∥∥ ≤ ∥∥∥Inx − Iny

∥∥∥ + µnφ(
∥∥∥Inx − Iny

∥∥∥) + ln, n ≥ 1. (2)

Note that if I = Id (Id is the indentity mapping), then (2) reduces to (1). One can see that if φ(ξ) = ξ,

then (1) reduces to
∥∥∥Tnx − Tny

∥∥∥ ≤ (1 + µn)
∥∥∥x − y

∥∥∥ + ln, n ≥ 1. In addition, if ln = 0 for all n ≥ 1, then total

asymptotically nonexpansive mappings coincide with asymptotically nonexpansive mappings.
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Let K be a nonempty closed subset of a real Banach space E. Then a mapping T : K → K is called a

uniformly L-Lipschitzian mapping if there exists a constant L > 0 such that∥∥∥Tnx − Tny
∥∥∥ ≤ L

∥∥∥x − y
∥∥∥ (3)

for all x, y ∈ K and n ≥ 1.

The class of a total asymptotically nonexpansive mappings was introduced by Alber et al. [1] to

unify various definitions of asymptotically nonexpansive mappings. They constructed a scheme which

convergences strongly to a fixed point of a total asymptotically nonexpansive mappings. Mukhamedov

and Saburov [6] studied strong convergence of an explicit iteration process for a totally asymptotically

I-nonexpansive mapping in Banach spaces.

Definition 1.2. [2] Let K be a nonempty closed subset of a real normed linear space E. A mapping T : K → K is

said to be total asymptotically quasi-nonexpansive if F(T) , ∅ and there exist nonnegative real sequences
{
µn

}
, {ln}

with µn, ln → 0 as n→∞ and strictly increasing continuous function φ : R+
→ R+ with φ(0) = 0 such that for all

x ∈ K, p ∈ F(T),∥∥∥Tnx − p
∥∥∥ ≤ ∥∥∥x − p

∥∥∥ + µnφ(
∥∥∥x − p

∥∥∥) + ln, n ≥ 1. (4)

Definition 1.3. Let T : K→ K, I : K→ K be two mappings of a nonempty closed subset K of a real normed space E.

T is said to be total asymptotically quasi-I-nonexpansive if F(T) , ∅ and there exist nonnegative real sequences
{
µn

}
,

{ln} with µn, ln → 0 as n → ∞ and strictly increasing continuous function φ : R+
→ R+ with φ(0) = 0 such that

for all x ∈ K, p ∈ F(T),∥∥∥Tnx − p
∥∥∥ ≤ ∥∥∥Inx − p

∥∥∥ + µnφ(
∥∥∥Inx − p

∥∥∥) + ln, n ≥ 1. (5)

Note that if I = Id (Id is the indentity mapping), then (5) reduces to (4). One can see that if φ(ξ) = ξ,

then (4) reduces to
∥∥∥Tnx − p

∥∥∥ ≤ (1 + µn)
∥∥∥x − p

∥∥∥ + ln, n ≥ 1. In addition, if ln = 0 for all n ≥ 1, then total

asymptotically quasi-nonexpansive mappings coincide with asymptotically quasi-nonexpansive mappings.

Definition 1.4. Let K be a nonempty closed subset of a real normed linear space E. A mapping T : K → K is said

to be total uniformly L-Lipschitzian if there exist L > 0, noninegative real sequences
{
µn

}
, {ln} with µn, ln → 0 as

n→∞ and strictly increasing continuous function φ : R+
→ R+ with φ(0) = 0 such that for all x, y ∈ K,∥∥∥Tnx − Tny

∥∥∥ ≤ L
[∥∥∥x − y

∥∥∥ + µnφ(
∥∥∥x − y

∥∥∥) + ln
]
, n ≥ 1. (6)

One can see that if µn = 0 and ln = 0 for all n ≥ 1, then (6) reduces to (3).

Example 1.5. Let us consider that R, the set of real numbers, endowed with the usual topology. Let K = [0, 1] ⊂ R.

The mapping T : K→ K is defined by

Tx =


1
2 , x ∈

[
0, 1

2

]
√

1−x2
√

3
, x ∈

[
1
2 , 1

]
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for all x ∈ K. Let φ be a strictly increasing continuous function such that φ : R+
→ R+ with φ(0) = 0. Let {µn}n≥1

and {ln}n≥1 in R be two sequences defined by µn = 1
n and ln = 1

n+1 , for all n ≥ 1 (limn→∞ µn = limn→∞
1
n = 0,

limn→∞ ln = 1
n+1 = 0). Note that Tnx = 1

2 for all x ∈ K and n ≥ 2 and F(T) =
{

1
2

}
. Clearly, T is both uniformly

continuous and total asymptotically nonexpansive mapping on K. Also, for all x, y ∈ K and L > 0, we obtain∣∣∣Tnx − Tny
∣∣∣ ≤ L

∣∣∣x − y
∣∣∣ . (7)

for all n ≥ 1.

In fact, if x ∈
[
0, 1

2

]
, then

∣∣∣x − 1
2

∣∣∣ = |x − Tx| . Similarly, if x ∈
[

1
2 , 1

]
, then

∣∣∣x − 1
2

∣∣∣ = x− 1
2 ≤ x−

√

1−x2
√

3
= |x − Tx|.

Hence, we get d(x,F(T)) =
∣∣∣x − 1

2

∣∣∣ ≤ |x − Tx|. But, T is not Lipschitzian. Indeed, suppose not, i.e., there exists L > 0

such that∣∣∣Tx − Ty
∣∣∣ ≤ L

∣∣∣x − y
∣∣∣

for all x, y ∈ K. If we take x = 1 − 1
2(1+L)2 >

1
2 and y = 1, then

√

1−x2
√

3
≤ L |1 − x| ⇐⇒ 1

3L2 ≤
1−x
1+x = 1

4L2+8L+3 . This is a contradiction.

Also, since φ is strictly increasing continuous function φ : R+
→ R+ with φ(0) = 0 and µn = 1

n , ln = 1
n+1 , for

all n ≥ 1 and L > 0, it follows that we have

L
(1

n
φ

(∣∣∣x − y
∣∣∣) +

1
n + 1

)
≥ 0 (8)

for all x, y ∈ K. Due to (7) and (8), there exists L > 0 such that for all x, y ∈ K,∣∣∣Tnx − Tny
∣∣∣ ≤ L

[∣∣∣x − y
∣∣∣ +

1
n
φ

(∣∣∣x − y
∣∣∣) +

1
n + 1

]
, n ≥ 1.

Then, T is a total uniformly L-Lipschitzian mapping on K.

Mukhamedov and Saburov [6] studied strong convergence of an explicit iteration process for a totally

asymptotically I-nonexpansive mapping in Banach spaces. This iteration scheme is defined as follows.

Let K be a nonemty closed convex subset of a real Banach space E. Consider T : K→ K is a total asymp-

totically quasi I-nonexpansive mapping, where I : K → K is a total asymptotically quasi-nonexpansive

mapping. Then for two given sequences {αn} , {βn} in [0, 1] we shall consider the following iteration scheme:
x0 ∈ K,

xn+1 = (1 − αn) xn + αnTnyn,
yn =

(
1 − ��βn

)
xn + βnInxn.

n ≥ 0, (9)

Inspired and motivated by this facts, we study the convergence theorems of the explicit iterative scheme

involving a total asymptotically quasi-I-nonexpansive mapping in a nonempty closed convex subset of

uniformly convex Banach spaces.

In this paper, we will prove the weak and strong convergences of the explicit iterative process (9) to a

common fixed point of T and I.
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2. Preliminaries

Recall that a Banach space E is said to satisfy Opial condition [7] if, for each sequence {xn} in E such that

{xn} converges weakly to x implies that

lim
n→∞

inf ‖xn − x‖ < lim
n→∞

inf
∥∥∥xn − y

∥∥∥ (10)

for all y ∈ E with y , x. It is weel known that (see [4] ) inequality (10) is equivalent to

lim
n→∞

sup ‖xn − x‖ < lim
n→∞

sup
∥∥∥xn − y

∥∥∥ .
Definition 2.1. Let K be a closed subset of a real Banach space E and let T : K → K be a mapping. T is said to be

semiclosed (demiclosed) at zero, if for each bounded sequence {xn} in K, the conditions xn converges weakly to x ∈ K

and Txn converges strongly to 0 imply Tx = 0.

Definition 2.2. Let K be a closed subset of a real Banach space X and let T : K → K be a mapping. T is said

to be semicompact, if for any bounded sequence {xn} in K such that ‖xn − Txn‖ → 0, n → ∞, then there exists a

subsequence
{
xnk

}
⊂ {xn} such that xnk → x∗ ∈ K strongly.

Lemma 2.3. [8] Let X be a uniformly convex Banach space and let b, c be two constant with 0 < b < c < 1. Suppose

that {tn} is a sequence in [b, c] and {xn},
{
yn

}
are two sequence in X such that

lim
n→∞

∥∥∥tnxn + (1 − tn) yn

∥∥∥ = d, lim
n→∞

sup ‖xn‖ ≤ d, lim sup
∥∥∥yn

∥∥∥ ≤ d,

holds some d ≥ 0. Then limn→∞

∥∥∥xn − yn

∥∥∥ = 0 .

Lemma 2.4. [9] Let {an}, {bn}, {cn} be three sequences of nonnegative real numbers with
∑
∞

n=1 bn < ∞,
∑
∞

n=1 cn < ∞.

If the following conditions is satisfied:

an+1 ≤ (1 + bn) an + cn, n ≥ 1,

then the limit limn→∞ an exists.

3. Main Results

In this section, we prove the convergence theorems of an explicit iterative scheme (9) for a total asymp-

totically quasi-I-nonexpansive mapping in Banach spaces. In order to prove our main results, the following

lemmas are needed.

Lemma 3.1. Let E be real Banach space and K be a nonempty closed convex subset of E. Let T : K → K be a total

asymptotically quasi-I-nonexpansive mapping with sequences
{
µn

}
, {ln} and I : K → K be a total asymptotically

quasi-nonexpansive mapping with sequences {
∼

µn}, {
∼

ln} such that F = F (T) ∩ F (I) , ∅. Suppose that there exist Mi,

Ni > 0, i = 1, 2, such that φ(ξ) ≤M2ξ for all ξ ≥M1 and ϕ(ζ) ≤ N2ζ for all ζ ≥ N1. Then for any x, y ∈ K we have∥∥∥Inx − p
∥∥∥ ≤ (1 + N2

∼

µn)
∥∥∥x − p

∥∥∥ + ϕ(N1)
∼

µn +
∼

ln (11)
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∥∥∥ ≤ (1 + M2µn)(1 + N2

∼

µn)
∥∥∥x − p

∥∥∥
+(1 + M2µn)(ϕ(N1)

∼

µn +
∼

ln) + φ(M1)µn + ln. (12)

Proof. Since φ,ϕ : R+
→ R+ are strictly increasing continuous functions, it follows that φ(ξ) ≤ φ(M1),

ϕ(ζ) ≤ ϕ(N1) whenever ξ ≤M1, ζ ≤ N1, respectively. By the hypothesis of lemma we get

φ(ξ) ≤ φ(M1) + M2ξ, ϕ(ζ) ≤ ϕ(N1) + N2ζ, (13)

for all ξ, ζ ≥ 0. Since T : K → K, I : K → K are a total asymptotically quasi-I-nonexpansive mapping and a

total asymptotically quasi-nonexpansive mapping, respectively, then from (13) we obtain∥∥∥Inx − p
∥∥∥ ≤ (1 + N2

∼

µn)
∥∥∥x − p

∥∥∥ + ϕ(N1)
∼

µn +
∼

ln.

Similarly, from (11) and (13) we obtain∥∥∥Tnx − p
∥∥∥ ≤ (1 + M2µn)

∥∥∥Inx − p
∥∥∥ + φ(M1)µn + ln

≤ (1 + M2µn)(1 + N2
∼

µn)
∥∥∥x − p

∥∥∥
+(1 + M2µn)(ϕ(N1)

∼

µn +
∼

ln) + φ(M1)µn + ln.

This completes the proof.

Lemma 3.2. Let E be real Banach space and K be a nonempty closed convex subset of E. Let T : K → K be a total

asymptotically quasi-I-nonexpansive mapping with sequences
{
µn

}
, {ln} and I : K → K be a total asymptotically

quasi-nonexpansive mapping with sequences {
∼

µn}, {
∼

ln} such that F = F (T) ∩ F (I) , ∅. Also, let {αn} and {βn} are

sequences in [0, 1]. Suppose that
∑
∞

n=1 µn < ∞,
∑
∞

n=1 ln < ∞,
∑
∞

n=1
∼

µn< ∞,
∑
∞

n=1

∼

ln< ∞ and there exist Mi, Ni > 0,

i = 1, 2, such that φ(ξ) ≤ M2ξ for all ξ ≥ M1 and ϕ(ζ) ≤ N2ζ for all ζ ≥ N1. Then sequence {xn} by (9) is bounded

and for each p ∈ F = F (T) ∩ F (I) the limit limn→∞

∥∥∥xn − p
∥∥∥ exists.

Proof. Since F = F (T) ∩ F (I) , ∅, for any given p ∈ F, it follows from (9) and (12) that∥∥∥yn − p
∥∥∥ ≤ (

1 + N2βn
∼

µn

) ∥∥∥xn − p
∥∥∥ + βn

(
ϕ(N1)

∼

µn +
∼

ln

)
. (14)

Using a similar method, from (9), (11) and (14), we have∥∥∥xn+1 − p
∥∥∥ ≤ (1 − αn)

∥∥∥xn − p
∥∥∥ + αn

∥∥∥Tnyn − p
∥∥∥

≤ (1 − αn)
∥∥∥xn − p

∥∥∥ + αn(1 + M2µn)(1 + N2
∼

µn)
∥∥∥yn − p

∥∥∥
+αn(1 + M2µn)(ϕ(N1)

∼

µn +
∼

ln) + αn

(
φ(M1)µn + ln

)
≤

{
1 + αn

[(
1 + M2µn

) (
1 + N2

∼

µn

) (
1 + N2βn

∼

µn

)
− 1

]} ∥∥∥xn − p
∥∥∥

+αn

[(
1 + M2µn

)
(ϕ(N1)

∼

µn +
∼

ln)
(
βn

(
1 + N2

∼

µn

)
+ 1

)
+ φ(M1)µn + ln

]
. (15)
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Defining

an =
∥∥∥xn − p

∥∥∥
bn = αn

[(
1 + M2µn

) (
1 + N2

∼

µn

) (
1 + N2βn

∼

µn

)
− 1

]
cn = αn

[(
1 + M2µn

)
(ϕ(N1)

∼

µn +
∼

ln)
(
βn

(
1 + N2

∼

µn

)
+ 1

)
+ φ(M1)µn + ln

]
in (15) we have an+1 ≤ (1 + bn) an + cn. Since

∑
∞

n=1 bn < ∞,
∑
∞

n=1 cn < ∞, Lemma 2.4 implies the existence of

the limit limn→∞ an. This completes the proof.

Theorem 3.3. Let E be real Banach space and K be a nonempty closed convex subset of E. Let T : K → K be a total

uniformly L1-Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences
{
µn

}
, {ln} and I : K → K

be a total uniformly L2-Lipschitzian asymptotically quasi-nonexpansive mapping with sequences {
∼

µn}, {
∼

ln} such that

F = F (T) ∩ F (I) , ∅. Suppose that
∑
∞

n=1 µn < ∞,
∑
∞

n=1 ln < ∞,
∑
∞

n=1
∼

µn< ∞,
∑
∞

n=1

∼

ln< ∞ and there exist Mi,

Ni > 0, i = 1, 2, such that φ(ξ) ≤M2ξ for all ξ ≥M1 and ϕ(ζ) ≤ N2ζ for all ζ ≥ N1. Then the sequence {xn} by (9),

converges strongly to a common fixed point in F = F (T) ∩ F (I) if and only if

lim
n→∞

inf d(xn,F) = 0. (16)

Proof. For any given p ∈ F, we have ( see (15))∥∥∥xn+1 − p
∥∥∥ ≤ (1 + bn)

∥∥∥xn − p
∥∥∥ + cn, n ≥ 1. (17)

It suffices to show that limn→∞ inf d (xn, F) = 0 implies that {xn} converges to a common fixed point of T and

I.

Necessity. Since (17) holds for all p ∈ F, we obtain from it that

d(xn+1,F) ≤ (1 + bn) d(xn,F) + cn, n ≥ 1.

Lemma 2.4 implies that limn→∞ d(xn,F) exists. But, limn→∞ inf d (xn,F) = 0. Hence, limn→∞ d (xn,F) = 0.

Sufficiency. Let us prove that the sequence {xn} converges to a common fixed point of T and I. Firstly,

we show that {xn} is a Cauchy sequence in E. In fact, as 1 + t ≤ exp(t) for all t > 0. For all integer m ≥ 1, we

obtain from inequality (17) that

∥∥∥xn+m − p
∥∥∥ ≤ exp

n+m−1∑
i=n

bi

 ∥∥∥xn − p
∥∥∥ +

n+m−1∑
i=n

ci

 exp

n+m−1∑
i=n

bi

 ,
so that for all integers m ≥ 1 and all p ∈ F,

‖xn+m − xn‖ ≤
∥∥∥xn+m − p

∥∥∥ +
∥∥∥xn − p

∥∥∥
≤

1 + exp

 ∞∑
i=n

bi


 ∥∥∥xn − p

∥∥∥ + exp

 ∞∑
i=n

bi

 ∞∑
i=n

ci

≤ A

∥∥∥xn − p
∥∥∥ +

∞∑
i=n

ci

 , (18)
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for all p ∈ F, where 0 < A − 1 = exp
(∑∞

i=n bi
)
< ∞. Taking the infimum over p ∈ F in (18) gives

‖xn+m − xn‖ ≤ A

d (xn,F) +

∞∑
i=n

ci

 . (19)

Now, since limn→∞ d (xn,F) = 0 and
∑
∞

i=1 ci < ∞, given ε > 0, there exists an integer n0 > 0 such that for all

n > n0 we have d(xn,F) < ε
2A and

∑
∞

i=n ci < ε
2A . So, for all integers n > n0 and m ≥ 1, we obtain (19) that

‖xn+m − xn‖ ≤ ε

which means that {xn} is a Cauchy sequence in E, and completeness of E yields the existence of x∗ ∈ E such

that xn → x∗ strongly.

Now, we show that x∗ is a common fixed point of T and I. Suppose that x∗ < F. Since F is closed subset

of E, one has d(x∗,F) > 0. However, for all p ∈ F, we have∥∥∥x∗ − p
∥∥∥ ≤ ‖xn − x∗‖ +

∥∥∥xn − p
∥∥∥ .

This implies that

d(x∗,F) ≤ ‖xn − x∗‖ + d(xn,F),

so, we obtain d(x∗,F) = 0 as n → ∞, which contradicts d(x∗,F) > 0. Hence, x∗ is a common fixed point of T

and I. This comletes the proof.

Lemma 3.4. Let E be a real uniformly Banach space and K be a nonempty closed convex subset of E. Let T : K→ K

be a total uniformly L1-Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences
{
µn

}
, {ln} and

I : K→ K be a total uniformly L2-Lipschitzian asymptotically quasi-nonexpansive mapping with sequences {
∼

µn}, {
∼

ln}

such that F = F (T) ∩ F (I) , ∅. Suppose that
∑
∞

n=1 µn < ∞,
∑
∞

n=1 ln < ∞,
∑
∞

n=1
∼

µn< ∞,
∑
∞

n=1

∼

ln< ∞ and there exist

Mi, Ni > 0, i = 1, 2, such that φ(ξ) ≤M2ξ for all ξ ≥M1 and ϕ(ζ) ≤ N2ζ for all ζ ≥ N1. Assume that {αn} and {βn}

are two sequences in [t, 1 − t], where 0 < t < 1. Then the sequence {xn} by (9) satisfies the following:

lim
n→∞
‖xn − Txn‖ = 0, (20)

lim
n→∞
‖xn − Ixn‖ = 0. (21)

Proof. By Lemma 3.2, limn→∞

∥∥∥xn − p
∥∥∥ exists. Assume that, for any p∈ F = F(T) ∩ F(I), limn→∞

∥∥∥xn − p
∥∥∥ = r.

If r = 0, the conclusion is obvious. Suppose r > 0.

First, we will prove that

lim
n→∞
‖xn − Tnxn‖ = 0, lim

n→∞
‖xn − Inxn‖ = 0. (22)

It follows from (9) that∥∥∥xn+1 − p
∥∥∥ =

∥∥∥(1 − αn)(xn − p) + αn(Tnyn − p)
∥∥∥→ r, (23)
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as n→∞. By means of
∑
∞

n=1 µn < ∞,
∑
∞

n=1 ln < ∞,
∑
∞

n=1
∼

µn < ∞,
∑
∞

n=1

∼

ln < ∞, from (12) and (14) we get

lim
n→∞

sup
∥∥∥Tnyn − p

∥∥∥ ≤ lim
n→∞

sup
∥∥∥yn − p

∥∥∥ ≤ lim
n→∞

sup
∥∥∥xn − p

∥∥∥ = r. (24)

Hence, using (23), (24) and Lemma 2.3, we obtain

lim
n→∞

∥∥∥xn − Tnyn

∥∥∥ = 0. (25)

From (9) and (25) we have

lim
n→∞
‖xn+1 − xn‖ = 0. (26)

From (25) and (26) we get

lim
n→∞

∥∥∥xn+1 − Tnyn

∥∥∥ ≤ lim
n→∞
‖xn+1 − xn‖ + lim

n→∞

∥∥∥xn − Tnyn

∥∥∥ = 0. (27)

On the other hand, from (12) and (14) we have∥∥∥xn − p
∥∥∥ ≤

∥∥∥xn − Tnyn

∥∥∥ +
(
1 + M2µn

) (
1 + N2

∼

µn

) ∥∥∥yn − p
∥∥∥

+
(
1 + M2µn

)
(ϕ(N1)

∼

µn +
∼

ln) + φ(M1)µn + ln

≤

∥∥∥xn − Tnyn

∥∥∥ +
(
1 + M2µn

) (
1 + N2

∼

µn

) (
1 + N2βn

∼

µn

) ∥∥∥xn − p
∥∥∥

+
(
1 + M2µn

)
(ϕ(N1)

∼

µn +
∼

ln)
(
βn

(
1 + N2

∼

µn

)
+ 1

)
+ φ(M1)µn

+ln. (28)

From (28) we obtain

lim
n→∞

∥∥∥xn − p
∥∥∥ ≤ lim

n→∞

∥∥∥xn − Tnyn

∥∥∥ + lim
n→∞

∥∥∥yn − p
∥∥∥

≤ lim
n→∞

∥∥∥xn − Tnyn

∥∥∥ + lim
n→∞

∥∥∥xn − p
∥∥∥ . (29)

Then (29) with the squeeze theorem, imply that

lim
n→∞

∥∥∥yn − p
∥∥∥ = r.

From (9) we can see that∥∥∥yn − p
∥∥∥ =

∥∥∥(1 − βn
) (

xn − p
)

+ βn
(
Inxn − p

)∥∥∥→ r, n→∞. (30)

Furthermore, from (11) we get

lim
n→∞

sup
∥∥∥Inxn − p

∥∥∥ ≤ lim
n→∞

sup
∥∥∥xn − p

∥∥∥ = r. (31)

Now, applying Lemma 2.3 to (30) we obtain

lim
n→∞
‖xn − Inxn‖ = 0. (32)
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From (26) and (32) we have

lim
n→∞
‖xn+1 − Inxn‖ ≤ lim

n→∞
‖xn+1 − xn‖ + lim

n→∞
‖xn − Inxn‖ = 0. (33)

It follows from (9) that∥∥∥yn − xn

∥∥∥ = βn ‖xn − Inxn‖ . (34)

Hence, from (32) and (34) we obtain

lim
n→∞

∥∥∥yn − xn

∥∥∥ = 0. (35)

Consider

‖xn − Tnxn‖ ≤
∥∥∥xn − Tnyn

∥∥∥ + L1

∥∥∥yn − xn

∥∥∥ + L1

(
µnφ

(∥∥∥yn − xn

∥∥∥) + ln
)
. (36)

Then, from (25), (35) and (36) we obtain

lim
n→∞
‖xn − Tnxn‖ = 0. (37)

From (26) and (35) we have

lim
n→∞

∥∥∥xn+1 − yn

∥∥∥ ≤ lim
n→∞
‖xn+1 − xn‖ + lim

n→∞

∥∥∥yn − xn

∥∥∥ = 0. (38)

Finally, from

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ + L1

∥∥∥xn − yn−1

∥∥∥ + L1

(
µnφ

(∥∥∥xn − yn−1

∥∥∥) + ln
)

+L1

∥∥∥�Tn−1yn−1 − xn

∥∥∥ + L1

(
µnφ

(∥∥∥Tn−1yn−1 − xn

∥∥∥) + ln
)
, (39)

which with (27), (37) and (38) we get

lim
n→∞
‖xn − Txn‖ = 0. (40)

Similarly, we obtain

‖xn − Ixn‖ ≤ ‖xn − Inxn‖ + L2 ‖xn − xn−1‖ + L2

(
∼

µnϕ (‖xn − xn−1‖) +
∼

ln

)
+L2

∥∥∥In−1xn−1 − xn

∥∥∥ + L2

(
∼

µnϕ
(∥∥∥In−1xn−1 − xn

∥∥∥) +
∼

ln

)
, (41)

which with (26), (32) and (33) implies

lim
n→∞
‖xn − Ixn‖ = 0. (42)

This completes the proof.
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Theorem 3.5. Let E be a real uniformly Banach space satisfying Opial condition and let K be a nonempty closed

convex subset of E. Let C : E → E be an identity maping. Let T : K → K be a total uniformly L1-Lipschitzian

asymptotically quasi-I-nonexpansive mapping with sequences
{
µn

}
, {ln} and I : K → K be a total uniformly L2-

Lipschitzian asymptotically quasi-nonexpansive mapping with sequences {
∼

µn}, {
∼

ln} such that F = F (T) ∩ F (I) , ∅.

Suppose that
∑
∞

n=1 µn < ∞,
∑
∞

n=1 ln < ∞,
∑
∞

n=1
∼

µn< ∞,
∑
∞

n=1

∼

ln< ∞ and there exist Mi, Ni > 0, i = 1, 2, such that

φ(ξ) ≤ M2ξ for all ξ ≥ M1 and ϕ(ζ) ≤ N2ζ for all ζ ≥ N1. Assume that {αn}, {βn} are two sequences in [t, 1 − t],

where 0 < t < 1. If the mappings C − T and C − I are semiclosed at zero, then the explicit iterative sequence {xn}

defined by (9) converges weakly to a common fixed point of T and I.

Proof. Let p ∈ F = F (T) ∩ F (I). By Lemma 3.2, we know that limn→∞

∥∥∥xn − p
∥∥∥ exists and {xn} is bounded.

Since E is uniformly convex, then every bounded subset of E is weakly compact. Since {xn} is a bounded

sequence in K, then there exists a subsequence
{
xnk

}
⊂ {xn} such that

{
xnk

}
converges weakly to q1 ∈ K. Thus,

from (40) and (42) it follows that

lim
nk→∞

∥∥∥xnk − Txnk

∥∥∥ = 0, lim
nk→∞

∥∥∥xnk − Ixnk

∥∥∥ = 0. (43)

Since the mappings C − T and C − I are semiclosed at zero, we find Tq1 = q1 and Iq1 = q1. Namely,

q1 ∈ F = F (T) ∩ F (I).

Finally, let us prove that {xn} converges weakly to q1. Actually, suppose the contrary, that is, there exists

some subsequence
{
xn j

}
⊂ {xn} such that

{
xn j

}
converges weakly to q2 ∈ K and q1 , q2. Then by the same

method as given above, we can also prove that q2 ∈ F = F (T) ∩ F (I).

Since q1, q2 ∈ F = F (T) ∩ F (I), according to Lemma 3.2 limn→∞

∥∥∥xn − q1

∥∥∥ and limn→∞

∥∥∥xn − q2

∥∥∥ exist, we

have

lim
n→∞

∥∥∥xn − q1

∥∥∥ = r1, lim
n→∞

∥∥∥xn − q2

∥∥∥ = r2, (44)

where d1, d2 ≥ 0. Because of the Opial condition of E, we obtain

r1 = lim
nk→∞

sup
∥∥∥xn j − q

∥∥∥ < lim
nk→∞

sup
∥∥∥xnk − q1

∥∥∥ = r2

= lim
n j→∞

sup
∥∥∥xn j − q1

∥∥∥ < lim
n j→∞

sup
∥∥∥xn j − q

∥∥∥ . (45)

This is a contradiction. Hence q1 = q2. This implies that {xn} converges weakly to q. This completes the

proof.

Theorem 3.6. Let E be a real uniformly Banach space and K be a nonempty closed convex subset of E. Let T : K→ K

be a total uniformly L1-Lipschitzian asymptotically quasi-I-nonexpansive mapping with sequences
{
µn

}
, {ln} and

I : K→ K be a total uniformly L2-Lipschitzian asymptotically quasi-nonexpansive mapping with sequences {
∼

µn}, {
∼

ln}

such that F = F (T) ∩ F (I) , ∅. Suppose that
∑
∞

n=1 µn < ∞,
∑
∞

n=1 ln < ∞,
∑
∞

n=1
∼

µn< ∞,
∑
∞

n=1

∼

ln< ∞ and there exist

Mi, Ni > 0, i = 1, 2, such that φ(ξ) ≤M2ξ for all ξ ≥M1 and ϕ(ζ) ≤ N2ζ for all ζ ≥ N1. Assume that {αn}, {βn} are

two sequences in [t, 1 − t], where 0 < t < 1. If at least one mapping of the mappings T and I is semicompact, then the

explicit iterative sequence {xn} defined by (9) converges strongly to a common fixed point of T and I.
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Proof. Without any loss of generality, we may assume that T is semicompact. This with (40) means that

there exists a subsequence
{
xnk

}
⊂ {xn} such that xnk → x∗ strongly and x∗ ∈ K. Since T, I are continuous, then

from (40) and (42) we find

‖x∗ − Tx∗‖ = lim
nk→∞

∥∥∥xnk − Txnk

∥∥∥ = 0, ‖x∗ − Ix∗‖ = lim
nk→∞

∥∥∥xnk − Ixnk

∥∥∥ = 0. (46)

This shows that x∗ ∈ F = F (T) ∩ F (I). According to Lemma 3.2 the limit limn→∞ ‖xn − x∗‖ exists. Then

lim
n→∞
‖xn − x∗‖ = lim

nk→∞

∥∥∥xnk − x∗
∥∥∥ = 0,

which means that {xn} converges to x∗ ∈ F. This completes the proof.
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