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Abstract. In this paper we study the concepts of Wijsman I-statistical convergence, Wijsman I-lacunary
statistical convergence and Wijsman strongly I-lacunary convergence of sequences of sets and investigate
the relationship between them.

1. Introduction, Definitions and NotationS

The concept of I-convergence in a metric space, which is a generalized from of statistical convergence

by Fridy [6], was introduced by Kostyrko, Šalát and Wilczyńki [10]. Later it was further studied many

others. Recently, Das et al. [5] introduced new notions, namely I-statistical convergence and I-lacunary

statistical convergence by using ideal.

The concept of convergence of sequences of numbers has been extended by several authors to conver-

gence of sequences of sets. The one of these such extensions considered in this paper is the concept of

Wijsman convergence (see, [2, 4, 8, 12, 14–16]). Nuray and Rhoades [12] extended the notion of convergence

of set sequences to statistical convergence, and gave some basic theorems. Ulusu and Nuray [14] defined

the Wijsman lacunary statistical convergence of sequence of sets, and considered its relation with Wiijsman

statistical convergence, which was defined by Nuray and Rhoades. Recently, Kişi and Nuray [8] introduced

a new convergence notion, for sequences of sets which is called Wijsman I-convergence.

In this paper we extend the concepts of I-statistical convergence and I-lacunary statistical convergence

to the concepts of Wijsman I-statistical convergence, Wijsman I-lacunary statistical convergence and

Wijsman strongly I-lacunary convergence of sequences of sets and investigate the relationship between

them which were defined by Kişi and Nuray [8].
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2. Definitions and Notations

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A of X, we define the

distance from x to A by

d(x,A) = inf
a∈A
ρ(x, a).

Definition 2.1. ([2]) Let (X, ρ) be a metric space. For any non-empty closed subsets A,Ak ⊆ X, we say that the

sequence {Ak} is Wijsman convergent to A if

lim
k→∞

d(x,Ak) = d(x,A)

for each x ∈ X. In this case we write W − lim Ak = A.

Definition 2.2. ([6]) The sequence x = (xk) of elements of R is said to be statistically convergent to the number L if

for every ε > 0,

lim
n

1
n
|{k ≤ n : |xk − L| ≥ ε}| = 0.

In this case we write st − lim xk = L.

Definition 2.3. ([12]) Let (X, ρ) be a metric space. For any non-empty closed subsets A,Ak ⊆ X, we say that the

sequence {Ak} is Wijsman statistical convergent to A if {d(x,Ak)} is statistically convergent to d(x,A); i.e., for ε > 0

and for each x ∈ X,

lim
n→∞

1
n
|{k ≤ n : |d(x,Ak) − d(x,A)| ≥ ε}| = 0.

In this case we write st − limW Ak = A or Ak → A(WS).

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0 and hr = kr−kr−1 →

∞ as r → ∞. Throughout this paper the intervals determined by θ will be denoted by Ir = (kr−1, kr], and

ratio kr
kr−1

will be abbreviated by qr.

Definition 2.4. ([14]) Let (X, ρ) a metric space and θ = {kr} be a lacunary sequence. For any non-empty closed

subsets A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman lacunary statistical convergent to A if {d(x,Ak)} is

lacunary statistically convergent to d(x,A); i.e., for ε > 0 and for each x ∈ X,

lim
r

1
hr
| {k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε} | = 0.

In this case we write Sθ − limW Ak = A or Ak → A(WSθ).

Definition 2.5. ([10]) A family of sets I ⊆ 2N is called an ideal if and only if
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(i) ∅ ∈ I,

(ii) For each A,B ∈ Iwe have A ∪ B ∈ I,

(iii) For each A ∈ I and each B ⊆ A we have B ∈ I.

An ideal is called non-trivial ifN < I and non-trivial ideal is called admissible if

{n} ∈ I for each n ∈N.

Definition 2.6. ([10]) A family of sets F ⊆ 2N is a filter if and only if

(i) ∅ < F,

(ii) For each A,B ∈ F we have A ∩ B ∈ F,

(iii) For each A ∈ F and each B ⊇ A we have B ∈ F.

Proposition 2.7. ([10]) I is a non-trivial ideal inN if and only if

F(I) = {M ⊂N : (∃A ∈ I)(M =N\A)}

is a filter inN.

Definition 2.8. ([10]) An admissible ideal I ⊂ 2N satisfies the property (AP), if for every countable family of

mutually disjoint sets {A1,A2, . . .} belonging to I, there exists a countable family of sets {B1,B2, . . .} such that A j∆B j

is a finite set for j ∈N and B =
⋃
∞

j=1 B j ∈ I (hence B j ∈ I for each j ∈N).

Definition 2.9. ([10]) Let I ⊂ 2N be an admissible ideal of subsets ofN. A sequence (xk) of elements of R is said to

be I-convergent to L ∈ R if for each ε > 0 the set A(ε) = {n ∈N : |xn − L| ≥ ε} belongs to I.

Definition 2.10. ([8]) Let
(
X, ρ

)
be a metric space and I ⊆ 2N be an admissible ideal of subsets of N. For any

non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is WijsmanI-convergent to A, if for each ε > 0 and

for each x ∈ X the set A (x, ε) = {k ∈N : |d(x,Ak)−d(x,A)| ≥ ε} belongs to I. In this case we write IW − lim Ak = A

or Ak → A(IW).

Definition 2.11. ([5]) Let I be an admissible ideal of subsets ofN. A sequence x = (xk) of elements of R is said to

be I-statistically convergent to L or S(I)−convergent to L if for each ε > 0 and δ > 0,{
n ∈N :

1
n
|k ≤ n : |xk − L| ≥ ε| ≥ δ

}
belongs to I. In this case, we write xk → L(S(I)).

Definition 2.12. ([5]) Let θ be a lacunary sequence andI be an admissible ideal of subsets ofN. A sequence x = (xk)

of elements of R is said to be I-lacunary statistically convergent to L or Sθ(I)−convergent to L if for each ε > 0 and

δ > 0,{
r ∈N :

1
hr
|k ∈ Ir : |xk − L| ≥ ε| ≥ δ

}
belongs to I. In this case, we write xk → L(Sθ(I)).
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Definition 2.13. ([5]) Let θ be a lacunary sequence andI be an admissible ideal of subsets ofN. A sequence x = (xk)

of elements of R is said to be strongly I-lacunary convergent to L or Nθ(I)−convergent to L if for each ε > 0,r ∈N :
1
hr

∑
k∈Ir

|xk − L| ≥ ε


belong to I. In this case, we write xk → L(Nθ(I)).

Definition 2.14. ([9]) Let
(
X, ρ

)
be a metric space and I ⊆ 2N be an admissible ideal of subsets of N. For any

non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is Wijsman I-statistical convergent to A or

S (IW)-convergent to A if for each ε > 0, δ > 0 and for each x ∈ X,{
n ∈N :

1
n
|{k ≤ n : |d(x,Ak) − d(x,A)| ≥ ε}| ≥ δ

}
belongs to I. In this case, we write Ak → A (S (IW)) .

Definition 2.15. ([9]) Let
(
X, ρ

)
be a metric space, θ be lacunary sequence and I ⊆ 2N be an admissible ideal of

subsets of N. For any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is Wijsman I-lacunary

statistical convergent to A or Sθ (IW)-convergent to A if for each ε > 0, δ > 0 and for each x ∈ X,{
r ∈N :

1
hr
| {k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε} | ≥ δ

}
belongs to I. In this case, we write Ak → A (Sθ (IW)) .

Definition 2.16. ([9]) Let
(
X, ρ

)
be a metric space, θ be lacunary sequence and I ⊆ 2N be an admissible ideal of

subsets of N. For any non-empty closed subsets A,Ak ⊂ X, we say that the sequence {Ak} is said to be Wijsman

strongly I-lacunary convergent to A or Nθ[IW]-convergent to A if for each ε > 0 and for each x ∈ X,r ∈N :
1
hr

∑
k∈Ir

|d(x,Ak) − d(x,A)| ≥ ε


belongs to I. In this case, we write Ak → A (Nθ [IW]) .

3. Main Results

In this section, we investigate the relationship between the concepts of Wijsman I-statistical con-

vergence, Wijsman I-lacunary statistical convergence and Wijsman strongly I-lacunary convergence of

sequences of sets.

Theorem 3.1. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence, I ⊆ 2N be an admissible ideal and A,Ak

be non-empty closed subsets of X. Then, Ak → A(Nθ[IW])⇒ Ak → A(Sθ(IW)).
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Proof. Let Ak → A(Nθ[IW]) and ε > 0. Then, for each x ∈ X we can write∑
k∈Ir

|d(x,Ak) − d(x,A)| ≥
∑
k∈Ir

|d(x,Ak)−d(x,A)|≥ε

|d(x,Ak) − d(x,A)|

≥ ε. |{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}|

and so

1
ε · hr

∑
k∈Ir

|d(x,Ak) − d(x,A)| ≥
1
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| .

Hence, for each x ∈ X and for any δ > 0,{
r ∈N :

1
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| ≥ δ

}
⊆

{
r ∈N :

1
hr

∑
k∈Ir
|d(x,Ak) − d(x,A)| ≥ ε · δ

}
∈ I.

This proof is comleted.

Theorem 3.2. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence, I ⊆ 2N be an admissible ideal and A,Ak

be non-empty closed subsets of X. Then, {Ak} ∈ L∞ and Ak → A(Sθ(IW))⇒ Ak → A(Nθ[IW]).

Proof. Suppose that Ak → A(Sθ(IW)) and Ak ∈ L∞. Then there exists an M > 0 such that |d(x,Ak)−d(x,A)| ≤M

for each x ∈ X and all k ∈N. Given ε > 0, for each x ∈ X we have

1
hr

∑
k∈Ir

|d(x,Ak) − d(x,A)| =
1
hr

∑
k∈Ir

|d(x,Ak)−d(x,A)|≥ ε2

|d(x,Ak) − d(x,A)| +
1
hr

∑
k∈Ir

|d(x,Ak)−d(x,A)|< ε
2

|d(x,Ak) − d(x,A)|

≤
M
hr

∣∣∣{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε
2 }
∣∣∣ + ε

2 .

Hence, for each x ∈ X we have{
r ∈N :

1
hr

∑
k∈Ir
|d(x,Ak) − d(x,A)| ≥ ε

}
⊆

{
r ∈N :

1
hr

∣∣∣∣{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε
2

}∣∣∣∣ ≥ ε
2M

}
∈ I.

This proof is completed.

We have the following Theorem by Theorem 3.1 and Theorem 3.2.

Theorem 3.3. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence, I ⊆ 2N be an admissible ideal and A,Ak

be non-empty closed subsets of X. Then, Sθ(IW) ∩ L∞ = Nθ[IW] ∩ L∞, where Sθ(IW), Nθ[IW] and L∞ denote the

sets of Wijsman I-lacunary statistical convergent sequences, Wijsman strongly I- lacunary convergent sequences

and bounded sequences of sets, respectively.

Theorem 3.4. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence, I ⊆ 2N be an admissible ideal and A,Ak

be non-empty closed subsets of X. Then, Ak → A(S(IW)) implies Ak → A(Sθ(IW)) if and only if lim infr qr > 1. If

lim infr qr = 1, then there exists a bounded sequence {Ak}which is Wijsman I-statistical convergent but not Wijsman

I-lacunary statistical convergent.
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Proof. Suppose first that lim infr qr > 1; then there exists a λ > 0 such that qr ≥ 1 + λ for sufficiently large r,

which implies that

hr

kr
≥

λ
1 + λ

.

If Ak → A(S(IW), then for every ε > 0, for each x ∈ X and for sufficiently large r, we have

1
kr
|{k ≤ kr : |d(x,Ak) − d(x,A)| ≥ ε}| ≥

1
kr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}|

≥
λ

1 + λ
.
( 1

hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}|

)
.

Hence, for each x ∈ X and for any δ > 0 we have{
r ∈N :

1
hr
|{k ∈ Ir : |d(x,Ak) − d(x,A)| ≥ ε}| ≥ δ

}
⊆

{
r ∈N :

1
kr
|{k ≤ kr : |d(x,Ak) − d(x,A)| ≥ ε}| ≥ δλ

(1+λ)

}
∈ I.

This proves the sufficiency.

Conversely, suppose lim infr qr ≤ 1. Since kr is nondecreasing we have qr = kr/kr−1 ≥ 1 and lim infr qr ≥ 1.

Then, we have lim infr qr = 1. In the following we will proceed as in [5]. Since θ is lacunary, we can select a

subsequence
{
kr j

}
of lacunary sequence θ such that

kr j

kr j−1
< 1 +

1
j

and
kr j−1

kr j−1

> j, where r j ≥ r j−1 + 2.

Now we define a sequence {Ak} as follows:

Ak :=


(x, y) ∈ R2, x2 + (y − 1)2 = 1

k4 , k ∈ Ir j ,

{(0, 0)} , otherwise.

Then, for at least one x ∈ X, we have

1
hr j

∑
k∈Irj

|d(x,Ak) − d(x, {(0, 0)})| = T, for j = 1, 2, · · · , (T ∈ R+)

and

1
hr

∑
k∈Ir

|d(x,Ak) − d(x, {(0, 0)})| = 0, for r , r j.

Then, it is quite clear that {Ak} < Nθ[IW]. Since {Ak} is bounded, by Theorem 3.3 {Ak} < (Sθ(IW)).

Now, let kr j−1 < n < kr j+1−1. Then, for each ε > 0 and each x ∈ X we have

ε
n
|{k ≤ n : |d(x,Ak) − d(x, {(0, 0)})| ≥ ε}| ≤

1
n

n∑
k=1

|d(x,Ak) − d(x, {(0, 0)})| ≤
kr j−1 + hr j

kr j−1
≤

1
j

+
1
j

=
2
j
.

As n→∞ it follows that also j→∞. Hence, {Ak} ∈ (S(IW)). This proof is completed.

Theorem 3.5. Let (X, ρ) be a metric space, I ⊆ 2N be an admissible ideal satisfying property (AP), θ ∈ F(I) and

A,Ak be non-empty closed subsets of X. If {Ak} ∈ (S(IW)) ∩ (Sθ(IW)), then S(IW) − lim Ak = Sθ(IW) − lim Ak.
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Proof. Suppose that S(IW) − lim Ak = A and Sθ(IW) − lim Ak = B and A , B. Let 0 < ε < 1
2 |d(x,A) − d(x,B)|

for each x ∈ X. Since I satisfies the property (AP), there exists M ∈ F(I) (i.e.,N\M ∈ I) such that for each

x ∈ X,

lim
r→∞

1
mr
|{k ≤ mr : |d(x,Ak) − d(x,A)| ≥ ε}| = 0, where M = {m1,m2,m3, ...}.

Let

P = {k ≤ mr : |d(x,Ak) − d(x,A) ≥ ε|} and R = {k ≤ mr : |d(x,Ak) − d(x,B)| ≥ ε} .

Then mr = |P ∪ R| ≤ |P| + |R|. This implies that 1 ≤
|P|
mr

+
|R|
mr

. Since
|R|
mr
≤ 1 and limr→∞

|P|
mr

= 0, so we must

have

lim
r→∞

|R|
mr

= 1.

Let M∗ = {kl1 , kl2 , kl3 , ...} = M ∩ θ ∈ F(I).

Then the klp th term of the statistical limit expression
1

mr
|{k ≤ mr : |d(x,Ak) − d(x,B)| ≥ ε}| is

1
klp

∣∣∣∣∣∣∣∣
k ∈

lp⋃
i=1

Ii : |d(x,Ak) − d(x,B)| ≥ ε


∣∣∣∣∣∣∣∣ =

1
lp∑

i=1
hi

lp∑
i=1

tihi, (1)

where ti =
1
hi
|{k ∈ Ii : |d(x,Ak) − d(x,B)| ≥ ε}| I→ 0 because {Ak} → B(Sθ(IW)). Since θ is a lacunary sequence,

(1) is a regular weighted mean transform of ti’s and therefore it is also I-convergent to 0 as p → ∞,

and so it has a subsequence which is convergent to 0 since I satisfies property (AP). But since this is a

subsequence of
{1

n
| {k ≤ n : |d(x,Ak) − d(x,B)| ≥ ε} |

}
n∈M

, we infer that
{1

n
| {k ≤ n : |d(x,Ak) − d(x,B)| ≥ ε} |

}
n∈M

is not convergent to 1. This is a contradiction. Hence the proof is completed.
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