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Abstract. In this paper, first we introduce the concept of fuzzy metric type space and consider the topology
induced by a fuzzy metric type. Next, we consider the complete fuzzy metric type spaces and prove that
any Gδ set in a complete metric type space is a complete fuzzy metrizable type space.

1. Preliminaries

The theory of fuzzy sets was introduced by Zadeh in 1965 [7]. After the pioneering work of Zadeh, there
has been a great effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive
developments is made in the field of fuzzy topology. One of the most important problems in fuzzy topology
is to obtain an appropriate concept of fuzzy metric space. This problem has been investigated by many
authors from different points of view. In particular, George and Veeramani [1] have introduced and studied
a notion of fuzzy metric space. Furthermore, the class of topological spaces that are fuzzy metrizable agrees
with the class of metrizable topological spaces (see [1] and [2]). This result permits Gregori and Romaguera
to restate some classical theorems on metric completeness and metric (pre)compactness in the realm of
fuzzy metric spaces [2] ,[3] and [4].

In this paper we introduce the concept of fuzzy metric type space which is a generalization of fuzzy
metric space introduced by George and Veeramani [1]. In this paper we prove that any Gδ set in a complete
metric type space is a topologically complete fuzzy metrizable type space (Alexandroff Theorem).

Definition 1.1. A 3-tuple (X,M, ∗) is called a fuzzy metric type space if X is an arbitrary (non-empty) set,
∗ is a continuous t-norm, and M is a fuzzy set on X2

× (0,∞), satisfying the following conditions for each
x, y, z ∈ X and t, s > 0,

(1) M(x, y, t) > 0,
(2) M(x, y, t) = 1 if and only if x = y,
(3) M(x, y, t) = M(y, x, t),
(4) M(x, y, t) ∗M(y, z, s) ≤M(x, z,K(t + s)) for some constant K ≥ 1.,
(5) M(x, y, .) : (0,∞) −→ [0, 1] is continuous.

M(x, y, t) is considered as the degree of nearness of x and y with respect to t. The axiom (1) is justified
because in the same way that a classical metric type cannot take the value∞ then M cannot take the value
0. The axiom (2) is equivalent to the following:
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M(x, x, t) = 1 for all x ∈ X and t > 0, and M(x, y, t) < 1 for all x , y and t > 0.

The axiom (2) gives the idea that when x = y the degree of nearness of x and y is perfect, or simply 1, and
then M(x, x, t) = 1 for each x ∈ X and for each t > 0. Finally, in (5) we assume that the variable t be have
nicely, that is assume that for fixed x and y, t→M(x, y, t) is a continuous function.

Remark 1.2. The space Lp (0 < p < 1) of all real functions f (x), x ∈ [0, 1] such that
∫ 1

0 | f (x)|pdx < ∞, is a type
metric space. Define

d( f , 1) = (
∫ 1

0
| f (x) − 1(x)|pdx)

1
p ,

for each f , 1 ∈ Lp. Then d is a metric type space with K = 2
1
p .

Example 1.3. Let X be the set of Lebesgue measurable functions on [0, 1] such that
∫ 1

0 | f (x)|pdx < ∞, where
p > 0 is a real number. Define

M( f , 1, t) =
t

t + (
∫ 1

0 | f (x) − 1(x)|pdx)
1
p

for t > 0 and x, y ∈ X. Then by Remark 1.2, (X,M, .) is fuzzy metric type space with K = 2
1
p .

Example 1.4. Let (X,D) be a metric type space with constant K ≥ 1. Define

M(x, y, t) =
t

t + D(x, y)

for t > 0 and x, y ∈ X. Then (X,M, .) is a fuzzy metric type space with constant K. (1)–(3) and (5) are obvious
and we show (3).

M(x, z, t) ·M(z, y, s) =
t

t + D(x, z)
.

s
s + D(z, y)

=
1

1 +
D(x,z)

t

.
1

1 +
D(z,y)

s

≤
1

1 +
D(x,z)
(t+s)

.
1

1 +
D(z,y)
(t+s)

≤
1

1 +
(D(x,z)+D(z,y))

(t+s)

≤
1

1 +
D(x,z)
K(t+s)

=
K(t + s)

K(t + s) + D(x, y)
= M(x, y,K(t + s)) .

Example 1.5. Let (X,D) be a metric type spaces with constant K ≥ 1. Define

M(x, y, t) = e
−(D(x,y))

t

for t > 0 and x, y ∈ X. Then (X,M, ·) is a fuzzy metric type space with constant K. (1)–(3) and (5) are obvious
and we show (3).

M(x, z, t) ·M(z, y, s) =
t

t + D(x, z)
.

s
s + D(z, y)

= e
−(D(x,z))

t .e
−(D(z,y))

s

≤ e−( D(x,y)
K(t+s) )

= M(x, y,K(t + s)).
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Remark 1.6. Let (X, d) be a metric space and D(x, y) = (d(x, y))p, where p > 1 is a real number. Then D is a
metric type space with K = 2p−1. The triangle inequality follow easily from the convexity of the function
f (x) = xp (x > 0)

Example 1.7. Let X be a nonempty set. Define

M(x, y, t) = e−
|x−y|p

t

for t > 0 and x, y ∈ X. Then by Example 1.5 and Remark 1.6, (X,M, ·) is a fuzzy metric type space with
K = 2p−1.

Note that the above examples show that, every fuzzy metric type is a fuzzy metric but the converse is not
true generally.

Let (X,M, ∗) be a fuzzy metric type space . For t > 0, the open ball Bx(r, t) with center x ∈ X and radius
0 < r < 1 is defined by

Bx(r, t) = {y ∈ X : M(x, y, t) > 1 − r}.

Proposition 1.8. Let (X,M, ∗) be a fuzzy metric type space. Define

τM =

{A ⊂M : x ∈ A ⇐⇒ ∃ t > 0, & 0 < r < 1 , such that Bx(r, t) ⊂ A}

Then τM is a topology on X.

Proof. (i) Clearly ∅ and X belong to τM.
(ii) Let A1,A2, ...,Ai ∈ τM, and put

U = ∪i∈IAi

We shall show that U ∈ τM. If a ∈ U, then a ∈ ∪i∈IAi which implies that a ∈ Ai for some i ∈ I. Since Ai ∈ τM,
there exists 0 < r < 1, t > 0, such that Ba(r, t) ⊂ Ai. Hence

Ba(r, t) ⊂ Ai ⊂ ∪i∈IAi = U.

This shows that U ∈ τF.
(iii) Let A1,A2, ...,An ∈ τM, and U = ∩n

i=1Ai. We shall show that U ∈ τF. Let a ∈ U. Then a ∈ Ai for all i ∈ I.
Hence for each i ∈ I, there exists 0 < ri < 1, ti > 0 such that Ba(ri, ti) ⊂ Ai. Let

r = min{ri , i ∈ I}

and
t = max{ti , i ∈ I}

Thus r ≤ ri for all i ∈ I, 1 − r ≥ 1 − ri for all i ∈ I. Also, t > 0. So, Ba(r, t) ⊆ Ai for all i ∈ I. Therefore

Ba(r, t) ⊂ ∪i∈IAi = U.

This shows that U ∈ τM.

Please note that in the above topology X is the set of points and the fuzzy metric type is fuzzy evaluation
of two points of X while, for example, in the topology introduced by Yue and Shi [6] the fuzzy metric is
fuzzy evaluation of two fuzzy sets.

Let (X,M, ∗) be a fuzzy metric type space. A sequence {xn} in X converges to x if and only if M(xn, x, t)→ 1
as n → ∞, for each t > 0. It is called a Cauchy sequence if for each 0 < ε < 1 and t > 0, there exits n0 ∈ N
such that M(xn, xm, t) > 1 − ε for each n,m ≥ n0. The fuzzy metric type space (X,M, ∗) is said to be complete
if every Cauchy sequence is convergent. A subset A of X is said to be F-bounded if there exists t > 0 and
0 < r < 1 such that M(x, y, t) > 1 − r for all x, y ∈ A.
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Proposition 1.9. Every fuzzy metric type space with constant K is Hausdorff.

Proof. Let (X,M, ∗) be a fuzzy metric type space. Let x, y be two distinct points of X. Then 0 < M(x, y, t) < 1.
Let M(x, y, t) = r, for some r, 0 < r < 1. For each r0, r < r0 < 1, we can find an r1 such that r1 ∗ r1 ≥ r0. Now
consider the open balls Bx(1 − r1, t

2K ) and By

(
1 − r1, t

2K

)
. Clearly

Bx

(
1 − r1,

t
2K

)
∩ By

(
1 − r1,

t
2K

)
= ∅

Otherwise, if there exists z ∈ Bx

(
1 − r1, t

2K

)
∩ By

(
1 − r1, t

2K

)
. Then

r = M(x, y, t)

≥ M
(
x, z,

t
2K

)
∗M

(
z, y,

t
2K

)
≥ r1 ∗ r1 ≥ r0

> r

which is a contradiction. Therefore (X,M, ∗) is Hausdorff.

Proposition 1.10. Let (X,D) be a metric type space and M(x, y, t) = t
t+D(x,y) be the corresponding standard fuzzy

metric type on X. Then the topology τD induced by the metric D and the topology τM induced by the M are the same.
That is, τD = τM.

Proof. Suppose that A ∈ τD. Then there exists ε > 0 such that B(x, ε) ⊂ A, for every x ∈ A. For a fixed t > 0,
we obtain that

M(x, y, t) =
t

t + D(x, y)
>

t
t + ε

.

Let
1 − r =

t
t + ε

.

Then
M(x, y, t) > 1 − r .

It follows that, Bx(r, t) ⊂ A. Hence A ∈ τM. This shows that τD ⊆ τM. Conversely, suppose that A ∈ τM.
Then there exists 0 < r < 1 and t > 0 such that Bx(r, t) ⊂ A for every x ∈ A. We obtain that

M(x, y, t) =
t

t + D(x, y)
> 1 − r

t > (1 − r)t + (1 − r)D(x, y)

D(x, y) <
rt

1 − r
Let ε = rt

1−r where 0 < ε < 1. Then D(x, y) < ε, and therefore B(x, ε) ⊂ A. Hence A ∈ τD. This implies that
τM ⊆ τD. Therefore τD = τM.

Proposition 1.11. Every compact subset S of a fuzzy metric type space (X,M, ∗) is F-bounded.

Proof. Given S a compact subset of X. Fix t > 0 and 0 < r < 1. Consider an open cover{Bx(r, t) : x ∈ X} of S.
Since S is compact, there exists x1, x2, ..., xn ∈ X such that

S ⊆ ∪n
i=1Bxi (r, t) .

Let x, y ∈ X. Then x ∈ Bxi (r, t) and y ∈ Bx j (r, t) for some i, j. Therefore M(x, xi, t) > 1− r and M(y, x j, t) > 1− r.
Now, let α = min{M(xi, x j, t) : 1 ≤ i, j ≤ n}. Then α > 0. Now

M(x, y,K(2Kt + t)) ≥M(x, xi, t) ∗M(xi, x j, t) ∗M(x j, y, t) ≥ (1 − r) ∗ (1 − r) ∗ α,

where K is the constant to the condition (3). Taking t′ = K(2Kt + t) and (1 − r) ∗ (1 − r) ∗ α > 1 − s, 0 < s < 1,
we have M(x, y, t′ ) > 1 − s for all x, y ∈ X. Hence S is F-bounded.
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Proposition 1.12. Let (X,M, ∗) be a fuzzy metric type space and τM be the topology induced by fuzzy metric type.
Then for any nonempty subset S ⊂ X we have

1. S is closed if and only if for any sequence {xn} in X which converges to x, we have x ∈ S;
2. if we define S̄ to be the intersection of all closed subset of X which contain S, then for any x ∈ S̄ and for any

0 < r < 1 and t > 0, we have Bx(r, t) ∩ S , ∅.

Proof. 1. Assume that S is closed and let {xn} be a sequence in S such that limn→∞ xn = x. Let us prove that
x ∈ S. Assume not, i.e. x < S. Since S is closed, then there exists 0 < r < 1 and t > 0 such that Bx(r, t)∩X = ∅.
Since {xn} converges to x, then there exists N ≥ 1 such that for any n ≥ N we have xn ∈ Bx(r, t). Hence
xn ∈ Bx(r, t) ∩ S, which leads to a contradiction. Conversely assume that for any sequence {xn} in S which
converges to x, we have x ∈ S. Let us prove that S is closed. Let x < S. We need to prove that there
exists 0 < r < 1 and t > 0 such that Bx(r, t) ∩ S = ∅. Assume not, i.e. for any 0 < r < 1 and t > 0, we
have Bx(r, t) ∩ S < ∅. So for any n ≥ 1, choose xn ∈ Bx( 1

n , t) ∩ S. Clearly we have {xn} converges to x. Our
assumption on S implies x ∈ S, a contradiction.

2. Clearly S̄ is the smallest closed subset which contains S. Set

S∗ = {x ∈ X; f or any ε > 0, there exists a ∈ S such that : M(x, a, t) > 1 − r}

We have S ⊂ S∗. Next we prove that S∗ is closed. For this we use property 1. Let {xn} be a sequence in S∗

such that {xn} converges to x. Let 0 < r < 1 and t > 0. Since {xn} converges to x, there exists N ≥ 1 such that
for any n ≥ N we have

M
(
x, xn,

t
2K

)
> 1 − r ,

where K is the constant. Let r0 = M(x, xn, t
2K ) > 1 − r. Since r0 > 1 − r, we can find an s, 0 < s < 1, such that

r0 > 1 − s > 1 − r0. Now for a given r0 and s such that r0 > 1 − s we can find r1, 0 < r1 < 1, such that

r0 ∗ (1 − r1) ≥ 1 − s.

Now since xn ∈ S∗, there exists a ∈ X such that

M
(
xn, a,

t
2K

)
> 1 − r1.

Hence
M(x, a, t) ≥M

(
x, xn,

t
2K

)
∗M

(
xn, a,

t
2K

)
> r0 ∗ (1 − r1) ≥ 1 − s > 1 − r,

which implies x ∈ S∗. Therefore S∗ is closed and contains S. The definition of S̄ ⊂ S∗, which implies the
conclusion of 2.

Note that, every compact subset of a Hausdorff topological space is closed.

Proposition 1.13. Let (X,M, ∗) be a fuzzy metric type space and τM be the topology induced by fuzzy metric type.
Let S be a nonempty subset of X. The following properties are equivalent

(a) S is compact.
(b) For any sequence {xn} in S, there exists a subsequence {xnk } of {xn} which converges, and if {xnk } converges to

x then x ∈ S.

Proof. Assume that S is a nonempty compact subset of X. It is easy to see that any decreasing sequence of
nonempty closed subsets of S have a nonempty intersection. Let {xn} be a sequence in S. Set Cn = {xm :
m ≥ n}. Then we have

⋂
n≥1 C̄n , ∅. Let x ∈

⋂
n≥1 C̄n. Then for 0 < r < 1, t > 0 and for any n ≥ 1, there

exists mn ≥ n such that M(x, xmn , t) > 1− r. This clearly implies the existence of a subsequence of {xn}which
converges to x. Since S is closed, then we must have x ∈ S.
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Conversely let S be a nonempty subset of X such that the conclusion of (b) is true. Let us prove that S is
compact. First note that for any 0 < r < 1, t > 0, there exists x1, x2, ..., xn ∈ A such that

S ⊆
n⋃

i=1

Bxi (r, t).

Assume not, then there exists 0 < r0 < 1, such that for any finite number of points x1, x2, ..., xn ∈ X, we have

S *
n⋃

i=1

Bxi (r0, t) .

Fix x1 ∈ X. Since S * Bx1 (r0, t), there exists x2 ∈ S \Bx1 (r0, t). By induction we build a sequence {xn} such that

xn+1 ∈ S \ (Bx1 (r0, t) ∪ ... ∪ Bxn (r0, t))

for all n ≥ 1. Clearly we have M(xn, xm, t) < 1 − r0, for all n,m ≥ 1, with n , m. This condition implies
that no subsequence of {xn} will be Cauchy or convergent. This contradicts our assumption on X. Next let
{Oα}α∈J be an open cover of S. Let us prove that only finitely many Oα cover S. Fix t > 0, First note that there
exists 0 < r0 < 1 such that for any x ∈ S, there exists α ∈ J such that Bx(r0, t) ⊂ Oα. Assume not, then for
any 0 < r < 1, there exists xr ∈ X such that for any α ∈ J, we haveBxr (r, t) * Oα. In particular, for any n ≥ 1,
there exists xn ∈ X such that for any α ∈ J, we have Bxn

(
1
n , t

)
* Oα. By our assumption on S, there exists

a subsequence {xnk } of {xn} which converges to some point x ∈ X. Since the family {Oα}α∈J covers X, there
exists α0 ∈ J such that x ∈ Oα0 . Since Oα0 is open, there exists 0 < r0 < 1, and t0 > 0 such that Bx(r0, t) ⊂ Oα0 .
Fix t > 0 and let t1 = tK, for any nK ≥ 1 and a ∈ BxnK

( 1
nK
, t) = BxnK

( 1
nK
, t1

K ), we have

M(x, a, t0) ≥M
(
x, xnk ,

t0 − t1

K

)
∗M

(
xnk , a,

t1

K

)
> M

(
x, xnk ,

t0 − t1

K
), 1 −

1
nk

)
for nk large enough, we will get FM(x, a, t) > 1 − r0 for any a ∈ Bxnk

( 1
nk
, t). In the other words, we have

Bxnk
( 1

nk
, t) ⊂ Bx(r0, t0), which implies

Bxnk

( 1
nk
, t
)
⊂ Oα0 .

This is in clear contradiction with the way the sequence {xn} was constructed. Therefore there exists
0 < r0 < 1 such that for any x ∈ S, there exists α ∈ J such that Bx(r0, t) ⊂ Oα. For such r0, there exist
x1, x2, ..., xn ∈ X such that

S ⊂ Bx1 (r0, t) ∪ ... ∪ Bxn (r0, t)

But for any i = 1, ...,n, there exists α ∈ J such that Bxi (r0, t) ⊂ Oαi , i.e. S ⊂ Oα1 ∪ ... ∪Oαn . This completes the
proof that S is compact.

Definition 1.14. Let (X,M, ∗) be a fuzzy metric type space. The subset S of X is called sequentially compact
if and only if for any sequence {xn} in S, there exists a subsequence {xnk } of {xn} which converges, and
limnk→∞ ∈ X. Also S is called totally bounded if for any 0 < r < 1 and t > 0, there exist x1, x2, ..., xn ∈ X such
that

S ⊂ Bx1 (r, t) ∪ ... ∪ Bxn (r, t).

Theorem 1.15. In a fuzzy metric type space every compact set is closed and F-bounded.

Proof. From Propositions 1.9 and 1.11 we get the result.

Two next corollaries get from last results about fuzzy metric type spaces.

Theorem 1.16. In a fuzzy metric type space every compact set is complete.

Corollary 1.17. Every closed subset of a complete fuzzy metric type space is complete.
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2. Main Result

Lemma 2.1. Let (X,M, ∗) be a fuzzy metric type space with K ≥ 1 and let λ ∈ [0, 1) then there exists a fuzzy metric
type m on X such that m(x, y, t) ≥ λ, for each x, y ∈ X and t > 0 and m and M induce the same topology on X.

Proof. We define m(x, y, t) = max{λ,M(x, y, t)}. We claim that m is fuzzy metric type on X. The properties
of (1),(2),(3) and (5)are immediate from the definition. For triangle inequality, suppose that x, y, z ∈ X and
t, s > 0. Then m(x, z,K(t + s)) ≥ λ and so m(x, z,K(t + s)) ≥ m(x, y, t) ∗ m(y, z, s) when either m(x, y, t) = λ or
m(y, z, s) = λ. The only remaining case is when m(x, y, t) = M(x, y, t) > λ and m(y, z, s) = M(y, z, s) > λ. But
M(x, z,K(t+s)) ≥M(x, y, t)∗M(y, z, s) and m(x, z, t+s) ≥M(x, z, t+s) and so m(x, z,K(t+s)) ≥ m(x, y, t)∗m(y, z, s).
Thus m is a fuzzy metric type on X. It only remains to show that the topology induced by m is the same
as that induced by M. But we have m(xn, x, t) −→ 1 if and only if {λ,M(xn, x, t)} −→ 1 if and only if
M(xn, x, t) −→ 1, for each t > 0, and we are done.

The fuzzy metric type m in above lemma is said to be bounded by λ.

Definition 2.2. Let (X,M, ∗) be a fuzzy metric type space, x ∈ X and φ , A ⊆ X. We define

D(x,A, t) = sup{M(x, y, t) : y ∈ A} (t > 0).

Note that D(x,A, t) is a degree of closeness of x to A at t.

Definition 2.3. A topological space is called a (topologically complete) fuzzy metrizable type space if there
exists a (topologically complete) fuzzy metric type inducing the given topology on it.

Example 2.4. Let X = (0, 1]. The fuzzy metric type space (X,M, ·) where M(x, y, t) = t
t+(x−y)2 is not complete

because the Cauchy sequence {1/n} in this space is not convergent. Now, if we consider triple (X,m, .) where
m(x, y, t) = t

t+(x−y)2+( 1
x−

1
y )2 . It is straightforward to show that (X,m, ·) is a fuzzy metric type space, and that is

complete. Since, xn tend to x with respect to fuzzy metric type M if and only if (xn − x)2
−→ 0 if and only if

xn tend to x with respect to fuzzy metric type m, then M and m are equivalent fuzzy metrics types. Hence
the fuzzy metric type space (X,M, ·) is topologically complete fuzzy metrizable type.

Lemma 2.5. Fuzzy metrizability type is preserved under countable Cartesian product.

Proof. Without loss of generality we may assume that the index set is N. Let {(Xn,mn, ∗) : n ∈ N} be a
collection of fuzzy metrizable type spaces. Let τn be the topology induced by mn on Xn for n ∈ N and let
(X, τ) be the Cartesian product of {(Xn, τn) : n ∈ N} with product topology. We have to prove that there is
a fuzzy metric type m on X which induces the topology τ. By the above lemma, we may suppose that mn

is bounded by 1 − ε(n), (ε(n) =

n︷        ︸︸        ︷
ε ∗ ε ∗ · · · ∗ ε, ε ∈ (0, 1)) i.e. mn(xn, yn, t) = max{1 − ε(n),M(xn, yn, t)}. Points of

X =
∏

n∈N Xn are denoted as sequences x = {xn}with xn ∈ Xn for n ∈N. Define m(x, y, t) =
∏
∞

n=1 mn(xn, yn, t),
for each x, y ∈ X and t > 0 , (

∏m
n=1 an = a1 ∗a2 ∗· · ·∗am). First note that m is well defined since ai =

∏i
n=1(1−ε(n))

is decreasing and bounded then converges to α ∈ (0, 1). Also m is a fuzzy metric type on X because each mn
is a fuzzy metric type. LetU be the topology induced by fuzzy metric type m. We claim thatU coincides
with τ. If G ∈ U and x = {xn} ∈ G, then there exists 0 < r < 1 and t > 0 such that B(x, r, t) ⊂ G. For each
0 < r < 1, we can find a sequence {δn} in (0, 1) and a positive integer N0 such that

N0∏
n=1

(1 − δn) ∗
∞∏

n=N0+1

(1 − ε(n)) > 1 − r.

For each n = 1, 2, · · · ,N0, let Vn = B(xn, δn, t), where the ball is with respect to fuzzy metric type mn. Let
Vn = Xn for n > N0. Put V =

∏
n∈N Vn, then x ∈ V and V is an open set in the product topology τ on X.
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Furthermore V ⊂ B(x, r, t), since for each y ∈ V

m(x, y, t) =

∞∏
n=1

mn(xn, yn, t)

=

N0∏
n=1

mn(xn, yn, t) ∗
∞∏

n=N0+1

mn(xn, yn, t)

≥

N0∏
n=1

(1 − δn) ∗
∞∏

n=N0+1

(1 − ε(n))

> 1 − r.

Hence V ⊂ B(x, r, t) ⊂ G. Therefore G is open in the product topology. Conversely suppose G is open
in the product topology and let x = {xn} ∈ G. Choose a standard basic open set V such that x ∈ V and
V ⊂ G. Let V =

∏
n∈N Vn, where each Vn is open in Xn and Vn = Xn for all n > N0. For n = 1, 2, · · · ,N0,

let rn = Dn(xn,Xn − Vn, t), if Xn , Vn, and rn = ε(n), otherwise. Let r = min{r1, r2, · · · , rN0 }. We claim that
B(x, r, t) ⊂ V. If y = {yn} ∈ B(x, r, t), then m(x, y, t) =

∏
∞

n=1 mn(xn, yn, t) > 1−r and so mn(xn, yn, t) > 1−r ≥ 1−rn
for each n = 1, 2, · · · ,N0. Then yn ∈ Vn, for n = 1, 2, · · · ,N0. Also for n > N0, yn ∈ Vn = Xn. Hence y ∈ V and
so B(x, r, t) ⊂ V ⊂ G. Therefore G is open with respect to the fuzzy metric type topology and τ ⊂ U. Hence
τ andU coincide.

Theorem 2.6. An open subspace of a complete fuzzy metrizable type space is a complete fuzzy metrizable type space.

Proof. Let (X,M, ∗) be a complete fuzzy metric type space and G an open subspace of X. If the restriction of M
to G is not complete we can replace M on G by other fuzzy metric type as follows. Define f : G×(0,∞) −→ R+

by f (x, t) = 1
1−D(x,X−G,t) ( f is undefined if X−G is empty, but then there is nothing to prove.) Fix an arbitrary

s > 0 and for x, y ∈ G define

m(x, y, t) = M(x, y, t) ∗M( f (x, s), f (y, s), t),

for each t > 0. We claim that m is fuzzy metric type on G. The properties (1),(2),(3) and (5) are immediate
from the definition. For triangle inequality, suppose that x, y, z ∈ G and t, s,u > 0, then

m(x, y, t) ∗m(y, z,u) =

(M(x, y, t) ∗M( f (x, s), f (y, s), t)) ∗ (M(y, z,u) ∗M( f (y, s), f (z, s),u))
= (M(x, y, t) ∗M(y, z,u)) ∗ (M( f (x, s), f (y, s), t) ∗M( f (y, s), f (z, s),u))
≤ M(x, z,K(t + u)) ∗M( f (x, s), f (z, s),K(t + u)) = m(x, z,K(t + u)).

We show that m and M are equivalent fuzzy metrics type on G. We do this by showing that m(xn, x, t) −→ 1
if and only if M(xn, x, t) −→ 1. Since m(x, y, t) ≤M(x, y, t) for all x, y ∈ G and t > 0, M(xn, x, t) −→ 1 whenever
m(xn, x, t) −→ 1. To prove the converse, let M(xn, x, t) −→ 1, since M is continuous function on X×X× (0,∞),
then

lim
n

D(xn,X − G, s) = lim
n

(sup{M(xn, y, s) : y ∈ G})

≥ lim
n

M(xn, y, s)

= M(x, y, s).

Therefore limn D(xn,X −G, s) ≥ D(x,X −G, s). On the other hand, there exists a y0 ∈ X −G and n0 ∈N such
that for every n ≥ n0 we have

D(xn,X − G, s) ∗ (1 −
1
n

) ≤M(xn, y0, s).

Then limn D(xn,X −G, s) ≤M(x, y0, s) ≤ sup{M(x, y, s) : y ∈ X −G} = D(x,X −G, s). Therefore limn D(xn,X −
G, s) = D(x,X −G, s). This implies M( f (xn, s), f (x, s), t) −→ 1. Hence m(xn, x, t) −→ 1. Therefore m and M are
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equivalent. Next we show that m is a complete fuzzy metric type. Suppose that {xn} is a Cauchy sequence
in G with respect to m. Since for each m,n ∈ N, and t > 0 m(xm, xn, t) ≤ M(xm, xn, t), therefore {xn} is also a
Cauchy sequence with respect to M. By completeness of (X,M, ∗), {xn} converges to point p in X. We claim
that p ∈ G. Assume otherwise, then for each n ∈N, if p ∈ X − G and M(xn, p, t) ≤ D(xn,X − G, t), then

1 −M(xn, p, t) ≥ 1 −D(xn,X − G, t) > 0,

Therefore
1

1 −D(xn,X − G, t)
≥

1
1 −M(xn, p, t)

,

That is
f (xn, t) ≥

1
1 −M(xn, p, t)

,

for each t > 0. Therefore as n −→ ∞, for every t > 0 we get f (xn, t) −→ ∞. In particular, f (xn, s) −→ ∞.
On the other hand, M( f (xn, s), f (xm, s), t) ≥ m(xm, xn, t), for every m,n ∈ N, that is { f (xn, s)} is an F-bounded
sequence. This contradiction shows that p ∈ G. Hence {xn} converges to p with respect to m and (G,m, ∗) is
a complete fuzzy metrizable type space.

Theorem 2.7. (Alexandroff) A Gδ set in a complete fuzzy metric type space is a topologically complete fuzzy
metrizable type space.

Proof. Let (X,M, ∗) be a complete fuzzy metric type space and G be a Gδ set in X, that is G = ∩∞n=1Gn, where
each Gn is open in X. By the above theorem, there exists a complete fuzzy metric type mn on Gn and we may
assume that mn is bounded by 1 − ε(n). LetH be the Cartesian product

∏
∞

n=1 Gn with the product topology.
ThenH is a complete fuzzy metrizable type space. Now, for each n ∈ N let fn : G −→ Gn be the inclusion
map. So the evaluation map e : G −→ H is an embedding. Image of e is the diagonal ∆G which is a closed
subset ofH and by Corollary 1.6 , ∆G is complete. Thus ∆G is a complete fuzzy metrizable type space and
so is G which is homeomorphic to it.
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