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Abstract. In this paper we investigate the connection between the class SV; of slowly varying sequences
(in the sense of Karamata) and the slow equivalence, strong asymptotic equivalence, selection principles
and game theory.

1. Introduction and results
Real functions f, g : [a, +00) — R, (a > 0), are mutually inversely asymptotic, in denotation f(x) ~ g(x), as

x — +oo (seee.g. [1,5,7]), if for each A > 1, there is an xg = x¢(A) > a such that the inequality

£(3) < o0 < s, )

is satisfied for each x > xg.
In particular, real functions f, g : [a, +00) — (0, +00), (a > 0), are mutually slowly equivalent (see e.g. [8]),
in denotation f (x)ig(x), as x — +oo, if
o £ _

x—lgloo g( x)

1 (2)

and

g(Ax)
o fO0)

hold for each A > 1.
Sequences of positive real numbers (c,)nen and (dp)nen are mutually slowly equivalent, in denotation
Cy X dy, asn — +oo, if

1 3)

C
lim Anl _

n—+00

1 4)

n
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and

d
lim [An]
n—+oo  Cy

=1 5)

hold for each A > 1.
A measurable real function f : [a, +00) +— (0, +00), (a > 0) is slowly varying in sense of Karamata (see
e.g. [9]) if

A

lim f(Ax) =
x—+o0 f(x)

holds for each A > 0. The set of all these functions is denoted by SV. The class SV is very important in

asymptotic analysis (see [12]).
A sequence of positive real numbers ¢ = (c,)nen is slowly varying in sense of Karamata (see e.g. [1]) if

1, (6)

. ClAn
lim 241 —
n—+eo  Cy

1, 7)

holds for each A > 0. The set of all these sequences important in asymptotic analysis is denoted by SV (see
[1D-

In this paper the set of all positive real sequences will be denoted with 5 (see e.g. [2]).

Proposition 1.1. Let sequences ¢ = (cy)nen and d = (dy)new e elements from 5. If ¢, 2d, asn — +oo, then
c€SVsandd e SV,.

Proposition 1.2. Relation ~ is a relation of equivalence in SV.
The next definition is well-known definition of a;-selection principles (see e.g. [11]).

Definition 1.3. Let A and B be nonempty subfamilies of the set 5. The symbol (A, B),i € {2, 3,4}, denotes
the following selection hypotheses: for each sequence (A;,),cn of elements from A there is an element B € 8
such that:

1. ax(A, B): the set Im(A,)) N Im(B) is infinite for each n € IN;

2. as3(A, B): the set Im(A,,) N Im(B) is infinite for infinitely many n € IN;

3. ay(A, B): the set Im(A,) N Im(B) is nonempty for infinitely many n € IN,
where Im denotes the image of the corresponding set.

We need also the definition of an interesting game related to the «, selection principle (see e.g [11]; see
also [4]).

Definition 1.4. Let A and B be nonempty subfamilies of the set 5. The symbol G,,(A, B) denotes the
following infinitely long game for two players who play a round for each natural number n. In the first
round the first player plays an arbitrary element A; = (Ay)jen from A, and the second one chooses an
elements from the subsequence y,, = (A1, (j)jen of the sequence A;. At the k* round, k > 2), the first
player plays an arbitrary element Ay = (A ;)jen from A and the second one chooses an elements from the
subsequence v, = (Ax,(j))jen of the sequence Ay, such that Im(r«(j)) N Im(r,(j)) = @ is satisfied, for each
p < k—1. We will say that the second player wins a play A1, y,; . . .; A, Yr,; . . . if and only if all elements from
the Y = Uken Ujen Ak, (j), With respect to second index, form a subsequence of the sequence y = (yim)men € B.

Remark 1.5. Let sequence ¢ = (c;)nen € SVs. We will introduce the next set

[c]s = {d = (dy)nen € SVs| ¢y 2d,, asn— +oo}.
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Proposition 1.6. The second player has a winning strategy in the game Gy, ([cs, [c]s) for each fixed sequence c € SVs.
Corollary 1.7. The selection principle a([cls, [c]s) is satisfied, where the sequence c € SV is given and fixed.

Remark 1.8. (1) From Corollary 1.7 and [2] it follows that the selection principles a;([c]s, [c]s) are satisfied
for i € {3,4}, where the sequence c € SV is arbitrary pre-selected and fixed.

(2) From the proof of Proposition 1.6 we have that ¢, ~ d,, as n — +oo, is equal to ¢, 1d, asn — 400,
whenever sequences ¢ = (¢;)nen and d = (dy)nen belong to the class SVs. (The symbol ~ denotes strong
asymptotic equivalence (see e.g. [1])).

(3) The assertion of Corollary 1.7 has already been given in [3], but in a different form. Actually, in [3]
only the sketch of the proof of this corollary is given.

The following is the definition of one of classical selection principles (see e.g. [10]).

Definition 1.9. Let A and 8 be a nonempty subfamilies of the set 5. The symbol S;,(A, B) denotes the next
selection hypothesis: for each sequence (A,)nen from (A there is a sequence B € 8 which consists of some
numbers from the double sequence (4,),en such that sequences B and (A,).en have finitely many common
elements for each n € IN.

In the following definition we define a new interesting two-person game.

Definition 1.10. Let A and B be a nonempty subfamilies of the set 5. By G}m (A, B) we denote the following

infinitely long game for two players: In the first round the first player plays element A; € A, and the second
player chooses ki (k1 € IN) elements from the sequence Ay, i.e. elements b1y, b1y, . .., b, . At s™ round, s > 2,
the first player chooses an element A; € A, and the second player responses by choosing k;_,, (k_; € INU{0})

elements from the sequence A,_1, i.e. bs_1k,_,+1, bs—1k 42, - -, Us—1k, e and kéh element from the sequence
A, say bg,. If we form the sequence (b;):en from such chosen elements

bii, b, oo baky, oo Oso1k g, Dsmak o bsm w2, - -+ bsmak ke Bsks e
then we say that the second player wins a play
A, bin, b, g S Asy bsokg bsoak g1, bsmak ke Bk
if the sequence (b;)ien belongs to B.

Proposition 1.11. The second player has a winning strategy in the game G%, ([cls, [c]s) for each fixed ¢ € SV.

An important game, denoted by Ghin (A, B), was considered in [6]. The game Ghin (A, B) introduced in
the previous definition is a special case of the game G}m (A, B).

Corollary 1.12. The second player has a winning strategy in the game G*;. ([cls, [c]s) for each fixed ¢ € SV.

in
Remark 1.13. From the previously mentioned we have that the selection principle Sy ([c];, [c]s) is satisfied
for each fixed sequence c € SV.

2. Proofs of the results

Proof of Proposition 1.1. Firstly, we have

o ] c o dqaga R ot (P S 0
lim 28 = fim 2 gy SO gy, O
n—teo Cy n=teo dAl-1n ot Oy no+eo A1

1=1-1=1,

since[)\]—1>1and[/\+_l>1,for)\23.



V. Timotic et. al. / Filomat 29:1 (2015), 7-12 10
Now, let us observe the function cy, for x > 1, where x is real number. Let ¢ > 1. We will prove that
there exists an interval [A, B] € (3,4), (A < B), depending on ¢, such that the 1nequahty - < [C" < ¢ holds
uniformly for A € [A, B], for sufficiently large n € IN. Hence, we will define 11, (1, € ]N) as follows

1, if;< W]<e for each n € IN;

c
ny = n

ClAn 1 .
Wl s eor @ < =L otherwise,
€

1 + max {n eN
Cn Cn

for each A € (3,4). Note that 1 < 11, < +co0.
Also, we will define a sequence (Ai)ren Of sets Ay = {A € (3,4) | ny > k}, k € IN. This is a non-increasing
sequence which satisfies that (5] Ay = @. Not all sets from this sequence are dense in (3,4), i.e. there
exists a set Ay for some k € IN which is not dense in (3,4). To prove the previously mentioned we must,
firstly, emphasize that at least one of the two following inequalities is true: % > C[(Cn"_ll)/\] or C[(Cm_ll)}\] > ¢,
ny— ny—

for each A € Ay and for fixed k € IN. Also, there exists 6, > 0 for which at least l)ne of the f\ollowing
1 > Clon-v - _ Clon-12] or Clon=DA - _ -] > ¢, for each t € [A,A + 0,). Since,
& Cn/\—l Cn,\—l Cn,\—l Cn,\—l

from inequality n; > (ny — 1) + 1 > k we obtain that t € Ay, for this k. Moreover, from A € Ay we have
that (A, A + 0r) G Ax. Therefore, if the set Ay is dense in the interval (3, 4), then the set Int Ay is also dense
in the interval (3,4). If we assume that each set Ay, (k € IN) is dense in (3,4) we obtain that (Int Ay)ken is
a sequence of dense and open sets in (3,4), also, and all of these sets are of the second category in (3,4).
Consequently, (/5] Int A is a dense set in (3,4), so it is nonempty. That is a contradiction. Hence, there is a
set A,,, for some ny € IN, which is not dense in (3,4) and there is an interval [A, B] ¢ (3,4)(A < B) such that
[A,B] € (3,4)\ Ay, = {A € (3,4) | ny < np}. Now, we have that n, < ny, for each A € [A, B], and from that it
ClAn] Caxl _ I Clul]

inequalities is true:

1
follows - < < ¢, foreachn > ny > ny and A € [A, B]. Also, it holds that — , for each
3 Cn Clx] Clulx]] Clx]
A > 12 and sulfficiently large x > xo, where t = t(x) € [A,B] and u = A +B
1 1
Finally, we obtain that inequalities lim sy >--1=-and lim L) < ¢e-1=c¢aretrue, foreach A > 12,
oo Ol € Gt

o
where ¢ > 1is arbitrary and pre-selected. Therefore, we have that lim M = 1is satisfied, for each A > 12,

xX—+00 C[r
and the function cfy}, x > 1is the element of the class SV (see e.g. [1]). The sequence (c,)en is the restriction
of this function to IN, so it is an element of the class SV;. The proof for the sequence (d,)nen is analogous.
This completes the proof. m]

Proof of Proposition 1.2.

I —1is satisfied, for each sequence ¢ = (cy)new € SV

1. (Reflexivity) The asymptotlc relation lim -

n—+oo0  Cp
and A > 1. Hance, ¢, ~ c,, as n — +00.
2. (Symmetry) Relation ~ is symmetric in §, therefore it is symmetric in SV, ¢ S, also.

3. (Transitivity) Let us assume that c, Xd, asn — +oo, and d, X e,, as n — +oco are satisfied, for
given sequences ¢ = (Cx)ueN,d = (dn)nen and e = (en)neN from the class SV;. Therefore, we obtain

d An [\F
C C n .
that lim Anl _ lim d 1 lim AU = lim [(]— 1=1-1=1, for each A > 1, since
n—+oo @, n—-+oco d[ﬁ”] n—+o0 @y n—+o0o d[ﬁn]
Cltn]

d[\/Xn] ~ C[yA 851 = +09, and lim = 1is uniform limit, for each t € [a,b] ¢ (0, +0), (a < b), (see

n—+co Cy

e.g. [1]) and consequently for each t € [ @ , VA], and for some A > 1, which is arbitrary pre-selected

€[An]
and fixed. In an analogous way it can be proved that lim [c -
n—-+e0  Cy

=1, for each A > 1. Hence, we obtain
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that ¢, % e,, as n — +co. Finally, we will prove that d[ Vinl ™ S is satisfied, as n — +oo, for A > 1.

d d
Namely, it holds that Tim -2 — figm 041 jip, o

n—+oo c[ Vin] n—-+00 ” n—+0o C[ Van]
proof. O

=1-1=1, for A > 1. This completes the

Proof of Proposition 1.6. Let ¢ = (c4)nen be an arbitrary and fixed sequence from SV and let [c]; = {d =
(dn)nen € SVl dy % ¢y, as n — +o0}.

(1% step) Let ¢ = (cu)nen € SVs and d = (dy)uen € SV, and ¢, X d, as n — +co. Hence, we obtain

.. cC . C . c . .
lim < = lim 22 lim & = 1. lim = =1-1=1foreach A > lie. ¢, ~dy, asn — +oo. Inversely,
n—+oo (1, n—+oo A+ CPy] n—+oo C[An
Cn
. ClAn] . ClAn] . Cp
letc = (cp)nen € SVsand d = (d,,)en and ¢, ~ d,,, asn — +oo. We have that lim = li lim — =
n—+oo n n—+oo Cn n—+oo dn

d
1-1 = 1is satisfied, for A > 1. In the similar way, we can prove that lim nl 1 holds, for A > 1, so we

n—+oo Cn
obtain ¢, X d, as n — +oo.

Qm step)(1* round) Let sequence ¢ = (cy)uen € SV and the class [c]; be given. Also, let o be the strategy
of the second player. First player chooses the sequence x1 = (x1,j)jex € [c]s arbitrary. Then the second player
chooses the subsequence o(x1) = (x1,(j)jen Of the sequence x; where Im(k;) is the set of natural numbers
which are divisible with 2 and not divisible with 22.

(" round, i > 2) The first player chooses the sequence x; = (x;;)jen € [c]s arbitrary. Then the second
player chooses the subsequence o(x;) = (xxj))jen of the sequence x;, so that Im(k;) is the set of natural
numbers greater or equal to j;, so that they are divisible with 2/, and not divisible with 21, and j; exists in

1 xi 1 S
IN (because of the 1%step of this proof) and it is given by: 1 — 5 < % <1+ 50 for each j > ji. Now, we
ij
will observe the set Y = Ujen Ujen X (j) of positive real numbers indexed by two indexes. Elements of the
set Y we can consider as the subsequence of the sequence y = (V)men given by:

Xik (), if m = ki(j) for some i, j € IN;
Ym = .
X1,m, otherwise.

By the construction of the sequence y we have that y € 5. Also, the intersection between y and x;, (i € N) is
an infinite set of common elements. Let us prove that y,, ~ x1,, as m — +o0.

1
Let € € (0,1). Let us choose the smallest natural number i satisfying 5 <e¢. Foreachke{l,2,...,i—1}

.o . . X1,j . . . . . . .
there is j; € IN so that inequality 1 - ¢ < x_] < 1+ ¢ is satisfied, for each j > ji. Let j* = max{fj,..., ji_;}.
k,j
X ]
Therefore, the inequality 1 — ¢ < —m < 1+ ¢ is satisfied, for each m > j*. Then, from x1,;, ~ Y, as m — +oo

m
we obtain v, ~ ¢y, as m — +0o, since ¢ € (0, 1) is arbitrary. From the 1¥'step of this proof we obtain that
Ym 2 ey, as m — 400, ie. y € [c]s. This completes the proof. O

Proof of Proposition 1.11. Let o be the strategy of the second player.
(1 round) Let the first player choose an arbitrary sequence x; = (x1,j)jen from the class [c];. Then the

1 1
second player plays o(x1) = x1,1,X12,..., X1k, Where 1 — 3 < xc—k <1+ 3 holds, for each k > k;. This is
1k
possible according to the 1%step of the proof of Proposition 1.6.
(" round, i > 2) Let the first player choose an arbitrary sequence x; = (x;;)jen from the class [c];. Then
Ck

1 1
the second player plays o(X;) = Xi—1 4 +1, Xi-1k_4+2/ - - s XimA ok Xiis where 1 — 5 < . <1+ 5 holds,
ik
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for k > ki, and k; = 1 + ki-1 + ki_;. Thus, the second player forms the sequence y = (Yu)nen given by
X1, X1y -7 X2)ps - - - XiJ, - - . Which belongs to § and has a finite number of elements in common with

) 1 .
each of the sequences x;,i € IN. Let ¢ € (0,1). Then 5 < ¢ holds, for some i € IN. Therefore, the inequality

c .
1-e< 2 <1+eholds, foreachm > 1+ +kj +k, +---+ki_, and we have that c,, ~ y;, asm — +o0is

m
true. From the 1¥step of the proof of Proposition 1.6, we obtain y € [c];. This means that the second player
wins using the strategy o. This completes the proof. m]
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