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Abstract. Let ω1 be the first uncountable ordinal, α < ω1 an ordinal, and Y, Z two topological spaces. By
Bα(Y,Z) we denote the set of all Borel maps of class α from Y into Z and by GZ

α (Y) the set consisting of all
subsets f −1(U), where f ∈ Bα(Y,Z) and U is an open subset of Z. In this paper we introduce and investigate
topologies on the sets Bα(Y,Z) and GZ

α (Y). More precisely, we generalize the results presented by Arens,
Dugundji, Aumann, and Rao (see [1], [2], [3], and [10]) for Borel maps of class α.

1. Preliminaries

In the books [7], [8], [9], and [11] the reader can find a good history and introduction on the basic notions
on Borel sets and Borel maps. In what follows we give the necessary basic notions in this theory which we
will use for the development of our study.

Let X, Y, and Z be three topological spaces and F a map of X × Y into Z. By Fx we denote the map of Y
into Z defined by Fx(y) = F(x, y) for every y ∈ Y and by Fy the map of X into Z defined by Fy(x) = F(x, y) for
every x ∈ X.

By the family of Borel sets of a topological space X we mean the smallest family of subsets of X containing
the closed subsets of X and is closed under complements and countable unions (therefore, closed also under
countable intersections). We denote this family by B(X).

A subset Q of a space X is said to be a Gδ-set (respectively, an Fσ-set) if Q is the intersection (respectively,
the union) of countable many open (respectively, closed) subsets of X.

In what follows by ω1 we denote the first uncountable ordinal.
Let X be a space such that each closed subset of X is a Gδ-set (and, therefore, each open subset of X is

an Fσ-set). We observe that the family B(X) can be represented as a union of some subfamilies Fα, α < ω1,
defined by induction as follows:

(a) F0 is the family of closed subsets of X,
(b) if α , 0 is an odd (respectively, an even) ordinal, then Fα consists of countable unions (respectively,

of countable intersections) of elements of the family ∪{Fβ : β < α}.
So, we have

B(X) = ∪{Fα : α < ω1}.
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Also,
B(X) = ∪{Gα : α < ω1},

where:
(a) G0 is the family of all open subsets of X, and
(b) if α , 0 is an odd (respectively, an even) ordinal, then Gα consists of countable intersections

(respectively, of countable unions) of elements of the family ∪{Gβ : β < α}.
The multiplicative class α (denoted by Π0

α(X)) and the additive class α (denoted by Σ0
α(X)), where α < ω1,

are subfamilies of B(X) defined as follows:
(a) If α is an odd ordinal, then the multiplicative class α coincides with Gα and the additive class αwith

Fα.
(b) If α is an even ordinal, then the multiplicative class α coincides with Fα and the additive class αwith

the Gα.
A topological space X is called a Gδ-space if G0 ⊆ F1. Note that every metric space is a Gδ-space.
Let Y and Z be two Gδ-spaces, α < ω1 an ordinal, and f : Y → Z a map. The map f is called a Borel

map of class α (or simply a map of class α) if for every open subset U of Z, f−1(U) is of additive class α in Y
(equivalently, for every closed subset F of Z, f−1(F) is of multiplicative class α in Y). By Bα(Y,Z) we denote
the family of all Borel maps of class α from Y to Z.

The following properties of Borel maps of class α are known (see, for example, [4] and [9]):
(1) A map f is of class 0 if and only if f is continuous.
(2) The maps of class α are also of class β, for all β > α.
(3) If f is of class α, 1 of class β, and 1 ◦ f is defined, then the map 1 ◦ f is of class α + β.

In what follows we suppose that all topological spaces are Gδ-spaces.

Let Y and Z be two fixed topological spaces and O(Z) the family of all open sets of Z. In section 2 we
introduce and examine the notions of coordinately Borel splitting and admissible topologies of class α on
the set Bα(Y,Z). We present the corresponding notions through examples. In section 3 we define and study
some relations between the topological structures on the set Bα(Y,Z) and on the set GZ

α (Y) consisting of
all subsets f−1(U), where f ∈ Bα(Y,Z) and U ∈ O(Z). Furthermore, we define and present the notions of
family-Borel topologies and mutually dual topologies of class α.

2. Topologies on the set Bα(Y,Z)

Let Y and Z be two fixed topological spaces and α < ω1 a fixed ordinal. If t is a topology on the set
Bα(Y,Z), then the corresponding topological space is denoted by Bαt (Y,Z).

Definition 2.1. Let X be an arbitrary topological space. A map F : X × Y → Z is called coordinately Borel of
class α if for every x ∈ X and y ∈ Y the maps Fx : Y→ Z and Fy : X→ Z are Borel maps of class α.

We observe that if the map F : X × Y → Z is a coordinately Borel map of class α, then this map is also
coordinately Borel. For the notion of a coordinately Borel map see [6]. Also, if the map F : X × Y → Z is a
Borel map of class α, then this map is also coordinately Borel map of class α (see [9]).

Notations. (1) Let F : X × Y → Z be a coordinately Borel map of class α. Then, by F̂ we denote the map of
X into the set Bα(Y,Z) defined by F̂(x) = Fx for every x ∈ X.

(2) Let G be a map of X into Bα(Y,Z). Then, by G̃ we denote the map of X × Y into Z defined by
G̃(x, y) = G(x)(y) for every (x, y) ∈ X × Y.

Definition 2.2. LetA be an arbitrary fixed class of Gδ-spaces.
(1) A topology t on Bα(Y,Z) is called coordinately Borel A-splitting of class α if for every space X ∈ A the
following implication holds: if the map F : X × Y → Z is coordinately Borel of class α, then the map
F̂ : X→ Bαt (Y,Z) is Borel of class α.
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(2) A topology t on Bα(Y,Z) is called coordinately Borel A-admissible of class α if for every space X ∈ A the
following implication holds: if the map G : X→ Bα(Y,Z) is Borel of class α, then the map G̃ : X × Y→ Z is
coordinately Borel of class α.

Remark. If A is the class of all Gδ-spaces, then we use the notions of coordinately Borel splitting of class
α and coordinately Borel admissible of class α topologies, instead of the notions of coordinately Borel
A-splitting of class α and coordinately BorelA-admissible of class α topologies, respectively.

Definition 2.3. By e we denote the map of Bα(Y,Z) × Y into Z, defined by e( f , y) = f (y) for every ( f , y) ∈
Bα(Y,Z) × Y. The map e is called evaluation map of class α.

Proposition 2.4. LetA be a class of Gδ-spaces and t a topology on Bα(Y,Z) such that Bαt (Y,Z) ∈ A. If the topology t
on Bα(Y,Z) is coordinately BorelA-admissible of class α, then the evaluation map e : Bαt (Y,Z)×Y→ Z is coordinately
Borel map of class α.

Proof. We consider as X the space Bαt (Y,Z) and as G the identity map

id : Bαt (Y,Z)→ Bαt (Y,Z).

Since the map G is a Borel map of class α and the topology t on Bα(Y,Z) is coordinately BorelA-admissible
of class α, we have that the map

G̃ : Bαt (Y,Z) × Y→ Z

is coordinately Borel map of class α. We observe that G̃ = e. Thus, the map e is coordinately Borel map of
class α.

Corollary 2.5. Let t be a coordinately Borel admissible of class α topology on Bα(Y,Z) such that the space Bαt (Y,Z)
is a Gδ-space. Then, the evaluation map e : Bαt (Y,Z) × Y→ Z is coordinately Borel map of class α.

Proposition 2.6. Let A be a class of Gδ-spaces and t a topology on Bα(Y,Z). If the map ey : Bαt (Y,Z) → Z is
continuous, for every y ∈ Y (and, hence, the evaluation map e : Bαt (Y,Z) × Y→ Z is coordinately Borel map of class
α), then the topology t on Bα(Y,Z) is coordinately BorelA-admissible of class α.

Proof. Let X ∈ A and G : X → Bαt (Y,Z) be a Borel map of class α. It suffices to prove that the map
G̃ : X × Y→ Z is coordinately Borel of class α. Let x ∈ X. Then, for every y ∈ Y we have

G̃(x, y) = G(x)(y).

Thus, G̃x(y) = G(x)(y) for every y ∈ Y. Therefore, G̃x = G(x) which is a Borel map of class α by the
assumption.

Now, we prove that the map G̃y, y ∈ Y is a Borel map of class α. Let y ∈ Y. Then, for every x ∈ X we
have

G̃y(x) = G̃(x, y) = G(x)(y) = e(G(x), y) = ey(G(x)) = (ey
◦ G)(x).

Since the map ey is continuous and the map G is a Borel map of class α we have that the map ey
◦ G is a

Borel map of class α. Thus, the map G̃y is a Borel map of class α and, therefore, the map G̃ is coordinately
Borel map of class α.

Corollary 2.7. If the map ey : Bαt (Y,Z) → Z is continuous, for every y ∈ Y, then the topology t on Bα(Y,Z) is
coordinately Borel admissible of class α.

Proposition 2.8. LetA be a class of Gδ-spaces. Then, the following statements are true:
(1) If t is a topology smaller than a coordinately Borel A-splitting topology u of class α on Bα(Y,Z), then t is also
coordinately BorelA-splitting topology of class α.
(2) If t is a topology larger than a coordinately Borel A-admissible topology u of class α on Bα(Y,Z) and the map
ey : Bαu(Y,Z)→ Z is continuous for every y ∈ Y, then t is also coordinately BorelA-admissible topology of class α.
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Proof. (1) Let X ∈ A and F : X × Y → Z be a coordinately Borel map of class α. Since the topology u is
coordinately BorelA-splitting topology of class α, the map F̂ : X→ Bαu(Y,Z) is a Borel map of class α. Since
t ⊆ u the identity map

id : Bαu(Y,Z)→ Bαt (Y,Z)

is continuous. Thus, the map F̂ = id ◦ F̂ : X → Bαt (Y,Z) is a Borel map of class α and, therefore, t is
coordinately BorelA-splitting topology of class α.

(2) Let y ∈ Y. Since the map ey : Bαu(Y,Z)→ Z is continuous and u ⊆ t, the map ey : Bαt (Y,Z)→ Z is also
continuous. Therefore, by Proposition 2.6, the topology t is coordinately BorelA-admissible of class α.

Corollary 2.9. The following statements are true:
(1) If t is a topology smaller than a coordinately Borel splitting topology u of class α on Bα(Y,Z), then t is also
coordinately Borel splitting topology of class α.
(2) If t is a topology larger than a coordinately Borel admissible topology u of class α on Bα(Y,Z) and the map
ey : Bαu(Y,Z)→ Z is continuous for every y ∈ Y, then t is also coordinately Borel admissible topology of class α.

Remark. LetA be the class of all Gδ-spaces. It is clear that in general in the set Bα(Y,Z) there not exists the
greatest coordinately BorelA-splitting topology. This fact gives a different result from the classical theory
of function topological spaces (see [1] and [5]).

Proposition 2.10. LetA be a class of Gδ-spaces. The following statements are true:
(1) The anti-discrete topology ttr on Bα(Y,Z) is the smallest coordinately BorelA-splitting topology of class α.
(2) The discrete topology td on Bα(Y,Z) is the greatest coordinately BorelA-admissible topology of class α.

Proof. (1) Let X ∈ A be a Gδ-space and F : X ×Y→ Z be a coordinately Borel map of class α. It is suffices to
prove that F̂ : X→ Bαttr

(Y,Z) is a Borel map of class α.
We observe that

F̂−1(Bα(Y,Z)) = X ∈ G0 ⊆ Gα.

Thus, the map F̂ : X→ Bαttr
(Y,Z) is a Borel map of class α.

(2) We observe that the map ey : Bαt (Y,Z)→ Z is continuous. Therefore, by Proposition 2.6, the discrete
topology on Bα(Y,Z) is coordinately BorelA-admissible of class α.

Definition 2.11. Let y ∈ Y. The topology on Bα(Y,Z) consisting of all sets

({y},U) = { f ∈ Bα(Y,Z) : f (y) ∈ U},

where U is an open subset of Z, is called the y-topology of class α and denoted by tαy .

Proposition 2.12. Let A be a class of Gδ-spaces. The topology tαy on Bα(Y,Z) is coordinately Borel A-splitting
topology of class α.

Proof. Let X ∈ A be a Gδ-space and F : X×Y→ Z be a coordinately Borel map of class α. It suffices to prove
that the map F̂ : X→ Bαtαy (Y,Z) is a Borel map of class α. Let ({y},U) ∈ ty. We have

F̂−1(({y},U)) = {x ∈ X : F̂(x)(y) = Fy(x) ∈ U} = (Fy)−1(U).

Since Fy is a Borel map of class α and U is an open subset of Z, we have that the set (Fy)−1(U) ∈ Σ0
α(X). Thus,

the map F̂ is a Borel map of class α.

Definition 2.13. The tαp topology on Bα(Y,Z) is that having as subbasis all sets

({y},U) = { f ∈ Bα(Y,Z) : f (y) ∈ U},

where y ∈ Y and U an open subset of Z. The topology tαp is called point-open topology of class α.
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Proposition 2.14. LetA be a class of Gδ-spaces. The following statements are true:
(1) The topology tαp on Bα(Y,Z) is a coordinately BorelA-admissible topology of class α.
(2) If the subbasis mentioned in Definition 2.13 is countable, then the topology tαp on Bα(Y,Z) is coordinately Borel
A-splitting topology of class α.

Proof. (1) By Proposition 2.6 it suffices to prove that the map ey : Bαt (Y,Z)→ Z is continuous. Indeed, let U
be an open subset of Z. We have

(ey)−1(U) = { f ∈ Bα(Y,Z) : ey( f ) = e( f , y) = f (y) ∈ U} = ({y},U).

Therefore, ey is continuous.
(2) Let X ∈ A be a Gδ-space and F : X×Y→ Z be a coordinately Borel map of class α. We prove that the

map F̂ : X→ Bαtαp (Y,Z) is a Borel map of class α. Let⋃
i∈I

(
⋂
j∈Ji

({y j},W j)) ∈ tp,

where |I| ≤ ℵ0, |Ji| < ℵ0, y j ∈ Y, and W j is an open subset of Z, for every j ∈ Ji. Then,

F̂−1(
⋃
i∈I

(
⋂
j∈Ji

({y j},W j))) =
⋃
i∈I

(
⋂
j∈Ji

F̂−1({y j},W j))

=
⋃
i∈I

(
⋂
j∈Ji

{x ∈ X : F̂(x)(y j) = F(x, y j) = Fy j (x) ∈W j})

=
⋃
i∈I

(
⋂
j∈Ji

(Fy j )−1(W j)).

Since Fyi is a Borel map of class α and |I| ≤ ℵ0, we have that⋃
i∈I

(
⋂
j∈Ji

(Fy j )−1(W j)) ∈ Σ0
α(X).

This means that the map F̂ is a Borel map of class α.

Definition 2.15. The tαpB topology on Bα(Y,Z) is that having as subbasis all sets

({y},B) = { f ∈ Bα(Y,Z) : f (y) ∈ B},

where y ∈ Y and B ∈ Σ0
α(Z). The topology tαpB is called point-Borel topology of class α.

We observe that tαp ⊆ tαpB.

Proposition 2.16. LetA be a class of Gδ-spaces. If the map ey : Bαtαp (Y,Z)→ Z is continuous, for every y ∈ Y, then
the topology tαpB on Bα(Y,Z) is coordinately BorelA-admissible topology of class α.

Proof. The proof of this follows by the fact that tp ⊆ tpB and by Proposition 2.8(2).

Definition 2.17. The tαpGδ
topology on Bα(Y,Z) is that having as subbasis all sets

({y},A) = { f ∈ Bα(Y,Z) : f (y) ∈ A},

where y ∈ Y and A is a Gδ-set of Z. The topology tαpGδ
is called point-Gδ topology of class α.

We observe that tαp ⊆ tαpGδ
⊆ tαpB.
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Proposition 2.18. LetA be a class of Gδ-spaces. The following statements are true:
(1) If the map ey : Bαtαp (Y,Z) → Z is continuous for every y ∈ Y, then the topology tαpGδ

on Bα(Y,Z) is coordinately
BorelA-admissible topology of class α.
(2) If the subbasis mentioned in Definition 2.17 is countable, then the topology tαpGδ

on Bα(Y,Z) is coordinately Borel
A-splitting topology of class α.

Proof. (1) It follows by the fact that tp ⊆ tαpGδ
and by Proposition 2.8(2).

(2) The proof is similar to the proof of Proposition 2.14(2).

3. Dual topologies of class α

Let Y and Z be two fixed Gδ-spaces and O(Z) the family of all open sets of Z. We consider the set:

GZ
α (Y) = { f−1(U) : f ∈ Bα(Y,Z), U ∈ O(Z)}.

We define and study some relations between the topologies on the set Bα(Y,Z) and the topologies on
the set GZ

α (Y) concerning the notions of coordinately Borel A-splitting of class α and coordinately Borel
A-admissible of class α topologies.

Notations. LetHα
⊆ GZ

α (Y),Hα
⊆ Bα(Y,Z), and U ∈ O(Z). We set

(Hα,U) = { f ∈ Bα(Y,Z) : f−1(U) ∈Hα
}

and
(Hα,U) = { f−1(U) : f ∈ Hα

}.

Definition 3.1. Let τ be a topology on GZ
α (Y). The t(τ) topology on Bα(Y,Z) is that having as subbasis all

the sets (Hα,U), whereHα
∈ τ and U ∈ O(Z). The t(τ) topology is called dual of class α to τ.

Definition 3.2. Let t be a topology on Bα(Y,Z). The τ(t) topology on GZ
α (Y), is that having as subbasis all

the sets (Hα,U), whereHα
∈ t and U ∈ O(Z). The τ(t) topology is called dual of class α to t.

Proposition 3.3. The following statements are true:
(1) Let τ1 and τ2 be two topologies on the set GZ

α (Y) such that τ1 ⊆ τ2. Then, t(τ1) ⊆ t(τ2).
(2) Let t1 and t2 be two topologies on the set Bα(Y,Z) such that t1 ⊆ t2. Then, τ(t1) ⊆ τ(t2).

Proof. Follows easily from Definitions 3.1 and 3.2.

Notations. (1) Let τ and t be two topologies on GZ
α (Y) and Bα(Y,Z), respectively.

(i) By s(τ) we denote the family
{(Hα,U) :Hα

∈ τ, U ∈ O(Z)}.

(ii) By r(t) we denote the family
{(Hα,U) : Hα

∈ t, U ∈ O(Z)}.

(2) Suppose that F : X × Y→ Z is a coordinately Borel map of class α. By F we denote the map of X × O(Z)
into the set GZ

α (Y), for which F(x,U) = F−1
x (U) for every x ∈ X and U ∈ O(Z).

(3) Let G be a map of X into Bα(Y,Z). By G we denote the map of X × O(Z) into GZ
α (Y), for which

G(x,U) = (G(x))−1(U) for every x ∈ X and U ∈ O(Z).

Definition 3.4. Let τ be a topology on GZ
α (Y). We say that a map M of X × O(Z) into GZ

α (Y) is a Borel map of
class α, with respect to the first variable if for every fixed element U ∈ O(Z), the map MU : X→ (GZ

α (Y), τ) is a
Borel map of class α, where MU(x) = M(x,U) for every x ∈ X.
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Definition 3.5. LetA be a class of Gδ-spaces.
(1) A topology τ on GZ

α (Y) is called coordinately BorelA-splitting topology of class α if for every space X ∈ A
the following implication holds: if the map F : X × Y→ Z is coordinately Borel of class α, then the map

F : X × O(Z)→ (GZ
α (Y), τ)

is Borel of class α, with respect to the first variable.
(2) A topology τ on GZ

α (Y) is called coordinately BorelA-admissible topology of class α if for every space X ∈ A
and for every map

G : X→ Bα(Y,Z)

the following implication holds: if the map

G : X × O(Z)→ (GZ
α (Y), τ)

is Borel of class α, with respect to the first variable, then the map

G̃ : X × Y→ Z

is coordinately Borel of class α.

Remark. If A is the class of all Gδ-spaces, then we use the notions of coordinately Borel splitting of class
α and coordinately Borel admissible of class α, instead of the notions of coordinately Borel A-splitting of
class α and coordinately BorelA-admissible of class α, respectively.

Proposition 3.6. LetA be a class of Gδ-spaces. The following statements are true:
(1) Let τ be a topology on GZ

α (Y). If the topology t(τ) on Bα(Y,Z) is coordinately BorelA-splitting of class α, then the
topology τ is coordinately BorelA-splitting of class α.
(2) Let τ be a topology on GZ

α (Y). If |s(τ)| ≤ ℵ0 and the topology τ is coordinately BorelA-splitting of class α, then
the topology t(τ) on Bα(Y,Z) is coordinately BorelA-splitting of class α.

Proof. (1) Suppose that the topology t(τ) on Bα(Y,Z) is a coordinately BorelA-splitting topology of class α,
X ∈ A, and F : X × Y→ Z is a coordinately Borel map of class α. It suffices to prove that the map

F : X × O(Z)→ (GZ
α (Y), τ)

is a Borel map of class α, with respect to the first variable. Let U ∈ O(Z) andHα
∈ τ. We need to prove that

FU
−1

(Hα) ∈ Σ0
α(X). We have

FU
−1

(Hα) = {x ∈ X : FU(x) = Fx
−1(U) = F̂(x)−1(U) ∈Hα

}

= F̂−1((Hα,U)).

Since F : X × Y→ Z is a coordinately Borel map of class α, the map

F̂ : X→ Bαt(τ)(Y,Z)

is a Borel map of class α. Thus, FU
−1

(Hα) ∈ Σ0
α(X).

(2) Suppose that the topology τ on GZ
α (Y) is a coordinately BorelA-splitting topology of class α, X ∈ A,

and F : X×Y→ Z is a coordinately Borel map of class α. It suffices to prove that the map F̂ : X→ Bαt(τ)(Y,Z)
is a Borel map of class α. Let ⋃

i∈I

(
⋂
j∈Ji

(Hα
j ,U j)) ∈ t(τ),



D. N. Georgiou, A. C. Megaritis, V. I. Petropoulos / Filomat 29:1 (2015), 143–154 150

where |I| ≤ ℵ0, |Ji| < ℵ0,Hα
j ∈ τ, and U j ∈ O(Z) for every j ∈ Ji and i ∈ I. Then, we have

F̂−1(
⋃
i∈I

(
⋂
j∈Ji

(Hα
j ,U j))) =

⋃
i∈I

(
⋂
j∈Ji

F̂−1(Hα
j ,U j)) =

⋃
i∈I

(
⋂
j∈Ji

FU j

−1
(Hα

j )).

Since the map FU j is a Borel map of class α and |I| ≤ ℵ0, we have that

F̂−1(
⋃
i∈I

(
⋂
j∈Ji

(Hα
j ,U j))) ∈ Σ0

α(X).

Thus, the map F̂ is a Borel map of class α.

Corollary 3.7. Let τ be a topology on GZ
α (Y). Then, the following statements are true:

(1) If the topology t(τ) on Bα(Y,Z) is a coordinately Borel splitting topology of class α, then the topology τ is a
coordinately Borel splitting topology of class α.
(2) If |s(τ)| ≤ ℵ0 and the topology τ is a coordinately Borel splitting topology of class α, then the topology t(τ) on
Bα(Y,Z) is a coordinately Borel splitting topology of class α.

Proposition 3.8. LetA be a class of Gδ-spaces. The following statements are true:
(1) Let t be a topology on Bα(Y,Z). If the topology τ(t) on GZ

α (Y) is a coordinately BorelA-splitting topology of class
α, then the topology t on Bα(Y,Z) is a coordinately BorelA-splitting topology of class α.
(2) Let t be a topology on Bα(Y,Z). If |r(t)| ≤ ℵ0 and the topology t is a coordinately Borel A-splitting topology of
class α, then the topology τ(t) is a coordinately BorelA-splitting topology of class α.

Proof. The proof is similar to the proof of Proposition 3.6.

Corollary 3.9. Let t be a topology on Bα(Y,Z). Then, the following statements are true:
(1) If the topology τ(t) on GZ

α (Y) is a coordinately Borel splitting topology of class α, then the topology t on Bα(Y,Z)
is a coordinately Borel splitting topology of class α.
(2) If |r(t)| ≤ ℵ0 and the topology t is a coordinately Borel splitting topology of class α, then the topology τ(t) is a
coordinately Borel splitting topology of class α.

Proposition 3.10. LetA be a class of Gδ-spaces. The following statements are true:
(1) Let τ be a topology on GZ

α (Y). If τ is a coordinately BorelA-admissible topology of class α, then the topology t(τ)
on Bα(Y,Z) is a coordinately BorelA-admissible topology of class α.
(2) Let τ be a topology on GZ

α (Y). If |s(τ)| ≤ ℵ0 and t(τ) is a coordinately BorelA-admissible topology of class α, then
τ is a coordinately BorelA-admissible topology of class α.

Proof. (1) Suppose that the topology τ on GZ
α (Y) is a coordinately Borel A-admissible topology of class α,

X ∈ A, and G : X→ Bαt(τ)(Y,Z) is a Borel map of class α. It suffices to prove that the map G̃ : X × Y→ Z is a
coordinately Borel map of class α. We need to prove that the map

G : X × O(Z)→ (GZ
α (Y), τ)

is a Borel map of class α, with respect to the first variable. Indeed, let U ∈ O(Z) andHα
∈ τ. Then, we have

GU
−1

(Hα) = {x ∈ X : GU(x) = G(x)−1(U) ∈Hα
}

= G−1((Hα,U)).

Since G is a Borel map of class α, G−1((Hα,U)) ∈ Σ0
α(X) and, therefore, GU

−1
(Hα) ∈ Σ0

α(X). Thus, the map G
is a Borel map of class α, with respect to the first variable.

(2) Suppose that the topology t(τ) on Bα(Y,Z) is a coordinately BorelA-admissible topology of class α,
X ∈ A, G : X→ Bα(Y,Z), and

G : X × O(Z)→ (GZ
α (Y), τ)
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is a Borel map of class α, with respect to the first variable. We need to prove that the map G̃ : X × Y→ Z is
a coordinately Borel map of class α. It suffices to prove that the map

G : X→ Bαt(τ)(Y,Z)

is a Borel map of class α. Indeed, let ⋃
i∈I

(
⋂
j∈Ji

(Hα
j ,U j)) ∈ t(τ),

where |I| ≤ ℵ0, |Ji| < ℵ0,Hα
j ∈ τ, and U j ∈ O(Z) for every j ∈ Ji and i ∈ I. Then, we have

G−1(
⋃
i∈I

(
⋂
j∈Ji

(Hα
j ,U j))) =

⋃
i∈I

(
⋂
j∈Ji

G−1(Hα
j ,U j)) =

⋃
i∈I

(
⋂
j∈Ji

GU j

−1
(Hα)).

Since the map GU j is a Borel map of class α and |I| ≤ ℵ0, we have that

G−1(
⋃
i∈I

(
⋂
j∈Ji

(Hα
j ,U j))) ∈ Σ0

α(X).

Thus, the map G is a Borel map of class α.

Corollary 3.11. Let τ be a topology on GZ
α (Y). The following statements are true:

(1) If τ is a coordinately Borel admissible topology of class α, then the topology t(τ) on Bα(Y,Z) is a coordinately Borel
admissible topology of class α.
(2) If |s(τ)| ≤ ℵ0 and t(τ) is a coordinately Borel admissible topology of class α, then τ is coordinately Borel admissible
topology of class α.

Proposition 3.12. LetA be a class of Gδ-spaces. The following statements are true:
(1) Let t be a topology on Bα(Y,Z). If t is a coordinately BorelA-admissible topology of class α, then the topology τ(t)
on GZ

α (Y) is a coordinately BorelA-admissible topology of class α.
(2) Let t be a topology on Bα(Y,Z). If |r(t)| ≤ ℵ0 and the topology τ(t) is a coordinately BorelA-admissible topology
of class α, then the topology t is a coordinately BorelA-admissible topology of class α.

Proof. The proof is similar to the proof of Proposition 3.10.

Corollary 3.13. Let t be a topology on Bα(Y,Z). The following statements are true:
(1) If t is a coordinately Borel admissible topology of class α, then the topology τ(t) on GZ

α (Y) is a coordinately Borel
admissible topology of class α.
(2) If |r(t)| ≤ ℵ0 and the topology τ(t) is a coordinately Borel admissible topology of class α, then the topology t is a
coordinately Borel admissible topology of class α.

Definition 3.14. A topology on Bα(Y,Z) (respectively, on GZ
α (Y)) is said to be a family-Borel topology of class

α if it is dual to a topology on GZ
α (Y) (respectively, to a topology on Bα(Y,Z)).

Proposition 3.15. Let τ be a topology on GZ
α (Y). If the set γ is a subbasis for τ, then the set

s(γ) = {(Hα,U) :Hα
∈ γ, U ∈ O(Z)}

is a subbasis for t(τ).

Proof. LetHα
∈ τ and U ∈ O(Z). Assume that f ∈ (Hα,U). Then, there exist finite elementsHα

0 , . . . ,H
α
n of γ

such that
f−1(U) ∈Hα

0 ∩ . . . ∩H
α
n ⊆H

α.

Therefore,
f ∈ (Hα

0 ∩ . . . ∩H
α
n ,U) ⊆ (Hα,U).

Thus, any element of the subbasis s(τ) of t(τ) is a union of finite intersections of elements of the set s(γ),
which means that this set is also a subbasis for t(τ).
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Proposition 3.16. Let t be a topology on Bα(Y,Z). If the set s is a subbasis for t, then the set

r(s) = {(Hα,U) : Hα
∈ s, U ∈ O(Z)}

is a subbasis for τ(t).

Proof. Let Hα
∈ t and U ∈ O(Z). Assume that A ∈ (Hα,U). Then, there exists an element f ∈ H such that

A = f−1(U). There exist finite elementsHα
0 , . . . ,H

α
n of s such that

f ∈ Hα
0 ∩ . . . ∩H

α
n ⊆ H .

Therefore,
A ∈ (Hα

0 ∩ . . . ∩H
α
n ,U) ⊆ (Hα,U).

Thus, any element of the subbasis r(t) of τ(t) is a union of finite intersections of elements of the set r(s),
which means that this set is also a subbasis for τ(t).

Example 3.17. Below we give some family-Borel topologies of class α on Bα(Y,Z).
(1) For every y ∈ Y we set

GZ
α (y) = {A ∈ GZ

α (Y) : y ∈ A}.

Let τ be the topology on GZ
α (Y) for which the family of all sets GZ

α (y), where y ∈ Y is as subassis. By Proposition 3.15
the set

{(GZ
α (y),U) : y ∈ Y, U ∈ O(Z)}

is a subbasis for t(τ). It is easy to see that
(GZ

α (y),U) = ({y},U),

for every y ∈ Y and U ∈ O(Z). Therefore, t(τ) = tαp , which means that the point-Borel topology of class α is a
family-Borel topology of class α.

(2) LetM ⊆ P(Y). The tα
M

topology on Bα(Y,Z) is the one having all sets

(M,U) = { f ∈ Bα(Y,Z) : f (M) ⊆ U}

as subbasis, where M ∈ M and U ∈ O(Z).
For every M ∈ M we set

GZ
α (M) = {A ∈ GZ

α (Y) : M ⊆ A}.

Let τ be the topology on GZ
α (Y) for which the family of all sets GZ

α (M), where M ∈ M is as subassis. By Proposition
3.15 the set

{(GZ
α (M),U) : M ∈ M, U ∈ O(Z)}

is a subbasis for t(τ). It is easy to see that
(GZ

α (M),U) = (M,U)

for every M ∈ M and U ∈ O(Z). Therefore, t(τ) = tα
M

, which means that the topology tα
M

is a family-Borel topology
of class α.

Proposition 3.18. LetHα be a subset of GZ
α (Y) and U ∈ O(Z). Then,(

(Hα,U),U
)
⊆Hα.

Proof. We have (
(Hα,U),U

)
= { f−1(U) : f ∈ (Hα,U)} = { f−1(U) : f−1(U) ∈Hα

} ⊆Hα.
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Proposition 3.19. LetHα be a subset of Bα(Y,Z) and U ∈ O(Z). Then,(
(Hα,U),U

)
⊇ H

α.

Proof. Let f ∈ Hα. Then, f−1(U) ∈ (Hα,U) and, therefore, f ∈
(
(Hα,U),U

)
.

Proposition 3.20. LetHα be a subset of GZ
α (Y),Hα be a subset of Bα(Y,Z), and U ∈ O(Z). Then,((

(Hα,U),U
)
,U

)
= (Hα,U)

and ((
(Hα,U),U

)
,U

)
= (Hα,U).

Proof. By Proposition 3.18 we have
(
(Hα,U),U

)
⊆Hα and, therefore,((

(Hα,U),U
)
,U

)
⊆ (Hα,U).

Also, by Proposition 3.19 forHα = (Hα,U) we have
((

(Hα,U),U
)
,U

)
⊇ (Hα,U). Hence,((

(Hα,U),U
)
,U

)
= (Hα,U).

Now, by Proposition 3.19 we have
(
(Hα,U),U

)
⊇ H

α and, therefore,((
(Hα,U),U

)
,U

)
⊇ (Hα,U).

Also, by Proposition 3.18 forHα = (Hα,U) we have((
(Hα,U),U

)
,U

)
⊆ (Hα,U).

Thus,
((

(Hα,U),U
)
,U

)
= (Hα,U).

Definition 3.21. Let τ be a topology on GZ
α (Y) and t be a topology on Bα(Y,Z). The pair (τ, t) is called a pair

of mutually dual topologies of class α if τ = τ(t) and t = t(τ).

Proposition 3.22. Let τ0 be a topology on GZ
α (Y) and t0 a topology on Bα(Y,Z). Then,

t(τ0) = t
(
τ
(
t(τ0)

))
and

τ(t0) = τ
(
t
(
τ(t0)

))
.

Therefore,
(
τ
(
t(τ0)

)
, t(τ0)

)
and

(
τ(t0), t

(
τ(t0)

))
are pairs of mutually dual topologies of class α.

Proof. The t(τ0) topology on Bα(Y,Z) has as subbasis all the sets of the form (Hα,U), where Hα
∈ τ0 and

U ∈ O(Z). Moreover, we observe that the topology t
(
τ
(
t(τ0)

))
on Bα(Y,Z) has as subbasis all the sets of the

form
((

(Hα,U),U
)
,U

)
, whereHα

∈ τ0 and U ∈ O(Z). By Proposition 3.20 we have t(τ0) = t
(
τ
(
t(τ0)

))
. Similar

we can see that τ(t0) = τ
(
t
(
τ(t0)

))
.
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