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Abstract. A categorical group is a kind of categorization of group and similarly a categorical ring is a
categorization of ring. For a topological group X, the fundamental groupoid πX is a group object in the
category of groupoids, which is also called in literature group-groupoid or 2-group. If X is a path connected
topological group which has a simply connected cover, then the category of covering groups of X and the
category of covering groupoids of πX are equivalent. Recently it was proved that if (X, x0) is an H-group,
then the fundamental groupoid πX is a categorical group and the category of the covering spaces of (X, x0)
is equivalent to the category of covering groupoids of the categorical group πX.

The purpose of this paper is to present similar results for rings and categorical rings.

Introduction

If X is a topological group, the fundamental groupoid πX is a group-groupoid which is a group object in
the category of groupoids [7]. This notion is also known as an internal category in the category of groups
[18]. This functor gives an equivalence of the category of the covering groups of a topological group X
whose underlying space is locally nice and the category of the covering groupoids of πX [6, Proposition
2.3] (see also [15]). Recently the notion of monodromy groupoid for topological group-groupoids was
developed in [16]; and normality and quotients of group-groupoids were developed in [17].

In [11] it was proved that if (X, x0) is an H-group (group case of Definition 2.1), then the fundamental
groupoid πX is a weak categorical group and also proved that the category of the covering spaces of an
H-group (X, x0) is equivalent to the category of covering groupoids of the weak categorical group πX. In
this paper we will give similar results for rings and categorical rings.

1. Preliminaries on covering groupoids and covering spaces

A groupoid G on Ob(G) is a small category in which each morphism is an isomorphism. Thus G has a
set of morphisms, a set Ob(G) of objects together with functions s, t : G → Ob(G), ε : Ob(G) → G such that
sε = tε = 1Ob(G), the identity map. The functions s, t are called initial and final point maps respectively. If
a, b ∈ G and t(a) = s(b), then the product or composite b ◦ a exists such that s(b ◦ a) = s(a) and t(b ◦ a) = t(b).
Further, this composite is associative, for x ∈ Ob(G) the element ε(x) denoted by 1x acts as the identity, and

2010 Mathematics Subject Classification. Primary 14F35; Secondary 14H30, 18D10, 20L05, 55P65.
Keywords. Categorical group; categorical ring and covering groupoid.
Received: 27 July 2014; Accepted: 5 January 2015
Communicated by Dragan S. Djordjević
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each element a has an inverse a−1 such that s(a−1) = t(a), t(a−1) = s(a), a ◦ a−1 = (εt)(a), a−1
◦ a = (εs)(a). The

map G→ G, a 7→ a−1, is called the inversion. So a group is a groupoid with only one object.
In a groupoid G for x, y ∈ Ob(G) we write G(x, y) for the set of all morphisms with initial point x and

final point y. We say G is connected if for all x, y ∈ Ob(G), G(x, y) is not empty and simply connected if G(x, y)
has only one morphism. For x ∈ Ob(G) we denote the star {a ∈ G | s(a) = x} of x by Gx. The set G(x, x) of all
morphisms from x to x is a group, called object group at x and denoted by G(x).

Let G and H be groupoids. A morphism from H to G is a pair of maps f : H→ G and O f : Ob(H)→ Ob(G)
such that s ◦ f = O f ◦ s, t ◦ f = O f ◦ t and f (b ◦ a) = f (b) ◦ f (a) for all (b, a) ∈ Hs ×t H. For such a morphism
we simply write f : H→ G.

A morphism p : G̃ → G of groupoids is called a covering morphism and G̃ a covering groupoid of G if for
each x̃ ∈ Ob(G̃) the restriction px : (G̃)x̃ → Gp(x̃) of p is bijective. A covering morphism p : G̃ → G is called
connected if both G̃ and G are connected.

For example if p : X̃→ X is a covering map of topological spaces, then the induced morphism πp : πX̃→
πX of the fundamental groupoids is a covering morphism of groupoids.

A connected covering morphism p : G̃ → G is called universal if G̃ covers every cover of G, i.e., if for
every covering morphism q : H̃ → G there is a unique morphism of groupoids p̃ : G̃ → H̃ such that qp̃ = p
(and hence p̃ is also a covering morphism), this is equivalent to that for x̃, ỹ ∈ Ob(G̃) the set G̃(x̃, ỹ) has not
more than one element.

For any groupoid morphism p : G̃ → G and an object x̃ of G̃ we call the subgroup p(G̃(x̃)) of G(px̃) the
characteristic group of p at x̃.

If p : X̃ → X is a covering map of topological spaces, then the induced morphism πp : πX̃ → πX of
fundamental groupoids is a covering morphism of groupoids [5, 10.2.1].

Let p : G̃ → G be a covering morphism of groupoids and q : H → G a morphism of groupoids. If there
exists a unique morphism q̃ : H → G̃ such that q = pq̃ we just say q lifts to q̃ by p. We recall the following
theorem from Brown [5, 10.3.3] which gives an important criteria to have the lifting maps on covering
groupoids. For a useful application of this theorem see for example the proof of Theorem 3.14.

Theorem 1.1. Let p : G̃ → G be a covering morphism of groupoids, x ∈ Ob(G) and x̃ ∈ Ob(G̃) such that p(x̃) = x.
Let q : K → G be a morphism of groupoids such that K is connected and z ∈ Ob(K) such that q(z) = x. Then the
morphism q : K → G uniquely lifts to a morphism q̃ : K → G̃ such that q̃(z) = x̃ if and only if q[K(z)] ⊆ p[G̃(x̃)],
where K(z) and G̃(x̃) are the object groups.

From Theorem 1.1 the following corollary follows.

Corollary 1.2. Let p : (G̃, x̃) → (G, x) and q : (H̃, z̃) → (G, x) be connected covering morphisms with characteristic
groups C and D respectively. If C ⊆ D, then there is a unique covering morphism r : (G̃, x̃) −→ (H̃, z̃) such that
p = qr. If C = D, then r is an isomorphism.

We assume the usual theory of covering maps. All spaces X are assumed to be locally path connected
and semi locally simply connected, so that each path component of X admits a simply connected cover.

Recall that a covering map p : X̃→ X of connected spaces is called universal if it covers every cover of X
in the sense that if q : Ỹ→ X is another cover of X then there exists a map r : X̃→ Ỹ such that p = qr (hence
r becomes a cover). A covering map p : X̃→ X is called simply connected if X̃ is simply connected. Note that
a simply connected cover is a universal cover.

We call a subset U of X liftable if it is open, path connected and U lifts to each cover of X, that is, if
p : X̃ → X is a covering map, ı : U → X is the inclusion map, and x̃ ∈ X̃ satisfies p(x̃) = x ∈ U, then there
exists a map (necessarily unique) ı̂ : U→ X̃ such that pı̂ = ı and ı̂(x) = x̃.

It is an easy application that U is liftable if and only if it is open, path connected and for all x ∈ U, the
fundamental group π1(U, x) is mapped to the singleton by the morphism ı? : π(U, x) → π(X, x) induced by
the inclusion map ı : U → X. Remark that if X is a semi locally simply connected topological space, then
each point x ∈ X has a liftable neighbourhood.
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We recall the following topology called lifted topology from [5, 10.5]
Let X be a semi-locally simply connected space and q : G̃ → πX a covering morphism of groupoids.

Let X̃ = Ob(G̃) and p = Ob(q) : X̃ → X. If U is the class of all liftable subsets of X and U is an element of
U, then by Theorem 1.1 the induced morphism ı? : π(U, x) → π(X, x) lifts to the morphism of groupoids
ı̃ : π(U, x)→ (G̃, x̃). The set ı̃(U) = Ũ is called the lifting of U. The set of all such liftings of U for all U inU
is written Ũ. Since X is semi-locally simply connected the set Ũ covers X̃ and is a base for the open sets of
a topology on X̃. This topology on X̃ is called lifted topology of X.

For the lifted topology on X̃, the following results, which we need in some proofs are given.

Theorem 1.3. [5, 10.5.3] Let f : Z → X be a continuous map. If the groupoid morphism π f : πZ → πX lifts to a
morphism f̃ : πZ→ G̃, then f ′ = Ob( f̃ ) : Z→ X̃ is continuous and is a lifting of f : Z→ X

Theorem 1.4. [5, 10.5.5] The lifted topology is the only topology on X̃ such that
(a) p : X̃→ X is a covering map;
(b) there is an isomorphism r : G̃→ πX̃ such that πp ◦ r = q

The following result, which is very useful for some proofs, say Theorem 3.11 and Corollary 3.15, is
known as Covering Homotopy Theorem [19, Theorem 10.6]. In Theorem 3.12 a parallel result is given for
the homotopies of functors.

Theorem 1.5. Let p : X̃ → X be a covering map and Z a connected space. Consider the commutative diagram of
continuous maps

Z

j
��

f̃
// X̃

p

��

Z × I

F̃
==

F
// X

where j : Z→ Z× I, j(z) = (z, 0) for all z ∈ Z. Then there is a unique continuous map F̃ : Z× I→ X̃ such that pF̃ = F
and F̃j = f̃ .

As a corollary of this theorem if the maps f , 1 : Z→ X are homotopic, then their respective liftings f̃ and
1̃ are homotopic. If f and 1 are homotopic, there is a continuous map F : Z × I → X such that F(z, 0) = f (z)
and F(z, 1) = 1(z). So there is a continuous map F̃ : Z× I→ X̃ as in Theorem 1.5. Here pF̃(z, 0) = F(z, 0) = f (z)
and pF̃(z, 1) = F(z, 1) = 1(z). By the uniqueness of the liftings we have that F̃(z, 0) = f̃ (z) and F̃(z, 1) = 1̃(z).
Therefore f̃ and 1̃ are homotopic.

2. Coverings of H-rings

An H-group can be thought as a group where the group axioms are satisfied up to homotopies rather
than equalities [19, p.324]. The following definition is a ring version of the definition of an H-group.

Definition 2.1. An H-ring is a pointed topological space (X, x0) with continuous maps

m : X × X, (x0, x0)→ (X, x0), (x, x′) 7→ x + x′

n : X × X, (x0, x0)→ (X, x0), (x, x′) 7→ xx′

u : (X, x0)→ (X, x0), x 7→ −x

such that the following homotopies hold:
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(i) homotopy associativity of m : m(1 ×m) ' m(m × 1);

(ii) homotopy unit: m ı1 ' 1 ' m ı2, where ı1, ı2 : X → X × X are injections defined by ı1(x) = (x, x0) and
ı2(x) = (x0, x);

(iii) homotopy inverse: m(1,u) ' c ' m(u, 1); where c : X→ X is the constant map at x0;

(iv) homotopy commutativity of m: m ' m′, where m′ is defined by m′(x, x′) = m(x′, x) for x, x′ ∈ X;

(v) homotopy associativity of n : n(1 × n) ' n(n × 1);

(vi) left distributivity of n on m: n(1 × m) ' m(n1,n2) where n1 and n2 are defined by n1(x, y, z) = xy and
n2(x, y, z) = xz;

(vii) right distributivity of n on m: n(m × 1) ' m(n2,n3); where n3 is defined by n3(x, y, z) = yz.

We remark that the axioms of the associativity of m, the unit and the inverse can be respectively stated by
the commutativity up to homotopy of the following diagrams:

X × X × X

1×m
��

m×1 // X × X

m
��

X × X m
// X

X × X

m
""

X

1X

��

ı1oo
ı2 // X × X

m
||

X

and

X × X

m
""

X

c
��

(u,1)
oo

(1,u)
// X × X

m
||

X

.

The axioms of the associativity of n, left and right distributiveness can be restated by the commutativity
up to homotopy of the following diagrams:

X × X × X

1×n
��

n×1 // X × X

n
��

X × X n
// X

X × X × X

(n1,n2)
��

1×m // X × X

n
��

X × X m
// X
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X × X × X

(n2,n3)
��

m×1 // X × X

n
��

X × X m
// X

.

Example 2.2. A topological ring X is an H-ring since the group addition

m : X × X, (0, 0)→ (X, 0)

the multiplication

n : X × X, (0, 0)→ (X, 0)

and the inverse map u : (X, 0) → (X, 0) are continuous; and the axioms of Definition 2.1 are satisfied for
equalities rather than homotopies.

A morphism between H-rings (X, x0) and (Y, y0) is a continuous based map f : (X, x0) → (Y, y0) with the
homotopies:

f ◦mX ' mY ◦ ( f × f )

f ◦ nX ' nY ◦ ( f × f ).

By the fact that the vertical union of commutative diagrams up to homotopy is also commutative up to
homotopy, H-rings and morphisms between them constitute a category denoted by HRing.

3. Coverings of categorical rings

For the homotopies of functors we first need the following fact whose proof is straightforward.

Proposition 3.1. Let C, D and E be categories and F : C × D → E a functor. Then for x ∈ Ob(C) and
y ∈ Ob(D) we have the induced functors

F(x,−) : D→ E

F(−, y) : C → E.

We write J for the simply connected groupoid whose objects are 0 and 1; and whose non-identity
morphisms are ι : 0→ 1 and ῑ : 1→ 0. As similar to the homotopy of continuous functions, the homotopy
of functors is defined as follows.

Definition 3.2. [5, p.228] Let f , 1 : C → D be functors. These functors are called homotopic and written f ' 1
if there is a functor F : C ×J → D such that F(−, 0) = f and F(−, 1) = 1.

Proposition 3.3. [5, 6.5.10] If the maps f , 1 : X→ Y are homotopic, then the induced morphismsπ f , π1 : πX→
πY of the fundamental groupoids are homotopic.

Definition 3.4. Let f , 1 : C → D be two functors. We call f and 1 are naturally isomorphic if there exists a
natural isomorphism σ : f → 1.

Theorem 3.5. [11, Theorem 3.5] The functors f , 1 : C → D are homotopic in the sense of Definition 3.2 if and only
if they are naturally isomorphic.



O. Mucuk, S. Demir / Filomat 29:1 (2015), 39–49 44

A group-groupoid is a group object in the category of groupoids [7]; equivalently, it is an internal category
and hence an internal groupoid in the category of groups ([18], [1]) . An alternative name, quite generally
used, is “2-group”, see for example [4]. Recently for example in [1], [12] and [13] some results on group-
groupoids have been generalized to the internal groupoids for certain algebraic categories. A ring-groupoid
which is an internal groupoid in the category of ring, in other words a ring object in the category of
groupoids is defined in [14] as follows:

Definition 3.6. A ring-groupoid G is a groupoid endowed with a ring structure such that the following
additive, product and inverse maps are the morphisms of groupoids:

• m : G × G→ G, (a, b) 7→ a + b;

• n : G × G→ G, (a, b) 7→ ab;

• u : G→ G, a 7→ −a;

• 0: {?} → G, where {?} is singleton.

Here note that in this definition, the axioms involving the ring can be stated in terms of functors as follows:

(i) associativity of m : m(1 ×m) = m(m × 1);

(ii) unit: m ı1 = 1G = m ı2, where ı1, ı2 : G→ G × G are injections defined by ı1(a) = (a, 0) and ı2(a) = (0, a);

(iii) inverse: m(1,u) = c = m(u, 1); where c : G→ G is the constant map at 0;

(iv) commutativity of m: m = m′, where m′ is defined by m′(a, b) = m(b, a) for a, b ∈ G;

(v) associativity of n : n(1 × n) = n(n × 1);

(vi) left distributivity of n on m: n(1 × m) = m(n1,n2); where n1 and n2 are defined by n1(a, b, c) = ab and
n2(a, b, c) = ac;

(vii) right distributivity of n on m: n(m × 1) = m(n2,n3); where n3 is defined by n3(a, b, c) = bc.

In the definition of ring-groupoid if we require these functors to be homotopic rather than equal, we
obtain the definition of weak categorical ring. In the literature the group case of this notion is called categorical
group (see [8] and [10])

Definition 3.7. Let G be a groupoid. Let

⊕ : G × G → G, (a, b) 7→ a + b

� : G × G → G, (a, b) 7→ ab

and

	 : G → G, a 7→ −a

be functors called respectively additive, product and inverse. Let 0 ∈ Ob(G) be an object. If the following
conditions are satisfied, then we call (G,⊕,�,	, 0) a weak categorical ring and write just G:

1. the functors ⊕(1 × ⊕),⊕(⊕ × 1) : G × G × G → G are homotopic;

2. the functors 0 ⊕ 1, 1 ⊕ 0: G → G defined by (0 ⊕ 1)(a) = 0 + a and (1 ⊕ 0)(a) = a + 0 for a ∈ G are
homotopic to the identity functor G → G;
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3. the functors ⊕(1,	),⊕(	, 1) : G → G defined by ⊕(1,	)(a) = a + (−a) and ⊕(	, 1)(a) = −a + a are
homotopic to the constant functor 0 : G → G;

4. the functors ⊕ and ⊕′ are homotopic, where a ⊕′ b = b ⊕ a;

5. the functors �(1 × �),�(� × 1) : G × G × G → G are homotopic;

6. the functors �(1 × ⊕) and ⊕(�1,�2) defined by �(1 × ⊕)(a, b, c) = a(b + c) and ⊕(�1,�2)(a, b, c) = ab + ac
are homotopic, where �1 and �2 are defined by �1(a, b, c) = ab and �2(a, b, c) = ac;

7. the functors�(⊕×1) and⊕(�2,�3) defined by�(⊕×1)(a, b, c) = (a+b)c and⊕(�2,�3)(a, b, c) = (ac)+ (bc),
where �3 is defined by �3(a, b, c) = bc and �2(a, b, c) = ac.

Here we note that in this definition if these functors are equal rather than homotopic, then the weak
categorical ring is called a strict categorical ring which is a ring-groupoid.

Note that the additive ⊕ : G × G → G is a functor if and only if

(b ◦ a) + (d ◦ c) = (b + d) ◦ (a + c) (1)

and similarly the product � : G × G → G is a functor if and only if

(b ◦ a)(d ◦ c) = (bd) ◦ (ac) (2)

for a, b, c, d ∈ Gwhenever the composites b ◦ a and d ◦ c are defined. Since 	 : G → G, a 7→ −a is a functor we
have −(b ◦ a) = (−b) ◦ (−a) when the groupoid composite b ◦ a is defined and −(1x) = 1(−x) for x ∈ Ob(G).

Theorem 3.8. If (X, x0) is an H-ring, then the fundamental groupoid πX is a weak categorical ring.

Proof: Since (X, x0) is an H-ring there are continuous maps

m : X × X, (x0, x0)→ (X, x0)

n : X × X, (x0, x0)→ (X, x0)

u : (X, x0)→ (X, x0)

with the homotopies (i)-(vii) in Definition 2.1. Then by these maps we have the following induced mor-
phisms of fundamental groupoids:

⊕ = πm : πX × πX, (x0, x0)→ (πX, x0)

� = πn : πX × πX, (x0, x0)→ (πX, x0)

	 = πu : π(X, x0)→ π(X, x0)

By Proposition 3.3 we have the following homotopies of the functors induced by the homotopies (i)-(vii)
in Definition 2.1:

(i) ⊕(1 × ⊕) ' ⊕(⊕ × 1);

(ii) 0 ⊕ 1 ' 1 ⊕ 0 ' 1;

(iii) ⊕(1,	) ' c ' ⊕(	, 1);

(iv) ⊕ ' ⊕′;

(v) �(1 × �) ' �(� × 1);

(vi) �(1 × ⊕) ' ⊕(�1,�2);
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(vii) �(⊕ × 1) ' ⊕(�2,�3)

Therefore πX becomes a weak categorical ring as required.
�

Definition 3.9. Let G and H be two weak categorical rings. A morphism of weak categorical rings is a
morphism f : H → G of groupoids such that:

(i) the functors f⊕,⊕( f × f ) : H ×H → G are homotopic;

(ii) the functors f�,�( f × f ) : H ×H → G are homotopic;

(iii) f (0H ) is isomorphic to 0G, where 0G and 0H are respectively the base points of G andH .

Therefore we have a category of weak categorical rings and morphisms between them. Denote this
category CatRing .

Proposition 3.10. If p : (X̃, x̃0)→ (X, x0) is a morphism of H-rings, then the induced map πp : πX̃→ πX is a
morphism of weak categorical rings.

Proof: As we define above if p : (X̃, x̃0) → (X, x0) is a morphism of H-rings, we have the homotopies of
maps f ◦ mX ' mY ◦ ( f × f ) and f ◦ nX ' nY ◦ ( f × f ). Then by Proposition 3.3 we have the homotopies of
the functors π f ◦ πmX ' πmY ◦ (π f × π f ) and π f ◦ πnX ' nY ◦ (π f × π f ). The other details follow.

�
Let (X, x0) be an H-ring. Then we have a category CovHring/(X, x0) of covering morphisms of H-rings

f : (X̃, x̃0) → (X, x0) based on (X, x0). Similarly we have another category CovCatRing/πX of morphisms
p : G̃→ πX of weak categorical rings, which are covering morphisms on the underlying groupoids.

Theorem 3.11. Let (X, x0) be an H-ring such that the underlying space has a simply connected cover. Then
the categories CovHring/(X, x0) and CovCatRing/πX are equivalent.

Proof: Let p : (X̃, x̃0)→ (X, x0) be a morphism of H-rings which is a covering map on the underlying spaces.
Then by Proposition 3.10, the induced morphism πp : πX̃ → πX is a morphism of weak categorical rings
which is a covering morphism of underlying groupoids. So in this way we have a functor

π : CovHring/(X, x0)→ CovCatRing/πX.

Conversely we define another functor

η : CovCatRing/πX→ CovHring/(X, x0)

as follows:
Let q : G̃→ πX be a morphism of weak categorical rings which is a covering morphism on the underlying

groupoids. Then by Theorem 1.4 there is a lifted topology on X̃ = Ob(G̃) and an isomorphism r : G̃ → πX̃
such that p = Oq : X̃ → X is a covering map and q = πp ◦ r. Hence weak categorical ring structure on G̃
transports via r to πX̃. So we have the morphisms of groupoids

⊕̃ : πX̃ × πX̃ −→ πX̃

�̃ : πX̃ × πX̃ −→ πX̃

	̃ : πX̃ −→ πX̃
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such that πp ◦ ⊕̃ = ⊕ ◦ (πp × πp), πp ◦ �̃ = � ◦ (πp × πp) and πp ◦ 	̃ = 	 ◦ πp. These morphisms induce
respectively the following maps which are continuous by Theorem 1.3:

m̃ : X̃ × X̃ −→ X̃

ñ : X̃ × X̃ −→ X̃

ũ : X̃ −→ X̃

Since (X, x0) is an H-ring with the maps

m : X × X, (x0, x0)→ (X, x0)

n : X × X, (x0, x0)→ (X, x0)

u : (X, x0)→ (X, x0)

we have the homotopies (i)-(vii) in Definition 2.1. Then by Theorem 1.5 we have the same homotopies for
m̃, ñ and ũ. Therefore (X̃, x̃0) becomes an H-ring and p : (X̃, x̃0)→ (X, x0) is a covering morphism of H-rings.
The other details of the proof follow from the equivalence of the underlying spaces and groupoids. �

As similar to Theorem 1.5, due to the following theorem the liftings of homotopic functors are also
homotopic.

Theorem 3.12. [11, Theorem 3.12] Let p : (G̃, x̃)→ (G, x) be a covering morphism of groupoids. Suppose that K is
a simply connected groupoid, i.e, for each x, y ∈ Ob(K), K(x, y) has only one morphism. Let f , 1 : (K, z) → (G, x) be
the morphisms of groupoids such that f and 1 are homotopic. Let f̃ and 1̃ be the liftings of f and 1 respectively. Then
f̃ and 1̃ are also homotopic.

Definition 3.13. Let G be a weak categorical ring, 0 ∈ Ob(G) the base point and let G̃ be just a groupoid.
Suppose p : G̃→ G is a covering morphism of groupoids and 0̃ ∈ Ob(G̃) such that p(0̃) = 0. We say that the
weak categorical ring structure of G lifts to G̃ if there exists a weak categorical ring structure on G̃ with the
base point 0̃ ∈ Ob(G̃) such that p : G̃→ G is a morphism of weak categorical rings

Theorem 3.14. Let G̃ be a simply connected groupoid and G a weak categorical ring. Suppose that p : G̃ → G is
a covering morphism on the underlying groupoids. Let 0 ∈ Ob(G) be the base point of G and 0̃ ∈ Ob G̃ such that
p(0̃) = 0. Then the weak categorical ring structure of G lifts to G̃.

Proof: Since G is weak categorical ring, we have the following functors

• ⊕ : G × G → G, (a, b) 7→ a ⊕ b;

• � : G × G → G, (a, b) 7→ a � b;

• 	 : G → G, a 7→ a−1;

• 0: {?} → G

with the homotopies of the functors (i)-(vii) in Definition 3.7. Since G̃ is a simply connected groupoid by
Theorem 1.1, the functors ⊕, � and 	 lift respectively to the morphisms of groupoids:

⊕̃ : G̃ × G̃, (0̃, 0̃)→ (G̃, 0̃)

�̃ : G̃ × G̃, (0̃, 0̃)→ (G̃, 0̃)

and

	̃ : (G̃, 0̃)→ (G̃, 0̃)
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By Theorem 3.12 the axioms (i)-(vii) of Definition 3.7 are satisfied for the ⊕̃, �̃ and 	̃. Therefore G̃ is a week
categorical ring as required. �

The group structure of a connected topological group lifts to a simply connected covering space ( e.g.
[9]). In non-connected case this problem was studied in [20] (see also [2] for a lifting of R-module structure
to the covering spaces and see [3] for setting R-module object in the category of groupoids). We now give
a similar result for H-ring as a result of Theorem 3.14.

Corollary 3.15. Let (X, x0) be an H-ring and p : (X̃, x̃0)→ (X, x0) a covering map. If X̃ is a simply connected
topological space, then H-ring structure of (X, x0) lifts to (X̃, x̃0), i.e, (X̃, x̃0) is an H-ring and p : (X̃, x̃0)→ (X, x0)
is a morphism of H-ring.

Proof: Since p : (X̃, x̃0) → (X, x0) is a covering map, the induced morphism πp : πX̃ → πX is a covering
morphism of groupoids. Since (X, x0) is an H-ring by Theorem 3.8 πX is a weak categorical ring. Since X̃
is simply connected the fundamental groupoid πX̃ is a simply connected groupoid. So by Theorem 3.14
the weak categorical ring structure of πX lifts to πX̃. So we have the induced morphisms of fundamental
groupoids

⊕̃ : πX̃ × πX̃ −→ πX̃

�̃ : πX̃ × πX̃ −→ πX̃

and

	̃ : πX̃ −→ πX̃

such that πp ◦ ⊕̃ = ⊕ ◦ (πp×πp) and u ◦πp = πp ◦ ũ and therefore we have the maps, which are continuous
by Theorem 1.3.

m̃ : X̃ × X̃ −→ X̃

ñ : X̃ × X̃ −→ X̃

ũ : X̃ −→ X̃.

Since the axioms (i)-(vii) of Definition 2.1 are satisfied for m, n and u by Theorem 1.5 same axioms are
satisfied for m̃, ñ and ũ. Hence (X̃, x̃0) becomes an H-ring and p : (X̃, x̃0) → (X, x0) a morphism of H-rings,
which is a covering map on the underlying spaces. �
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