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Eigenvalue Asymptotics for the Schrodinger Operator with a Matrix
Potential in a Single Resonance Domain

Sedef Karakili¢?, Setenay Akduman?®

?Department of Mathematics, Faculty of Science, Dokuz Eyliil University, Tinaztepe Camp., Buca, 35160, Izmir, Turkey

Abstract. We consider a Schrédinger Operator with a matrix potential defined in L}'(F) by the differential
expression

L(@()) = (=A + V(x)¢(x)
and the Neumann boundary condition, where F is the d dimensional rectangle and V is a martix potential,

m > 2,d > 2. We obtain the asymptotic formulas of arbitrary order for the single resonance eigenvalues of
the Schrodinger operator in L' (F).

1. Introduction

We consider the Schrodinger Operator with a matrix potential V(x) defined by the differential expression

L)) = (A + V(x))o(x) (1)
and the Neumann boundary condition

d

£|QF =0, @)

in L7'(F) where F is the d dimensional rectangle F = [0,a1] X [0,a2] X ... X[0,a4], a1, a2, . . ., a4 are arbitrary real

numbers, JF is the boundary of F, m > 2,d > 2, a% denotes differentiation along the outward normal
of the boundary JF, A is a diagonal m X m matrix whose diagonal elements are the scalar Laplace
J

— 2 2% 92 _ d . . .
operators A = sttt g X = (x1,%2,...,x4) € R, V is a real valued symmetric matrix

V(x) = (vij(x)),1,j = 1,2,...,m,v;j(x) € Ly(F), that is, VI (x) = V(x).

We denote the operator defined by (1)-(2) by L(V), and the eigenvalues and corresponding
eigenfunctions of L(V) by Ay and Wy, respectively.

The eigenvalues of the operator L(0) which is defined by (1) when V(x) = 0 and the boundary condition
(2) are | y |* and the corresponding eigenspaces are

E)/ = Span{q))/,l (x)/ q))/,Z(x)/ cecy q)y,m(x)}/
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wherey € Lt = (42, 0. MT)y . peezFJI0), k=1,2,...,d),
@, i(x) = (0,...,0,u,(x),0,...,0), j=1,2,...,m u,x)= cos%xlcos%xz---cos%xd, up(x) = 1 when
y =1(0,0,...,0). We note that the non-zero component u, (x) of @, ;(x) stands in the jth component.

4D \where u(F) is

A1

It can be easily calculated that the norm of u,(x), y = (!, 7,...,7%) € L= in Ly(F) is
the measure of the d-dimensional parallelepiped F, | A, | is the number of vectors in

r
Ay={a=(o¢1,a2,...,ad)e > =l k=1,2,...,d},

7

W\ ag

g_{gﬁzﬁz”.zﬂy,uez k=12,...,d}.

Since {u, (x)}yeﬂ is a complete system in L,(F), for any q(x) in L,(F) we have

1A, |
X) = ——(g, u,)u,(x), 3
9(x) ;ﬂ®wyuu ©)
YE€T
where (-, -) is the inner product in L, (F).
In our study, it is convenient to use the equivalent decomposition (see [8])
(4)

q(x) = Z %/“)/(x)/

r
V€3

where g, = ﬁ(q(x), u,(x)) for the sake of simplicity. That is, the decomposition (3) and (4) are equivalent

forany d > 1.
Each matrix element v;j(x) € L(F) of the matrix V(x) can be written in its Fourier series expansion

05(X) = Y iy () (5)
yes
L] (vijuy)
fori,j=1,2,...,m where v;;, = I”’/(P)J .
We assume that the Fourier coefficients v;j, of v;j(x) satisfy
Y 1o P+ 1y ) <o, (6)
ye:
foreachi,j=1,2,...,m, I> % + d + 3 which implies
@)

o) = ) vy, () + O(p),
yer+9(p®)

where I'*0(p*) = {y € £ : 0 <| y |< p*}, p = —d, a < 755, p is a large parameter and O(p™"*) is a function in

L,(F) with norm of order p™*. Furthermore, by (6), we have

M,-]-EZW,-W < oo, forall i,j=1,2,...,m. (8)

r
V€3
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Notice that, if a function q(x) is sufficiently smooth(q(x) € Wé (F )) and the support of

Vg(x) = ( T j}i ., ;qu) is contained in the interior of the domain F, then g(x) satisfies condition (6) (See
[7]). There is also another class of functions g(x), such that g(x) € Wé(F),

q(x) = Z‘ %/ u)/’ (X),

y'el

which is periodic with respect to a lattice Q = {(ma1, moay, ..., myag) : my € Z,k =1,2,...,d} and thus it also
satisfies condition (6).

One of the essential problems related to this operator L(V) is how the eigenvalues |y|? of the unperturbed
operator L(0) is affected under perturbation. We study this problem by using energy as a large parameter,
in other words when |y|~ p, that is, there exist positive constants c1, ¢, such that cip < [y|< c2p, ¢1, c2 do
not depend on p and p is a big parameter. In the sequel, we denote by ¢;,i = 1,2,..., the positive constants
which does not depend on p.

For the scalar case, m = 1, a method in which for the first time the eigenvalues of the unperturbed
operator L(0) were divided into two groups: non-resonance ones and resonance ones was first introduced
by O. Veliev in [16] and more recently in [17], [18] to obtain various asymptotic formulas for the eigenvalues
of the periodic Schrédinger operator with quasiperiodic boundary conditions corresponding to each group.
By some other methods, asymptotic formulas for quasiperiodic boundary conditions in two and three
dimensional cases are obtained in [5], [6], [11], [12] and [7]. When this operator is considered with
Dirichlet boundary condition in two dimensional rectangle, the asymptotic formulas for the eigenvalues
are obtained in [7]. The asymptotic formulas for the eigenvalues of the Schrodinger operator with Dirichlet
or Neumann boundary conditions in an arbitrary dimension are obtained in [1], [8] and [9]. For the matrix
case, asymptotic formulas for the eigenvalues of the Schrédinger operator with quasiperiodic boundary
conditions are obtained in [12].

As in [16]- [18], we divide R? into two domains: Resonance and Non-resonance domains.

In order to define these domains, let us introduce the following sets:

Leta < ﬁ,ak =3a,k=1,2,...,d—1and

Vi(p™) = {x e R |IP=lx + bP2| < p1},

El(Pm/p) = U Vb(Pal)/
bel'(pp®)

U(p™,p) = R?\ E1(p™, p),

k
Ex(p™,p) = U (ﬂ Vyi(P"k)),

V1,72, V€L (pp*) \i=1

where I'(pp*) = {b € E :0<|bl<pp } and the intersection ﬂ V,.(p™) in Ey is taken over y1, )2, ..., yx which

are linearly independent vectors and the length of y; is not greater than the length of the other vector in
' y:R. The set U(p™,p) is said to be a non-resonance domain, and the eigenvalue |y|? is called a non-
resonance eigenvalue if y € U(p™, p). The domains V,(p™), for b € I'(pp®) are called resonance domains and
the eigenvalue |y[? is a resonance eigenvalue if y € V,(p™).

As noted in [17] and [18], the domain V,(p*) \ E, called a single resonance domain, has asymptotically
full measure on V;(p*), that is, if

200 —aq + (d+3)a < 1and ap > 2 )
hold, then

u((Vu(p™) \ E2) N B(p))
1 (Vi(p*) N B(p))

—>1,asp—>oo,
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where B(p) = {x e R : |xI< p}, for a large parameter p >>land E, = U (V),1 (™) N Vyz(paz)). Since

y1,72€0(pp*)
a < 755, the conditions in (9) hold.

When m > 2, in [3], in an arbitrary dimension, the asymptotic formulas of arbitrary order for the
eigenvalue of the operator L(V) which corresponds to the non-resonance eigenvalue |y|? of L(0) are obtained.
In this paper, we obtain the high energy asymptotics of arbitrary order in an arbitrary dimension (d > 2)
for the eigenvalue of L(V) corresponding to resonance eigenvalue [y|*> when y belongs to the single resonance

domain, thatis, y € Vs5(p*) \ Ep, where 0 is from {ej, ey, ..., ¢4} and e; = (ﬂﬂ],O, ... ,O), ce,lq = (O, ey, ﬂﬂd)

2. Eigenvalues In a Special Single Resonance Domain

Now let Hs = {x € R : x-0 = 0} be the hyperplane which is orthogonal to 6. Then we define the following
sets:

Qs={weQ:w-6=0}=QnNHs;,
r r
I's = —:y-6=0}==NH;.
s={ye5:y-0=0l=50NH
Here “ - 7 denotes the inner product in R?. Clearly, for all y € 5, we have the following decomposition

y=jo+BB=@,...,p)els jeZ (10)

Note that; if y = jo + B € V5(p*)\E2, then
1
lil<r, 1 =pM62+1, |B> gp‘”, Yk :ep # 0. (11)

We write the decomposition (3) of v;;(x) as

05(0) = ) vty () = pi(9) + Y vyt (¥) (12)
y'es yeL\6R
where
pij(s) = Z Pijn COSNS, Pijn = Vijns), S =X 0, i,j =1,2,...,m. (13)
nezZ

In order to obtain the asymptotic formulas for the single resonance eigenvalues |y[> (y € Vs(p™) \ E2),
we consider the operator L(V) as the perturbation of L(P(s)) where L(P(s)) is defined by the differential
expression

Lu = —Au + P(s)u (14)

and the Neumann boundary condition

J
%IBF =0,
P@) = (py(®), i/j=1,2,...,m. 5)

It can be easily verified by the method of separation of variables that the eigenvalues and the
corresponding eigenfunctions of L(P(s)), indexed by the pairs (j,f) € Z x Ts, are Ajg = Aj+Ip> and

Xjp(x) = ug(x) - @j(s) = (uﬁ(x)(pﬂ, ug(X)Pj2, -, uﬁ(x)(pjm), respectively, where 8 € I's, A;is the eigenvalue and
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Pj(s) = ((p i1(8), @j2(8), ..., @ ]v,m(s)) is the corresponding eigenfunction of the operator T(P(s)) defined by the
differential expression

2

T(P(s))Y = — ’g Y’ +P(s)Y (16)

and the boundary condition
Y (0) =Y (n) =0. (17)

The eigenvalues of the operator T(0), defined by (16) when P(s) = 0 and the boundary condition
(17), are |ndf*= I%I2 with the corresponding eigenspace E, = span{C,1(s), Cn2(s), ..., Cum(s)}, where
Cni(s) =(0,...,cosmns,...,0), n € Z* U {0}. It is well known that (For example, see in [15]) the eigenvalue A;
of T(P(s)) satisfying |A; — | jOPP|< sup P(s), satisfies the following relation

1
A= idP+0( — . 18
i = 1jol (|J<5|) (18)

By the above equation, the eigenvalue [y[*= |B[*+|j6]* of L(0) corresponds to the eigenvalue |B]*+A; of

L(P(s))-
Note that, we denote the inner product in LY (F) by -, -) which is defined by using the inner product (-, -)
in L,(F) as follows:

f&) = (AG), -, fu(®)), 9(x) = (91(x), ..., gu()) € Ly(F) = (f,9) = (f1,90) + - + (f, Gm), (19)

forx e R% d > 1. Also for any f € LY'[0, rt], since {Cy iluez+uj0), i=1,2,..,m 18 @ complete system, by (19) we have
the decomposition

= Y, Y 206, Cu) Cuil)
neZ=0{0} i=1
2 2
= = (f1(s), cosns)cosmns, ..., = (fu(s), cosns) cosns|. (20)
ne;){m Tt 4 neZZ*L‘J[O} n !

On the other hand, by equivalence of the decompositions (3) and (4) (q(x) = g(s) € L}'[0, ], when d = 1), it
is convenient to use the decomposition

£6)= 1Y 2 (F6),Cuafs) Coi)

nezZ i=1

In the sequel, for the sake of simplicity, we use the brief notation (f(s), C,i(s)) instead of < (f(s), C,(s)),
since the constants which do not depend on p are inessential in our calculations.

The system of eigenfunctions { Xj’ﬁ}jﬁ is complete in LJ'(F). Indeed; suppose that there exists a non-zero
function f(x) € L7'(F) which is orthogonal to each xjgs, j € Z, p € Ts. Since Cy;, i = 1,2,...,m can be
decomposed by ¢, by (10), and the definition of x;z, the function ®;, = ug(x)-C,;,i=1,2,...,m can be

decomposed by the system { )(j,ﬁ} . Thus, the assumption <)(j,,3(x) , f (x)> =0forje Z, B €TIsimplies

j€Z,BETs
that < flx), qb,-,),> =0,Vye % andi =1,2,...,m, which contradicts to the fact that {CDZ',V(x)} is a

)/Eg ,i=1,....,m
basis for L}'(F).
To prove the asymptotic formulas, we use the binding formula

(An =i {¥n s xig) = (¥n, (V = P xin) (21)
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for the eigenvalue, eigenfunction pairs Ay, Wn(x) and Ag, x of the operators L(V) and L(P(s)), respectively.
The formula (21) can be obtained by multiplying the equation L(V)Wn(x) = AxyWn(x) by x;s and using the
facts that L(P(s)) is self-adjoint and L(P(s))x s = Ajg Xp-

Now our aim is to decompose (V — P) x;3 with respect to the basis {X].,/ﬁ, }j’EZﬁ’er . We use the same
] o

approach as the one in [9]. This paper contains some additional technicalities:

According to this method, in this paper, it is important to have a suitable Fourier decomposition of vector
valued functions to iterate the appropriate binding formulas. For such a decomposition, while studying
the decompositions of each component we also need to give a connection with the related binding formulas
which is done by (29), Lemma 2.1., (40) and (41). Now the details are as follows:

By (12) and (7), we have

o) = pis) = Y dij(Bi,m)cosms ug, (x) + O(p7), (22)
(B1,m)el” (p%)

where

T'(p®) = {(B1,m1) : B1 € Ts\{0}, 11 € Z, 116 + By € T(p%)}

and
1
dl-]-(ﬁl,nl) = @ vij(x) COS 118 uﬁl(x)dx.
F
For (61,m) € r (pp*), we have [n16 + B1|< pp® and since f; is orthogonal to 6,
1

IBil< pp®, |ml< pp® Iml< 3 (23)

(see (11))
Clearly (see equation (22) in [9]), we have, foralli,j =1,2,...,m,
Z di; (B1,m1) (cos n1s) ug, (x)ug(x) = Z dij (B1,m1) (cos n1s) ug, +p(x), (24)
(Brm )<l (p%) (Brm)er’ (p%)

forall p €T, satisfying |g¥| > 1p™, Vk : e # 6.
By using the definition of x;g, P(s), the decompositions (22) and (24), we have

V=P)xjs = Z Z (cu (B1, 1) (<08 118) () hgepy - - -, Aok (1, 1) (OS 115) @ (514, )
(Brm)er (p) k=1
+0 (p™). (25)
Now we consider the following decompositions:
Pik(s) = Z ((p]»,k, cos ns) cos ns, (26)
nez

Z ((Pj,k/ COSs TlS) . COSMn1S.cosns
nez

cos 118 (s)

Z ((p]-,k, cos ns) .%[cos(nl + n)s + cos(ny — n)s]

nez

ix,cosns).cos(ny + ns, (27)
Z (‘Pﬂ )

nez
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foreachjeZ,k=1,2,...,m.
On the other hand; the decomposition of ¢;(s) = (go i1(8), v Pim (s)) with respect to the basis
{Cni(s) = (0,0,...,cosms,0,...,0)},cz,-1. IS given by

Pi(s) = (@1 Pj2 -, Pjm)
Y Y (91(6), Cuifs) YCoi)

neZ i=1
= (Z( @j(s),Cua(s) Ycosms, ..., Z( @j(8), Cum(s) ycosns|. (28)
nezZ nezZ

Thus, (26), (27) and (28), gives
Pjk(s) = ZZ< @j(s), Cui(s) ) cosns (29)

cos 118 Qjk(s) = ZZ< @i(s), Cui(s) ) cos(n +ny)s.

Lemma 2.1. Let v be a number no less than r1 (r > r1) and j, n be integers satisfying |j|+1 < r, [n|> 2r. Then

(@i(9), Cuifs) )= O(p™0%) Vi=1,2,...,m (30)
and
9i)= Y. Y {0i(), Cui(s) ) Cuils) + O(p™027). (31)
In|<2r i=1

Proof. We use the following binding formula for T(0) and T(P(s))

(A = 116P) (@1(5), Cui(s)) = (@;(5), PS)Ci) (32)

and the obvious decomposition, which can be obtained by definition of P(s) and (7),

P(s)Ci(s) Z Plkn, COS11SCOSTS, . .., Z Prikn, COS 18 cosns | + O (|n6|—<’—1>)

< 0| < 0|
Iy 51< 2 Iy 5|< 2

= Z Pkny COS(1 = 11)s, ..., Z Dmikny COS(n —n1)s |+ O (|n5|—(l—1))

0 0
Ii16]< 221 In16]< 421

:i Y P Cuonyi8) + O (1m0l ). (33)

=1 | )< 1201

Putting above equation (33) into (32), we get

@6, Y Pt Cocanid + O 1n D)

b=1 )<

(A = 116P) (@(5), Culs))

m

Y Y P d@i(6), Com k() + O (1m0l 1) (34)

h=1 |n16\<%
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By assumption |n|> 2r and [jl+1 < 7, thus if |[n;0|< @ then |[(n — n1)0*—jl> ";—' which together with (18)
imply |A; —|(n — 11)0/[> c|nd|. So that in (32) if we substitute (1 — 111)6 instead of 15, we get

<(Pj(s)r P(S)Cn—nl,k>

i n—n = 35
<(P1(5)/ C 1,k(s)> A] — |(71 — n1)5|2 ( )
Now using (35) in (34), we get
m
Ptk (@ (5), P(5) Cpn, k(5)) (-
() = 1n0R) (p1(5), Cupls) = ¥ | ) +0(Ins[" ).
Ll (o)
Again putting (33) into the last equation, we obtain
U ptlkﬂl <(P](S)/ Z:’Z:l Zl 6| |”Tb‘ p[zkﬂz Cn—nl—nz,k(s»
(A = 16P) (@ j(s), Cag = Y Y, s +0(lno|=V)
= (4) = Itn = m)oR)
) Zm: y Prion ok (P (), oy k(5)) + O (jnd]~¢-D) 56
k=1 g 00l (A] - |(1’l - nl)élz)
Inpsl< 201

In this way, iterating p1; = [}] times and dividing both sides of the obtained equation by A; — [n5]?, we have

m

(PEOCuEN = Y

t ,tz,...,tpl =1 |7115|<@

[nd]
[n261< 50

+ O(Ind|~1) (37)

Z phkmptzknz o ptplknpl <§0], Cn—nl—...—npl ,k>
o (A = 1= my = ... = n)op)

Iy, S1< 57
where the integers 1, ..., 1, satisfy the conditions

|| B . ||
|”5|<E’ s=1,...,p1, lj+1< 5

These conditions and the assumptions |n|> 27, |j|+1 < r imply that

. n
ln—nq —...—ng-|jl> |—5|, s=0,1,2,...,p1.

This together with (18), give
1 1

=l == =n)OP o0 () = f(n = my = ... — ) 0P|

=0 (|n5|—2) (38)

fors =0,...,p1 — 1. Hence by (37), (38) and (8), we have
(@1(5), Cui(s)) = O (nd]"¢Y).

Since [n6|> 2r > r1 > 2p%, O (Inél‘("l)) = O(p~!~D*) from which we get the proof of (30).
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To prove (31), we write the Fourier series of ¢;(s) with respect to the basis {C,,1(s), ..., Cyu(s)lnez as
follows:

i) = ) (Pi(5), Cup())Crk(s)

nezZ

= Y (@5, Car@)Cukls) + Y, (@(5), Cur()Cus(s),

[nl<2r [n|>2r
From which together with (30), we get (31). O

Using the first relation (30) in Lemma 2.1 and (29), we also have

cos 115 Px(s) = Z (@j(s), Cux(s) ) cos(n+mn)s+O (p‘(l‘z)“). (39)

|n|<2r

Putting this last relation (39) into (25), we get
(V-=Pxjp =

Z Z Z (dlk (B, 1) @j(s) , Cux(s) ) cos(n +ny)sugyp,, ...,

(ﬁl,nl)er’ D) |n|<2r k=1

duic (B1,11)  9j(5) , Cu(5) ) cos(in + m)sug.p, ) + O (p7°). (40)
(note thatp=(1-d),d>2= Fﬁ < le. Hence O (p™*) + O(p‘(l‘m) =0(p) )
Now, in order to decompose (V — P)x ;s with respect to { Xjsf, ,ﬁ;} we consider the inner product
(V=P)xjp, x i 8 ), that is, by the definition of Xisi g and (40), the inner products
(cos(/n +11)S Ugsp, , ®; +]r;/t(s) ug ), t=1,2,...,m. Using the decomposition (29), instead of j, we substitute
j+J; to get

’
1

(cos(n +11)S Ugp, , (pjﬂ-;,t(s) uﬁ;) = [cos(n +11)S Ugp, , Z( gonrj;(s) , Gy 4(8) ) cos n's Uug

n'ezZ

Z( P, (8), Cy 4(s) )(cos(n + 11)s Ugp,, COS n's Ug )

,
1
7
n ez

Note that if ﬁl #B+pjor n' # n +ny then (cos(n + n1)s Ugyp, , COS n's uﬁ;) = 0. Thus,

0 ,if By#EB+PL or W EN+M
((p]-ﬂ.; (8) , Chami(s) )y , otherwise.

(cos(n +11)S Ugp, , (Pj+j'1,t(s) uﬁi) = {

Using the last equality and (40), we get

(V - P)X]/ﬁ = Z [ Z Z Z dik (nll ﬁl) <(P]/ Cn,k><m> X]’+j;,ﬁ+ﬁ1 + O(p—pa) (41)
jrez [nj<2r k=1 i=1

(Brm)er’ (p%)

Lemma 2.2. Let r be a number no less than v (r > r1), j,n and nibe integers satisfying |n|< 2r, |ni|< %rl and

ljl+1 < r, then

Y (@i Caid = O(p702%) Vi=1,2,...,m.
12
iy 1=6r
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Proof. By the binding formula (32) for T(0) and T(P(s)) we have
(Ajejs = 100+ 1)0P) (@1, Coem k) = @1y PS)Covem - (42)

If [j1|> 6r then the assumptions of this lemma imply ||j + ji|=|n + n1||> 5. Thus, using (42) and the fact that
Ajein = G+ 720 +O(\(]+h)bl) we get

((f)]+]1, n+n1 k)
|Z<§0]+;1/ nem k)= |Z‘ Ajajy = |(” + ”1)5I2|

ji=6r ji=6r

Using the decomposition of py(s) = <Z|115|<|r()\ V1,5 COS Iy S)+O(|r6|‘(l‘1)) and iterating the obtained formula

p1 = [4] times as in the proof of Lemma 2.1, we get

i Oty - - - Otyhebyo{ P s Conem =ty —..—1;)

) A@jrirs Corn = | (43)
|]d|Z>6f ];r |11§76| bty tp=1 H5:3|Aj+f1 —(+m—h—-...-L)oP
[l26]<[rd|
11,61<Iro|
Since |n|< 2r and |n1|< 511 < r [n + n1|< . Also,
n+n—L—...— < 3r and M,m—\(n+n11—11—...—ls)6\2| =0 (Irl‘z). Substituting this result into (43) and using
(8), we get the proof. [
By Lemma 2.2, the equation (41) becomes;
(V=P)xjp=0(p") + Z Z Z Z dix (1, B1) {Pj, CokXPjjr's Cn+n1,i>] Xjvf g
\/;\«,y |n|<2r k=1 i=1
(Brm)er’ (o)
m m
=0+ Y Y Y dic(m, B0 (@i CoiX@joi, cnﬂ,l,z-)]x,-ﬂl,ﬁwl,
Ijp |<6r [n|<2r k=1 i=1
(Brm1)er” (0%
that is,
V=Pig= Y. AGBj+juB+B)Xjsipes + O™, (44)
(ﬂl,jl)GQ(P“ﬁV)
for every j satisfying |j|+1 < #, where
Q(p®,6r) ={(j. p) : ljol< 6r, 0 < |Bl< p“},
AG B+ B+p)= Z Z szik (11, B) P, Cog )X @it jis Crny i) |-
nli(nlrﬁl)er/(P“) |n|<2r k=1 i=1
We need to prove that
Y, JAGB B+ <c (45)

(,31 i )EQ(P”‘,GV)
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By the definition of A (j, 8, j + j1, B + B1), dir (11, f1) and (8), we have

Yo |aGeuisep)s Y Y 0] Y ki ool ¥ [ Cormd

({il,jl)eQ(p”‘,ér) nl:(m,ﬁl)er’ (p) ik=1 [n|<2r [j1l<6r
< Z K@, Cu)| Z K@ s oy )| (46)
|n|<2r |j1l<6r

Now we prove that

Z K@i, Ca)| <5 and Z @40, Coremy,)| < 6 (47)
nez J1€Z
For this, let

A:{neZ | noP€ [Ajo1, Al }
and
B={jieZ | Ay €[In+n)oP -1, |n+m)sP+1] },

then it follows from (18) that the number of elements in the sets A and B are less than c;. So if we isolate
the terms with n € A and j; € B in the first and second summations of inequalities in (47), respectively,
appliying (32) to the other tems then using the facts

Y < ¥ L <
Lt ;= P Lt A7y, = [+ o]
we get (47), hence by (46), (45) is proved.
The expressions (44) and (21) together imply that

(A=) n, xpd = Y, A(BT +iuB +B) N, Xy app) + O, (48)
(B1.71)€Q(p67)
If the condition (iterability condition for the triple (N, j,f'))
IAN = Ay g |> c10 (49)
holds then the formula (48) can be written in the following form

Z A(]",ﬁ/,]" +j1,P +,31) ON S Xfjup+p)
AN=Aj g

YN, Xy g) = +O0(p™). (50)

(B1.j1)eQ(p=61)

Using (48) and (50), we are going to find Ay which is close to A;g, where |jl+1 < r1.For this, first in (48)
instead of j', ‘8/, taking j, B, hence instead of r taking r, we get

(Av=Aip)n, i = Y. AGBI+juB+BOEN , X + O, (51)
(Brj1)€Q(p? 6r1)

To iterate it by using (50) for j = j + j; and 8’ = B + p1, we will prove that there is a number N such that

1
IAN = Ajij pipi > 3 p*, (52)
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where |] + j1|< 7r1 = 1y, since A g and |j1|< 6r1. Then (j + j1, f + B1) satisfies (49). This means that, in formula
(48), the pair (j, ) can be replaced by the pair (j + j1, 8 + 1). Then, (48) instead of r taking r», we get

WN S Xjrjipp) =
Z A(G+juB+Puj+jr+jo,B+Pr+PB) YN, Xjtjtjrptpisps)

O(p™) +

AN — Ay :
(B2,j2)€Q(p? 612) N J*jiuB+pr

Putting the above formula into (51), we obtain

y A(jB. 1 BY)A(7 BY 2 B2) (N, 12, B2)

_ ) . — —pa
(An = Ajp) (N, j,B) = O(p™) + An = Apg

(53)

(B1.j1)<E(p™ 6r1)
(P2:12)<F(p® br2)

where ¢(N, ,f) = (Yn, Xjp), F = j+ 1+ ja+...+j and ¥ = B+ P1 + P2 + ... + Px. Thus, we are going to find
a number N such that c(N, j, §) is not too small and the condition (52) is satisfied.

Lemma 2.3.  (a) Suppose hi(x), ha(x), ..., hy,(x) € L}'(F) where py = [2%2] + 1. Then for every eigenvalue A ;g of
the operator L(P(s)), there exists an eigenvalue Ay of L(V) satisfying

(i) |AN — Ajpl< 2M, where M =(|V||,
(ii) |c(N, j, B)I> p~1%, where g = [% + 2]a,
(iii) 1c(N, j, B)P> 557 T2 o, P> s ln, il Yi= 1,2, po.
() Let y =+ jo € V(;(oz) and (B1, j1) € Q(p*,6r1), (Br, jx) € Q(p*, 61¢), where 1, = 7rr_q for k = 2,3,...,p.
Then fork =1,2,3,...,p, we have
3
ig = Appl> 5p% g (54)

Proof. (a) LetA, B, Cbe the set of indexes N satisfying (i), (ii), (iii), respectively. Using the binding formula
(21) for L(V) and L(P(s)) and the Bessel’s inequality, we get

Y NP =Y

NeA NgA
1

< —

~4M?

Wn, (V= P)xip)[
AN = Ajp

1
IV = Pl < -

Hence by Parseval’s relation, we obtain
. 3
DI BP > 7.
NeA

Using the fact that the number of indexes N in A is less than pd"‘ and by the relation N ¢ B =
lc(N, j, B)l < p™1%, we have

Y NP < ™o <,

NeA\B

since a < dfﬁ‘ On the other hand by the relation A = (A \ B) (A () B) and the above inequalities, we
get

1w

<Y N PHE= Y KN AR+ Y e, )R,

NeA NeA\B NeANB



(b)
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which implies
. 3 ., 1
Y, N ipP> - (55)
NeANB

Now, suppose that A(\B(C = 0, i.e., for all N € A B, the condition (iii) does not hold. Then by
(65) and Bessel’s inequality, we have

1 1 & m\f 1 hi \[
- < C N/ ./ 2 S _ , _l = —_— , _l
2 N;wl P N;mzm 12:1: <¢N ”hi”> 2> JZ:;N;TB <¢N ”hil|>
P2 2
1 hi 1
< — —| =z,
22 Z; mall 2
which is a contradiction.
The definition of A gives
Nig = Al = IBP +Aj = B+ B1 + .. + Bl — Al
>[I = 1B+ P1 + . + Bel 1 = A = Axll. (56)

The condition of the lemma (81, j1) € Q(p*, 671), (Br, jx) € Q(p*, 67¢) and the relation
B+ jo € Vs(p™) \ E; together with [j0] < ci1p™ (see (11)) and |j;6] < c12p™ (see (23)) imply that

p* < IIB +1joF = 1B = 176
<P = 1B Pl + cop™,  Pr+ ..+ B #0,
since f3, B1, ..., P are orthogonal to 6. That is, we have
I8P = 1Bl > c13p™.
This last inequality together with (56) and the asymptotic formula (18) give

MM; - /\jk’ﬁkl > C14pa2.

O

3. Asymptotic Formulas

Now we consider the following function

8 A B A B2 B2) v m e
o= Y AGp 1 8)AG ’ﬁ’],’ﬁ)xf()’ﬁ”, 1<i<p. (57)

1
(B1.71)€Q(p 6r1) (/\],‘3 - /\jl,ﬁl)

(B2.72)€Q(p% 6r2)

Since { Xje),po (x)} is a total system and 81 # 0 by (45) and (54), we have

Z |<hi(x)/)(" [3’>|2 — Z |A (j’ﬁ’jl,ﬁl)A(jl,ﬁ‘l, ]’2,52) |2

(B2.j2)€F(p% 61)

< cpp p A2, (58)

i.e., hi(x) € LY(F) and ||h;(x)|| = O(p™2), VYi=1,2,...,p.
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Theorem 3.1. For every eigenvalue A ;g of the operator L(P(s)) with B + jo € V(p™), there exists an eigenvalue Ay
of the operator L(V) satisfying

AN = A]',ﬁ +0(p™). (59)

Proof. By Lemma 2.3, for the chosen i;(x),i = 1,2, ...,p>in (57), there exists anumber N, satisfying (i), (ii), (iii).
Since (1, j1) € Q(p%, 611), by part (b) of Lemma 2.3, we have

M]',}g - )\]14;1 |> C15pa2.
The above inequality together with (i) imply
AN — )\]*1,[;1|> c16p".

Using the following well known decomposition

1 — . M + O(p—(pzﬂ)az),

m =1 [Aj,;s - /\f’fﬁ*]l

and (57), we see that the formula (53) can be written as

y A B 1 B)A (1B P B) (N, X2

— A ] = —pa
(AN A],ﬁ) C(N, ]/ ﬁ) O(p ) + AN - Ajll‘gl

(B1.j1)eF(p™ 6r1)
(B2j2)<F(p% 6r)

P2
A h; et
= Z [(AN - Aj,ﬁ)l_l <1PN/ mﬂ ||7;]1+O (P (p2+1) 2).
i=1 !

Now dividing both sides of the last equation by c(#, j, f) and using (ii), (iii), we have

|AN - A]’,ﬁ|§ O (p_(P2+1)a2+W) +

h h Z A o|2mD) L
o] 1= Ao i) i =2l [, )

- - holl+ ... + -
ECAT E o, 7,
< 2p2)? (Imll+2Milhall+ . .. + @MYy, []) + O (p~ = Derae),

12,

Hence by (58), we obtain
Ay = )\]‘,ﬁ + O(p_az),

since (p, + 1)ap — ga > a,. Theorem is proved. [J

It follows from (54) and (59) that the triples (N, jk, ﬁk) fork=1,2,...,p1, satisty the iterability condition (49).
By (50) instead of j, 8 and r taking j?, 82 and r3, we have

y A B 1P B Won, X i )

(N, 7, B%) = =g +O0(p™). (60)
I

(B3,j3)€Q(p*,613)
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To obtain the other terms of the asymptotic formula of Ay, we iterate the formula (53). Now we isolate the
terms with multiplicand c(N, j, f) in the right hand side of (53).

. Al B8 ) A B 5B .
(An = AipeN, B = O+ Y | ANzAf : )C<fo'ﬁ’
(Br.j1)€Q(p,6m) e
(B2,j2)€Q(p",612)
(j+11+]2,+B1+B2)=(j,B)
Alj B 8" )AS B 12 B .
+ Y ( il )c(N, 7B, (61)
AN - A]'l Bl
(Br.j1)€Q(p 6m) ’

(ﬁz,]'z)EQ(Pa/é‘fz)
(+11+72,p+B1+B2)#(j,B)

Substituting the equation (60) into the second sum of the equation (61), we get

A(iB 1 BY)A (7 84 . B)
AN - Ajl,ﬁT

(An= AN, B = ) cN, i)

(Brj1)eQp,6m1)
(B2,j2)€Q(p" 612)
(7 B9=(ip)

+ )
(Br.j1)€Q(p" 6m1)
(B2,12)€Q(p" 612)

(%GB
(Bs.j3)Q(p" 6r3)

+0(p ). (62)

A(iB 1 B)A(" B 2B AR B2 P B°)

c N, '3[ 3
(An = A g )(An = A ) N7 6°)

Again isolating terms c(N, j, f) in the last sum of the equation (62), we obtain

A(iB 1" B)A( B 7 B)
AN - Ajl,ﬁl

(A= AN, ) =1 Y
(B1.1)€Q(p" 6r1)
(B2/72)€Q(p" 6r2)

(B=(iP)
.Y A 3 B) A" B 2 B) A (P 8% 7. B)
AN — A g)(Ay = A;
(Buj) Do) (AN = Ap g )(AN — Ap g2)
(B2,j2)€Q(p* 612)
(Bs.j3)Q(p" 6r3)
(R PH#(B)
(2.B*)=(i.B)

1e(N, 7, B)

. A(i B 1L BY)A( BY 2 B2) A7 B2 7. °)
(bui )o@ 6r0) (AN = Ajp)(AN = Ap )
(B2,j2)€Q(p" 612)

(B3.j3)€Q(p" 613)

(P (if)

(P B (i)

+ O(p™). (63)

(N, 1°, )
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In this way, iterating 2p times, we get

2p
(Ax = Ajg)eN, ) = [2 SJ (N, B) + gy + O(p™), (64
k=1
where
k A ii—1 ﬁl 1,] ﬁ)
’ ) _ k ok o+
(Bujr)eQ(p6r) =1
(Brs1 i1 ) EQ(p® 61141)
(B D=(ip)
G°BIEGB), s=2,... K
and
k A -1 ﬁl 1/] ﬁ)
C, = H A(] ’ﬁk ]k+1,ﬁk+1)C(N ]k+1 ﬁk+1) (66)
. - (AN /\] ﬁl
(B j1)eQ(p* 6r1) i=1
(Ber1,jis1 )EQ(P® 671s1)
(P B)£GB), 5=2,... k+1

Now we estimate S;c and C;{. For this, we consider the terms which appear in the denominators of (65)
and (66). By the conditions under the summations in (65) and (66), we have j; + jo + ...+ j; # 0 or
Bi+pB2+...+...5i#0,fori=23,...,k

If 1 + B2+ ... +... 5 # 0, then by (54) and (59), we have
1 a
|AN - Ajz,ﬁz|> Ep 2, (67)
Iffi+po+...+...0=0,ie, j1 + jo +...+ j; # 0, then by a well-known theorem
|/\]',ﬁ - /\]‘i,ﬁi|= Iy] - [in|> C17,
hence by (59), we obtain
1
|AN - A]”,ﬁ’|> §C18. (68)

Since fi # 0 for all k < 2p, the relation 1 + > + ... +...5i = O implies 1 + p2 + ... + ... fiz1 # 0. Therefore
the number of multiplicands Ay — A;i g in (66) satisfying (67) is no less then p. Thus, by (45), (67) and (68),
we get

S, =0(p™™), G, =0(p"?) (69)

Theorem 3.2.  (a) For every eigenvalue Ajg of L(P(s)) such that B + jo € V(p™), there exists an eigenvalue Ay
of the operator L(V) satisfying

An = Ajg + Epg + O(p7F), (70)

2p
where Eg = 0, Es = Y, S, (Es1 + Ajg, Ajp), s=1,2,...
k=1
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(b) If
|[An = Ajpl< c19 (71)
and
(N, j, pI> p™** (72)
hold then Ay satisfies (70).
Proof. By Lemma 2.3 (a) — (b), there exists N satisfying the conditions (71) and (72) in part (b). Hence it

sufficesto prove part (b). By (54) and (71), the triples (N, j¥, B*) satisfy the iterability condition in (49). Hence
we can use (64) and (69). Now we prove the theorem by induction:

For k = 1, to prove (70), we divide both sides of the equation (64) by c(N, j, f) and use the estimations
(69).

Suppose that (70) holds for k = s, i.e.,

AN = A],ﬁ +E.1+ O(p—saz). (73)
2p ,
To prove that (70) is true for k = s + 1, in (64) we substitute the expression (73) for Ay into Y. S,(An, Ajp),
k=1
then we get
2p
(An = Aip)eN, j,B) = | Y S (Ajp + Ecct + O(p™), Ajg) | c(N, i ) + Cy, + O(p ™) (74)
k=1

dividing the both sides of the last equality by c(N, j, ) and using Lemma 2.3-(ii), we obtain
2p

An=Ajp+ Z St (g + Esct + O(p™2), Aj5) + O(p ™00, (75)
k=1

2p
Now we add and subtract the term Y S;{ (Es_l +Ajg, )L]-,ﬁ) in (75), then we have

k=1
2p 2p
An = A+ B+ O(p 0% + 1Y 8 (A + Ea + O(07), A1) = Y Sy (Esr + Aig, Ajg)|- (76)
k=1 k=1

Now, we first prove that E; = O(p™) by induction. Ey = 0. Suppose that E;_; = O(p™2), thena = Ajg +E; 1
satisfies (67) and (68). Hence we get

S\, Ajg) = O(p™) = E; = O(p™™). (77)

To prove the theorem, we need to show that the expression in the square brackets in (76) is equal to
O(p~¢*Daz). This can be easily checked by (77) and the obvious relation

1 1
A])ﬁ +Eoq + O(p—saz) — Ajk,ﬁk A])ﬁ +E, 1+ /\jk,ﬁk

= O(p 1), (78)

for B¢ # B. The theorem is proved. [J
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