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Abstract. In this paper, we introduce the new property (aR), which extends property (R) introduced by
Aiena and his collaborators. We investigate the property (aR) in connection with Weyl type theorems, and
establish sufficient and necessary conditions for which property (aR) holds. We also study the stability
of property (aR) under perturbations by finite rank operators, by nilpotent operators, by quasi-nilpotent
operators and by algebraic operators commuting with T.

1. Introduction

Throughout this paper, we denote X an infinite dimensional complex Banach space and L(X) the algebra
of all bounded linear operators on X. For T ∈ L(X), we denote the null space, the range, the spectrum, the
approximate point spectrum, the surjective spectrum, the isolated points of spectrum and the isolated points
of approximate point spectrum by N(T), R(T), σ(T), σa(T), σs(T), isoσ(T) and isoσa(T), respectively. If R(T) is
closed and α(T) = dimN(T) < ∞ (resp. β(T) = dimX/R(T) < ∞), then T is called an upper (resp. a lower)
semi-Fredholm operator. In the sequel Φ+(X) (resp. Φ−(X)) is written for the set of all upper (resp. lower)
semi-Fredholm operators. The class of all semi-Fredholm operators is defined by Φ±(X) = Φ+(X) ∪ Φ−(X),
and the index of T is given by i(T) = α(T) − β(T). Denote Φ(X) = Φ+(X) ∩ Φ−(X) the set of all Fredholm
operators. Define W+(X) = {T ∈ Φ+(X) : i(T) ≤ 0}, W−(X) = {T ∈ Φ−(X) : i(T) ≥ 0}. The set of all Weyl
operators is defined by W(X) = W+(X) ∩W−(X) = {T ∈ Φ(X) : i(T) = 0}. The classes of operators defined
above generate the following spectrums: the Weyl spectrum of T is defined by σw(T) = {λ ∈ C : T − λI <
W(X)}, while the upper semi-Weyl spectrum of T is defined by σuw(T) = {λ ∈ C : T − λI < W+(X)} and
the lower semi-Weyl spectrum of T is defined by σlw(T) = {λ ∈ C : T − λI < W−(X)}. For T ∈ L(X), let
∆(T) = σ(T)\σw(T) and ∆a(T) = σa(T)\σuw(T). Following Coburn [9], Weyl’s theorem is said to hold for T
if ∆(T) = π00(T), where π00(T) = {λ ∈ isoσ(T) : 0 < α(T − λI) < ∞}. According to Rakočević [14], a-Weyl’s
theorem is said to hold for T if ∆a(T) = πa

00(T), where πa
00(T) = {λ ∈ isoσa(T) : 0 < α(T − λI) < ∞}. It’s

known that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but the converse doesn’t hold
in general.

Recall that the ascent p(T) of an operator T is defined by p(T) = inf{n ∈ N : N(Tn) = N(Tn+1)} and the
descent q(T) of an operator T is defined by q(T) = inf{n ∈N : R(Tn) = R(Tn+1)}. It is well-known that if p(T)
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and q(T) are both finite, then p(T) = q(T) [12, Proposition 38.3]. Moreover, 0 < p(λI − T) = q(λI − T) < ∞
precisely when λ is a pole of the resolvent of T, see Proposition 50.2 of Heuser [12]. The class of all upper
semi-Browder operators is defined by B+(X) = {T ∈ Φ+(X) : p(T) < ∞} and the class of all Browder operators
is defined by B(X) = {T ∈ Φ(X) : p(T) = q(T) < ∞}. The Browder spectrum of T is defined by σb(T) = {λ ∈
C : λI − T < B(X)} and the upper semi-Browder spectrum is defined by σub(T) = {λ ∈ C : λI − T < B+(X)},
clearly σw(T) ⊆ σb(T) and σuw(T) ⊆ σub(T). For T ∈ L(X), set p00(T) = σ(T)\σb(T) and pa

00(T) = σa(T)\σub(T).
Obviously, p00(T) ⊆ π00(T). In [11], Browder’s theorem is said to hold for T if ∆(T) = p00(T), or equivalently
σw(T) = σb(T); a-Browder’s theorem is said to hold for T if ∆a(T) = pa

00(T), or equivalently σuw(T) = σub(T).
Note that Weyl’s theorem for T entails Browder’s theorem for T. Moreover, a-Browder’s theorem for T
entails Browder’s theorem for T and the converse doesn’t hold in general.

Recall [6, 8] that property (aw) is said to hold for T if ∆(T) = πa
00(T), and property (R) holds for T if

pa
00(T) = π00(T).

The single valued extension property plays an important role in local spectral theory, see the recent
monograph of Laursen and Neumamn [13] and Aiena [2]. In this article we shall consider the following
local version of this property.

Let X be a complex Banach space and T ∈ L(X). The operator T is said to have the single valued extension
property at λ0 ∈ C (abbrev. SVEP at λ0), the only analytic function f : D → X which satisfies the equation
(λI − T) f (λ) = 0 for all λ ∈ D is the function f ≡ 0. An operator T is said to have SVEP if T has SVEP at
every point λ ∈ C.

It is known that both Browder’s theorem and a-Browder’s theorem hold for T if T or T∗ has SVEP.
Precisely, we have that a-Browder’s theorem holds for T if and only if T has SVEP at every λ < σuw(T), and
dually, a-Browder’s theorem holds for T∗ if and only if T∗ has SVEP at every λ < σlw(T), see [5, Theorem
2.3].

From the identity theorem for analytic function it easily follows that T, as well as its dual T∗, has SVEP
at every point of the boundary of the spectrum σ(T) = σ(T∗), so both T and T∗ have SVEP at every isolated
point of the spectrum.

Theorem[5, Theorem 1.2] If T ∈ L(X) and suppose that λ0I − T ∈ Φ±(X). Then the following statements are
equivalent:
(i) T has SVEP at λ0; (ii) p(T − λ0I) < ∞; (iii) σa(T) doesn’t cluster at λ0.
Dually, if λ0I − T ∈ Φ±(X), then the following statements are equivalent:
(iv) T∗ has SVEP at λ0; (v) q(T − λ0I) < ∞; (vi) σs(T) doesn’t cluster at λ0.

A bounded operator T is said to be polaroid if every isolated point of σ(T) is a pole of the resolvent of
T. A bounded operator T is said to be hereditarily polaroid if every part of T is polaroid. T is said to be
a-polaroid if every isolated point of σa(T) is a pole of the resolvent of T. T is said to be a-isoloid if every
isolated point of σa(T) is an eigenvalue of T. T is said to be finite-isoloid if every isolated point of σ(T) is an
eigenvalue of finite multiplicity.

In section 2, we introduce and study the new property (aR) in connection with Weyl type theorems. We
prove that an operator T possessing property (aR) possesses property (R), but the converse is not true in
general as shown by Example 2.4. We prove also that if T∗ has SVEP at every λ < σuw(T), then property
(aR), property (aw), Weyl’s theorem and a-Weyl’s theorem are equivalent. In section 3, in Theorem 3.5 we
prove that if T ∈ L(X) and E is a nilpotent operator commuting with T, then T possesses property (aR) if
and only if T + E possesses property (aR). And we provide a condition under which the new property (aR)
is preserved under commuting finite dimensional operator, we prove in Theorem 3.3 that if isoσa(T) = φ
and K is a finite dimensional operator commuting with T, then T + K satisfies property (aR).

2. Property (aR)

Definition 2.1. An operator T is said to satisfy property (aR) if πa
00(T) = p00(T).
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Lemma 2.2. [1] Suppose that T ∈ L(X). Then we have
(i) T satisfies Weyl’s theorem if and only if Browder’s theorem holds for T and p00(T) = π00(T).
(ii) T satisfies a-Weyl’s theorem if and only if a-Browder’s theorem holds for T and pa

00(T) = πa
00(T).

Theorem 2.3. Suppose that T satisfies property (aR). Then property (R) holds for T.

Proof. Let λ ∈ π00(T). Then λ ∈ πa
00(T), since T satisfies property (aR), πa

00(T) = p00(T), hence λ ∈ p00(T) ⊆
pa

00(T), i.e., π00(T) ⊆ pa
00(T). Conversely, let λ ∈ pa

00(T). Then λ ∈ πa
00(T), since T satisfies property (aR),

πa
00(T) = p00(T), hence λ ∈ p00(T) ⊆ π00(T), i.e., pa

00(T) ⊆ π00(T). Therefore, pa
00(T) = π00(T), we have T

satisfies property (R).
The following example shows that property (R) is weaker than property (aR).

Example 2.4. Let R : l2(N) → l2(N) be the unilateral right shift operator defined by R(x1, x2, · · · ) =
(0, x1, x2, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N) and Q(x1, x2, · · · ) = ( x2

22 ,
x3
23 , · · · ) for all x = (x1, x2, · · · ) ∈ l2(N).

Define T = R ⊕ Q. Then σ(T) = D, σa(T) = ∂D ∪ {0}, where D denotes the closed unit disc and ∂D denotes
the unit circle, and hence p00(T) = π00(T) = φ, but πa

00(T) = {0}, i.e., T doesn’t satisfy property (aR). While T
satisfies property (R) since pa

00(T) = π00(T) = φ.

In the following theorem we give a condition for the equivalence of property (aR) and property (aw).

Theorem 2.5. T satisfies property (aw) if and only if Browder’s theorem holds for T and T has property (aR).

Proof. If Browder’s theorem holds for T and T has property (aR), then ∆(T) = p00(T) and πa
00(T) = p00(T),

hence ∆(T) = πa
00(T), i.e., T satisfies property (aw). Conversely, it is easy to prove property (aw) implies

Browder’s theorem by [8, Theorem 2.4, Theorem 3.5], i.e., ∆(T) = p00(T), since T satisfies property (aw),
πa

00(T) = ∆(T), hence πa
00(T) = p00(T), i.e., T has property (aR).

The following example shows that property (aR) is weaker than property (aw).

Example 2.6. Let R : l2(N) → l2(N) be the unilateral right shift operator defined by R(x1, x2, · · · ) =
(0, x1, x2, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N) and L : l2(N)→ l2(N) be the unilateral left shift operator defined
by L(x1, x2, · · · ) = (x2, x3, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N). Define T := R ⊕ L. Then σ(T) = σa(T) = D. It
follows that p00(T) = πa

00(T) = φ, then T satisfies property (aR). While T doesn’t satisfy property (aw), since
0 ∈ σ(T)\σw(T) , φ = πa

00(T).

The following example shows property (aR) for an operator is not transmitted to the dual T∗.

Example 2.7. Let L : l2(N)→ l2(N) be the unilateral left shift operator defined by L(x1, x2, · · · ) = (x2, x3, · · · )
for all x = (x1, x2, · · · ) ∈ l2(N) and Q(x1, x2, · · · ) = (0, x2, x3, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N). Define
T := L ⊕Q. Then σ(T) = σ(T∗) = σa(T) = D and σa(T∗) = ∂D ∪ {0}. It follows that p00(T) = πa

00(T) = φ, then T
satisfies property (aR). While T∗ doesn’t satisfy property (aR), since 0 ∈ πa

00(T∗) , φ = p00(T∗).

Theorem 2.8. Suppose that T satisfies property (aR). Then pa
00(T) = πa

00(T) = p00(T) = π00(T).

Proof. Observe that p00(T) ⊆ π00(T) ⊆ πa
00(T) holds for every operator T. As T satisfies property (aR),

πa
00(T) = p00(T), hence p00(T) = π00(T) = πa

00(T). As p00(T) ⊆ pa
00(T) ⊆ πa

00(T) holds for every operator T and
πa

00(T) = p00(T), then p00(T) = pa
00(T) = πa

00(T), i.e., p00(T) = pa
00(T) = πa

00(T) = π00(T).
The following example shows neither of the two equalities pa

00(T) = πa
00(T), p00(T) = π00(T) can imply

p00(T) = πa
00(T).

Example 2.9. Let R : l2(N) → l2(N) be the unilateral right shift operator defined by R(x1, x2, · · · ) =
(0, x1, x2, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N) and Q(x1, x2, · · · ) = ( 1

2 x1, x2, x3, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N).
Define T = R⊕Q. Then σ(T) = σ(T∗) = D, σa(T) = ∂D∪ { 12 } and σuw(T) = ∂D, and hence p00(T) = π00(T) = φ.
We show that T does not satisfy property (aR). Since T has SVEP at the points of ∂D, these points
belong to the boundary of the spectrum, and T has SVEP at 1

2 , since this point is an isolated point of
σa(T). Hence, T has SVEP and a-Browder’s theorem holds for T, i.e., σuw(T) = σub(T) = ∂D. Observe that
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the operator T satisfies the equality pa
00(T) = πa

00(T). Indeed, 1
2 is an isolated point of σa(T), and hence

πa
00(T) = { 12 } = σa(T)\σub(T) = pa

00(T). While T does not satisfy property (aR) since πa
00(T) = { 12 } , p00(T).

As noted in Example 2.9 the condition pa
00(T) = πa

00(T) is strictly weaker than property (aR). However,
we have:

Theorem 2.10. T satisfies property (aR) if and only if the following two conditions hold:
(i) πa

00(T) ⊆ isoσ(T).
(ii) pa

00(T) = πa
00(T).

Proof. If T satisfies property (aR), then πa
00(T) = p00(T) ⊆ isoσ(T), and by Theorem 2.8 pa

00(T) = πa
00(T).

Conversely, since p00(T) ⊆ πa
00(T) holds for every operator T, it suffices to show thatπa

00(T) ⊆ p00(T), suppose
that both (i) and (ii) hold and let λ ∈ πa

00(T). Then λ ∈ pa
00(T) and λ ∈ isoσ(T), hence p(λI−T) = q(λI−T) < ∞,

and so λ ∈ p00(T).
The following example shows that a-Weyl’s theorem does not entail property (aR).

Example 2.11. Let T be defined as in Example 2.9. As already observed, T does not satisfy property (aR).
While T has SVEP and hence a-Browder’s theorem holds for T, since pa

00(T) = πa
00(T). By part (ii) of Lemma

2.2, then a-Weyl’s theorem holds for T.

The following example shows that property (aR) does not entail a-Weyl’s theorem.

Example 2.12. Let T be defined as in Example 2.6. We have α(T) = β(T) = 1 and p(T) = ∞. Therefore,
0 < σw(T), while 0 ∈ σb(T), so Browder’s theorem (and hence a-Weyl’s theorem) does not hold for T. On the
other hand, since σ(T) = σa(T) = D, we have p00(T) = πa

00(T) = φ, and hence property (aR) holds for T.

Theorem 2.13. Suppose that T satisfies both a-Browder’s theorem and property (aR). Then T satisfies a-Weyl’s
theorem. Moreover, σa(T)\σuw(T) = p00(T).

Proof. Since T satisfies a-Browder’s theorem and property (aR), pa
00(T) = πa

00(T) by Theorem 2.8. Therefore,
a-Weyl’s theorem holds for T by part (ii) of Lemma 2.2, i.e. σa(T)\σuw(T) = πa

00(T). Property (aR) implies
σa(T)\σuw(T) = p00(T).

In [7] an operator T is said to have property (b) if σa(T)\σuw(T) = p00(T).
The following example shows that property (aR) does not entail property (b).

Example 2.14. Let T be defined as in Example 2.6. Then T satisfies property (aR), while property (b) does not
hold for T, since 0 ∈ σa(T)\σuw(T), while p00(T) = φ. This example also shows that without the assumption
that T satisfies a-Browder’s theorem, the result of Theorem 2.13 does not hold.

The following example shows that property (b) does not entail property (aR).

Example 2.15. Let Q(x1, x2, · · · ) = ( x2
22 ,

x3
23 , · · · ) for all x = (x1, x2, · · · ) ∈ l2(N). Clearly, Q is quasi-nilpotent

and hence σ(Q) = σa(Q) = {0} and α(Q) = 1, we have 0 ∈ πa
00(Q), p00(Q) = φ, it then follows that Q does not

satisfy property (aR). On the other hand, Q has property (b) since σa(Q)\σuw(Q) = p00(Q) = φ.

The next result shows that the equivalence of property (aR), property (aw), Weyl’s theorem and a-Weyl’s
theorem is true whenever we assume that T∗ has SVEP at the points λ < σuw(T).

Theorem 2.16. Suppose that T∗ has SVEP at every λ < σuw(T). Then the following statements are equivalent:
(i) π00(T) = p00(T);
(ii) πa

00(T) = pa
00(T);

(iii) πa
00(T) = p00(T).

Consequently, property (aR), property (aw), Weyl’s theorem and a-Weyl’s theorem are equivalent for T.
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Proof. Since T∗ has SVEP at every λ < σuw(T), σ(T) = σa(T), henceπ00(T) = πa
00(T). In the following we would

show pa
00(T) = p00(T), observe first that p00(T) ⊆ pa

00(T) holds for every operator T. To show the opposite
inclusion, let λ ∈ pa

00(T) = σa(T)\σub(T). Then T − λI ∈ B+(X), and hence both α(λI − T) and p(λI − T) are
finite. But σuw(T) ⊆ σub(T) holds for every operator T, thus λ < σuw(T) and the SVEP of T∗ at λ implies that
q(λI − T) < ∞, therefore, by [2, Theorem 3.4], we have α(λI − T) = β(λI − T) < ∞, so λ ∈ p00(T). Therefore,
p00(T) = pa

00(T). From which the equivalence of (i), (ii) and (iii) easily follows. To show the last statement
observe that the SVEP of T∗ at the points λ < σuw(T) entails that a-Browder’s theorem (and hence Browder’s
theorem) holds for T, see [5, Theorem 2.3]. By Lemma 2.2 and Theorem 2.5, then property (aR), property
(aw), Weyl’s theorem and a-Weyl’s theorem are equivalent for T.

Dually, we have

Corollary 2.17. Suppose that T has SVEP at every λ < σlw(T). Then the following statements are equivalent:
(i) π00(T∗) = p00(T∗);
(ii) πa

00(T∗) = pa
00(T∗);

(iii) πa
00(T∗) = p00(T∗).

Consequently, property (aR), property (aw), Weyl’s theorem and a-Weyl’s theorem are equivalent for T∗.

Proof. The proof is similar to Theorem 2.16.

Theorem 2.18. Suppose that T is a-polaroid. Then T satisfies property (aR).

Proof. Since p00(T) ⊆ πa
00(T) holds for every operator T. To show the opposite inclusion, let λ ∈ πa

00(T). Then
λ is an isolated point of σa(T), λ is a pole of the resolvent of T and α(T − λ) < ∞, hence λ ∈ p00(T), i.e., T
satisfies property (aR).

Corollary 2.19. [6] Suppose that T is a-polaroid. Then T satisfies property (R).

The next example shows that under a weaker condition of being polaroid the result of Theorem 2.18
does not hold.

Example 2.20. Let R : l2(N) → l2(N) be the unilateral right shift operator defined by R(x1, x2, · · · ) =
(0, x1, x2, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N) and Q(x1, x2, · · · ) = ( x2

22 ,
x3
23 , · · · ) for all x = (x1, x2, · · · ) ∈ l2(N).

Define T := R ⊕Q. Then σ(T) = D, it follows that isoσ(T) = p00(T) = φ. Therefore, T is polaroid. Moreover,
σa(T) = ∂D ∪ {0} and πa

00(T) = {0}, and hence πa
00(T) , p00(T), thus T does not satisfy property (aR).

From the proof of Theorem 2.16 we know that if T∗ has SVEP, then σ(T) = σa(T). Therefore if T∗ has SVEP,
then T is a-polaroid⇔ T is polaroid.

Corollary 2.21. Suppose that T is polaroid and T∗ has SVEP. Then T satisfies property (aR).

Note that the result of Corollary 2.21 does not hold if we replace the SVEP for T∗ by the SVEP for T.

Example 2.22. Let T be defined as in Example 2.20. Then T has SVEP and is polaroid, while T does not
satisfy property (aR).

3. Property (aR) under Perturbations

Theorem 3.1. [10] Suppose T is a-isoloid and satisfies a-Weyl’s theorem. Then T+K satisfies a-Weyl’s theorem for
every finite-dimensional operator K commuting with T.

The following example shows that an analogous result of Theorem 3.1 does not hold for property (aR), even
with the class of a-isoloid operators.
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Example 3.2. Let T : l2(N)→ l2(N) be defined by

T(x1, x2, · · · ) = (2x1, 2x2, 0, x3, x4, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N)

and
K(x1, x2, · · · ) = (−2x1,−2x2, 0, 0, 0, · · · ) for all x = (x1, x2, · · · ) ∈ l2(N).

Then K is a finite-dimensional operator, KT = TK, σ(T) = D ∪ {2} and σa(T) = ∂D ∪ {2}, it follows that
πa

00(T) = p00(T) = {2}. Therefore, T is a-isoloid operators, and satisfies property (aR). While σ(T + K) = D
and σa(T + K) = ∂D ∪ {0}, it follows that p00(T + K) =isoσ(T + K) = φ , {0} = πa

00(T + K). Therefore, T + K
does not satisfy property (aR).

Theorem 3.3. Suppose T ∈ L(X) and isoσa(T) = φ. If K is a finite dimensional operator commuting with T, then
T+K satisfies property (aR).

Proof. Since isoσa(T) = φ and K is a finite dimensional operator commuting with T, by the proof of [3,
Theorem 2.8], σa(T) = σa(T + K), then isoσa(T + K) = φ. Since isoσ(T + K) ⊆ isoσa(T + K), isoσ(T + K) = φ. It
follows that p00(T + K) = πa

00(T + K) = φ, i.e., T + K satisfies property (aR).

Corollary 3.4. Suppose T ∈ L(X) and isoσa(T) = φ. If K is a finite dimensional operator commuting with T, then
T+K satisfies property (R).

The next result shows that property (aR) for T is transmitted to T + E in the case where E is a nilpotent
operator which commutes with T. Recall first that the equality σa(T) = σa(T + Q) holds for every quasi-
nilpotent operator Q which commutes with T.

Theorem 3.5. Suppose T ∈ L(X) and let E ∈ L(X) be a nilpotent operator which commutes with T. Then we have:
(i) πa

00(T + E) = πa
00(T).

(ii) T satisfies property (aR) if and only if T + E satisfies property (aR).
(iii) If T is a-polaroid, then T + E satisfies property (aR).

Proof. (i) Let λ ∈ πa
00(T + E). We can assume λ = 0. Clearly, 0 ∈isoσa(T + E) =isoσa(T). Let p ∈N be such that

Ep = 0. If x ∈ N(T + E), then Tpx = (−1)pEpx = 0, thus N(T + E) ⊆ N(Tp), since by assumption α(T + E) > 0,
it then follows that α(Tp) > 0 and this obviously implies that α(T) > 0. By assumption we also have
α(T + E) < ∞ and this implies that α(T + E)p < ∞. It is easily seen that if x ∈ N(T), then (T + E)px = Epx = 0,
so N(T) ⊆ N(T + E)p and hence α(T) < ∞. Therefore, 0 ∈ πa

00(T) and consequently πa
00(T + E) ⊆ πa

00(T).
πa

00(T) ⊆ πa
00(T + E) follows by symmetry.

(ii) Suppose that T has property (aR). Then πa
00(T + E) = πa

00(T) = σ(T)\σb(T) = σ(T + E)\σb(T + E) =
p00(T + E), therefore T + E has property (aR). The converse follows by symmetry.

(iii) Obviously, by part (ii), since T satisfies property (aR) by Theorem 2.18.
This example shows that the commutativity hypothesis in (ii) of Theorem 3.5 is essential.

Example 3.6. Let Q : l2(N)→ l2(N) be defined by

Q(x1, x2, · · · ) =
(
0, 0,

x1

2
,

x2

22 ,
x3

23 , · · ·
)

for all x = (x1, x2, · · · ) ∈ l2(N)

and
E(x1, x2, · · · ) =

(
0, 0,−

x1

2
, 0, 0, · · ·

)
for all x = (x1, x2, · · · ) ∈ l2(N).

Clearly E is a nilpotent operator and p00(Q) = πa
00(Q) = φ, i.e., Q satisfies property (aR). While p00(Q+E) = φ

and πa
00(Q + E) = {0}, it follows that p00(Q + E) , πa

00(Q + E), i.e., Q + E does not satisfy property (aR).

The previous theorem does not extend to commuting quasi-nilpotent operators as shown by the follow-
ing example.
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Example 3.7. Let Q : l2(N)→ l2(N) be defined by Q(x1, x2, · · · ) = ( x2
22 ,

x3
23 ,

x4
24 , · · · ) for all x = (x1, x2, · · · ) ∈ l2(N)

and T = 0. Clearly T satisfies property (aR). While Q is quasi-nilpotent and TQ = QT, so σ(Q) = σb(Q) = {0}
and hence {0} = πa

00(Q) , σ(Q)\σb(Q) = φ, i.e., T + Q = Q does not satisfy property (aR).

Theorem 3.8. Suppose T is a-polaroid and finite-isoloid, Q is a quasi-nilpotent operator which commutes with T.
Then T + Q has property (aR).

Proof. Clearly by the proof of [3, Theorem 2.13].
In the case of injective quasi-nilpotent perturbation, we have a very simple situation:

Theorem 3.9. Suppose that for T ∈ L(X) there exists an injective quasi-nilpotent operator Q commuting with T.
Then both T and T+Q satisfy property (aR).

Proof. It’s evident that πa
00(T) is empty by [4, Lemma 3.9], since p00(T) ⊆ πa

00(T), p00(T) = φ, it follows that
p00(T) = πa

00(T) = φ, i.e., T satisfies property (aR). Property (aR) for T + Q is clear, since also T + Q commutes
with Q.

In Theorem 3.9, the condition quasi-nilpotent can’t be replaced by the condition compact.

Example 3.10. Let U : l2(N)→ l2(N) be defined by U(x1, x2, · · · ) = (0, x2
22 ,

x3
23 , · · · ) for all x = (x1, x2, · · · ) ∈ l2(N)

and V(x1, x2, · · · ) = (x1,−
x2
22 ,−

x3
23 , · · · ) for all x = (x1, x2, · · · ) ∈ l2(N). Define T = U ⊕ I and K = V ⊕Q, where

Q is an injective compact quasi-nilpotent operator. Clearly σ(T) = σa(T) = { 1
2n : n = 2, 3, · · · } ∪ {0, 1} and

σb(T) = {0, 1}, it follows that p00(T) = σ(T)\σb(T) = { 1
2n : n = 2, 3, · · · } = πa

00(T), thus property (aR) holds for
T. Note that K is an injective compact operator, KT = TK and σ(T + K) = σb(T + K) = {0, 1}, so p00(T + K) = φ,
while πa

00(T + K) = {1}, it follows that T + K does not satisfy property (aR).

Recall that a bounded operator T is said to be algebraic if there exists a non-constant polynomial h such
that h(T) = 0. Trivially, every nilpotent operator is algebraic. If for some n ∈ N, Kn is a finite dimensional
operator, then K is an algebraic operator. And every algebraic operator has a finite spectrum.

Theorem 3.11. Suppose T ∈ L(X) and K ∈ L(X) is an algebraic operator which commutes with T.
(i) If T is hereditarily polaroid and has SVEP, then T∗ + K∗ satisfies property (aR).
(ii) If T∗ is hereditarily polaroid and has SVEP, then T+K satisfies property (aR).

Proof. (i) Since T∗ + K∗ is a-polaroid by the proof of [3, Theorem 2.15], Property (aR) for T∗ + K∗ follows from
Theorem 2.18.

(ii) The proof is similar to (i).
In the following theorem, recall that H(σ(T)) is the space of functions analytic in an open neighborhood

of σ(T).

Theorem 3.12. Suppose T ∈ L(X) and K ∈ L(X) is an algebraic operator which commutes with T.
(i) If T is hereditarily polaroid and has SVEP, then f (T∗ + K∗) satisfies property (aR) for all f ∈ H(σ(T)).
(ii) If T∗ is hereditarily polaroid and has SVEP, then f(T + K) satisfies property (aR) for all f ∈ H(σ(T)).

Proof. (i) Since f (T∗ + K∗) is a-polaroid by the proof of [3, Theorem 2.17], Property (aR) for f (T∗ + K∗) follows
from Theorem 2.18.

(ii) The proof of (ii) is analogous.
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