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Abstract. In this paper, we utilize the concept of (P)-property, weak (P)-property and the comparison
function to introduce and prove an existence and uniqueness theorem of a best proximity point. Also, we
introduce the notion of a best proximity coupled point of a mapping F: X X X — X. Using this notion and
the comparison function to prove an existence and uniqueness theorem of a best proximity coupled point.
Our results extend and improve many existing results in the literature. Finally, we introduce examples to
support our theorems.

1. Introduction

Let A be a nonempty subset of a metric space (X, d). Let T be a mapping from X into X. A point x € X is
called a best proximity point of T if d(x, Tx) = d(A, x), where

d(A, x) := inf{d(a,x) : a € A}.

Note that if x € A, then x is a fixed point of T. Thus the best proximity point plays a crucial role in fixed
point theory, and many authors studied this notion. In [1], the existence of a best proximity point for a cyclic
contraction map in a reflexive Banach space is proved. Also, the authors introduce a new class of mappings,
the cyclic p-contractions, and they prove convergence and existence results for those class of mappings.
The notion of proximal pointwise contraction and results regarding the existence of a best proximity point
on a pair of weakly compact convex subset of a Banach space are obtained in [2]. In [3], there are stated
contraction type existence results for a best proximity point and an algorithm to find a best proximity
point for a mapping in the context of a uniformly convex Banach space. In [4], there is introduced the
notion of cyclic orbital Meir-Keeler contraction, and there are given sufficient conditions for the existence
of fixed points and best proximity points of such a map. The proximity and best proximity pair theorems
in hyperconvex metric spaces and in Hilbert spaces are presented in [5], providing optimal approximate
solutions for the situation when a mapping does not have fixed points. Paper [6] applies a convergence
theorem in order to prove the existence of a best proximity point, without the use of Zorns lemma. In
[7], the authors study a mapping which satisfies a cyclical generalized contractive condition related to a
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pair of altering distance functions. Paper [8] introduces the class of p-cyclic ¢-contractions, larger than
the p-cyclic contraction mappings and presents convergence and existence results of best proximity points
for mappings from this class are obtained. In [9], Sankar Raj studied a fixed point theorem for weakly
contractive nonselfmappings based on the notion of (P)-property. For some interesting examples of pairs
having the (P)-property, we address the reader to [9], [10], [11]. For some work in almost contraction see
[12]-[20].

In this paper, we introduce the notion of the generalized almost (¢, 0)-contraction and the notion of a
best proximity coupled point of a mapping F: X x X — X. Also, we utilize our notions to introduce and
prove a best proximity point theorem and a best proximity coupled point theorem. Our results extend and
improve many existing results in literature.

2. Preliminaries

To introduce our new results, it is fundamental to recall the definition of a best proximity point of a
nonselfmapping T and the notion of (weak) (P)-property.
Let A and B be nonempty subsets of a metric space. To facilitate the arguments let

Ag={aeA:d(a,b)=d(A,B), for some b € B},
Bo=1{beB:d(a,b) =d(A,B), for some a € A},

and
d(A, B) := inf{d(a,b) :a € A,b € B}.

Definition 2.1 ([10]). Let A and B be two nonempty subsets of a metric space (X,d). An element u € A is
said to be a best proximity point of the nonselfmapping T: A — B iff it satisfies the condition

d(u, Tu) = d(A, B).

Definition 2.2 ([9]). Let (A, B) be a pair of nonempty subsets of a metric space (X,d) with Ay # . Then,
pair (A, B) is said to have the weak (P)-property if, for each x1, x, € A, and y1, y» € B, the following implication
holds

d(x1, y1) = d(A, B)

Al o) = d(A,B) | = A1) S i)

If we replace relation d(x1, x2) < d(y1, y2) by d(x1, x2) = d(y1, y2) we obtain a less general notion, that of a
pair endowed with the (P)-property.

In his elegant paper [10], Samet studied a nice best proximity point theorem of the form almost contrac-
tion for a pair of sets endowed with the (P)-property. Before we present the main result of Samet, we recall
the following

Definition 2.3 ([13]). A map ¢: [0, +00) — [0, +o0) is called a c-comparison function if it satisfies:

1. ¢ is a monotone increasing,
2. Y5 @"(t) converges for all t > 0.

If we replace the second condition by lim,_,+« ¢"(t) = 0, Vi € IN, we obtain the notion of comparison
function, which is more general than the one of c-comparison function.

It is known that if ¢ is a comparison function, then ¢(t) < t for all t > 0 and ¢(0) = 0.

Works involving either (c)-comparison functions or comparison functions are, for instance, [14] and [20].

In the following, denote [0, +0) X [0, +00) X [0, +00) X [0, +0) by [0, +oo)4.

Let © be the set of all continuous functions 6: [0, +0)* — [0, +c0) such that

0(0,t,s,u) =0 for all t,s,u € [0,+00)

and
0(t,s,0,u) =0 for all t,s,u € [0, +00).
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Example 2.4 ([10]). Define 64,6,,065: [0, +o<J)4 — [0, +00) by the formulas
01(t,s,u,v) = tinf{t,s,u,v}, 1>0,

0y(t,s,u,v) = tIn(1 + tsuv), 7>0,

and
0s(t,s,u,v) = ttsuv, 1 >0.

Then 61,0,, 93 € 0.
Samet [10] introduced the following definition.

Definition 2.5 ([10]). Let ¢ be a c-comparison function, and 0 € ®. A mapping T: A — B is called an almost
(¢, O)-contraction if, for each x, y € A,

d(Tx, Ty) < @(d(x,y))+0(d(y, Tx) —d(A, B),d(x, Ty) — d(A, B),
d(x, Tx) — d(A, B),d(y, Ty) — d(A, B)).

The main result of Samet is

Theorem 2.6 ([10]). Let A and B two closed subsets of a complete metric space (X, d) such that Ay is nonempty.
Suppose that T: A — B satisfies the following conditions:

1) T is an almost (¢, 6)-contraction;

2) TAy C By,

3) Pair (A, B) has the P-property.

Then, there exists a unique element x+ € A such that

d(x", Tx") = d(A, B).
Moreover, for any fixed element xo € Ao, any iterative sequence (x,) satisfying
d(xy+1, Txy) = d(A, B)

converges to x*.

3. Main Results

Our first aim in the paper is to introduce and prove a best proximity point theorem for a more general
case. For this instance, we introduce the notion of a generalized almost (¢, )-contraction, as follows

Definition 3.1. Let ¢ be a comparison function, and 0 € ©. Mapping T: A — B is called a generalized almost
(¢, B)-contraction if, for each x, y € A,

d(Tx, Ty) < @(d(x,y))+ 0(d(y, Tx) —d(A, B),d(x, Ty) — d(A, B),
d(x, Tx) — d(A, B),d(y, Ty) — d(A, B)).

Our first result is

Theorem 3.2. Consider A and B two closed subsets of a complete metric space (X, d) for which Ay is nonempty. Let
T: A — B be a mapping which satisfies the following conditions:

1) T is a generalized almost (@, O)-contraction;

2) TAg € By,

3) Pair (A, B) has the weak P-property.

Then, there exists a unique best proximity point of T, x* € A.
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Proof. Consider xg € Ay. Since TAy € By, then Txy € By, and there is x; € Ag such that d(x1, Txy) = d(A, B).
By continuing this procedure, we obtain a sequence (x,) € Ao,

d(xp41, Tx,) = d(A,B), YneINU{0}.
If there is n € IN U {0}, for which d(x,+1,x,) = 0, it follows
d(A, B) < d(xy, Txy) < d(xp, Xu41) + d(Xus1, Txy) = d(xn11, Txy) = d(A, B),

hence d(A, B) = d(x,,, Txy), so x, is a best proximity point of T.
Without loss of generality, in the following we may assume that d(x,, x,.1) > 0, for each n € N U {0}.
(A, B) satisfies the weak (P)-property, so d(x,, xu+1) < d(Txp—1, Txy), n € N.
Using the almost (¢, )-contraction property of T, we have
A, Xp41) < d(Txy-1, Txy)
P(d(xn-1,xn)) + 0(d(xn, Txp-1) — d(A, B), d(xp-1, Txy) — d(A, B),
d(xp-1, Txy-1) — d(A, B), d(xy, Tx,) — d(A, B))
= @(d(xu-1,xn)) + 00, d(xy-1, Txy) — d(A, B),
d(xp-1, Txy-1) — d(A, B), d(xy, Tx,) — d(A, B))
= @d(xp-1,%,)), neNU({0}.

IA

Applying repeatedly this inequality, and using the monotone of ¢, we get
d(xn, Xne1) < @"(d(x0,x1)), n€INU{0}.

But ¢ is a comparison function, so, taking n — +co, we obtain limy,_,+e (X4, X5+1) = 0.
Taking into account the inequalities

d(A, B) < d(x,,, Tx,) < d(xy, xi41) + d(xpe1, Txy),
and letting n — +00, we obtain

11111 d(x,, Tx,) = d(A, B). 1)

Let € > 0. Since lim,,_, ;o d(xy, X,+1) there exists ng € IN such that for each n > ng, we have

1
d(xnr xn+1) < E(e - (P(é)) (2)
We shall prove that d(x,, x,,) < ¢, for each m > n > ny by induction on m.
For m = n + 1, we obtain
1
d(xn/xn+1) < E(E - (P(E)) <E.

Suppose the inequality is satisfied for m = k, and we shall prove that the relation holds for m = k + 1. The
triangular inequality leads us to

A, xes1) < A, Xna1) + (41, Xier1)- 3)
Since d(xy+1,Tx,) = d(A, B), and d(xx.1, Txx) = d(A, B), applying the weak (P)-property, it follows that

A(xXps1, 1) < d(Txy, Txy). The almost (¢, 0)-contraction property of T, we obtain

d(er-l/ xk+1) < d(Txnr Txk)
< (P(d(xn/ xk)) + G(d(Xk, Txn) - d(A/ B)/ d(xn/ Txk) - d(A/ B)/ (4)
d(xn/ Txn) - d(A/ B)/ d(Xk, Txk) - d(A/ B))
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Since 6 is a continuous function and lim,,_, ;o d(x,,, Tx,,) = d(A, B), we have

lim sup O(d(xi, Tx,) — d(A, B), d(x,,, Txi) — d(A, B),

n—+00

d(xn, Tx,) — d(A, B), d(xx, Txy) — d(A, B)) = 0.
Thus, we may consider that 1y is large enough so for each n > n,
6(d(xk, Txn) — d(A, B), d(xn, Txi) — d(A, B), ®)
A, Te) ~ d(A, B) d(xy, Tx) (A, B) < 5(c - (c)

Using inequalities (2), (4), and (5) into (3), we get

A xi1) S e =Pl + ple) + 56~ ple)),

hence d(x,, x¢+1) < €, and we proved that d(x,, x,) < €, m > n > ny. We got that (x,) is a Cauchy sequence
in A, which is a closed subset of (X, d), a complete metric space. Therefore, there exists x € A such that
Lmy, 00 X = X7

Using the triangle inequality, it follows

d(x*, Tx*) < d(x*, x,) + d(x,, Txy,) + d(Tx*, Txy,). (6)
Letting n — +o0 in the inequality
d(Tx', Txy) < @(d(x7, x4)) + O(d(xy, Tx") — d(A, B), d(x", Tx,) — d(A, B),
d(xn/ Tx?’l) - d(A/ B)/ d(X*/ Tx‘) - d(A/ B))/
it follows lim,,_, 10 d(Txy,, Tx*) = 0. Taking n — 400 in relation (6), it follows that d(x*, Tx*) = d(A, B), so x" is
a best proximity point of T.
We shall focus now on the uniqueness of the best proximity point of T. Suppose there are x* # y* two
best proximity points of T. We obtain
d(x’, y") d(Tx", Ty’)
P, y)) + 0d(y", Tx) — d(A, B), d(x", Ty') — d(A, B),
d(x*, Tx*) — d(A, B),d(y", Ty") — d(A, B))
P, y) + 0(d(y", Tx) — d(A, B),d(x", Ty") — d(A, B),
0/ d(]/*/ T]/*) - d(A/ B))

IA

IA

< o, y)),
which is impossible, since x* # y*. The uniqueness part has been proved now. [
Let us take the particular case of @: [0, +c0) — [0, +00), @(t) = kt, where k € [0,1), and
0: [0, +00)* = [0,+00), 6O(t1,t2,1,3,ts) = Lminl{ty, f, t3, ta),
for some L > 0. We obtain the following corollary.

Corollary 3.3. Let A and B be two closed subsets of a complete metric space (X, d) for which Ay is nonempty. Let
T: A — B be a mapping which satisfies the following conditions:
1) TAo C By,
2) Pair (A, B) has the weak (P)-property.
Suppose there exist k € [0,1) and L > 0 such that
d(Tx,Ty) < kd(x,y)+ Lmin{d(y, Tx) —d(A,B),d(x, Ty) — d(A, B),
d(x/ T.X') - d(A/ B)/ d(]// T]/) - d(A/ B)}

holds for all x, y € A. Then, there exists a unique best proximity point of T, x* € A.
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By considering A = B in Theorem 3.2, we get the next corollary

Corollary 3.4. Let A be a closed subsets of a complete metric space (X, d). Let T: A — A be a mapping such that
d(Tx, Ty) < p(d(x, y)) + 0(d(y, Tx), d(x, Ty), d(x, Tx), d(y, Ty))

holds for all x,y € A. Then T has a unique fixed point u € A; that is Tu = u.

Our second aim in this paper is to present a best proximity coupled point of a mapping T: X x X — X.
Before we present our second result we introduce the following definition.

Definition 3.5. Let A and B be closed subsets of a metric space (X,d). An element (u,v) € X X X is called
a best proximity coupled point of a mapping F: X x X — X if u € A, v € B and d(u, F(u,v)) = d(A,B) and
d(v, F(v,u)) = d(A, B).

Theorem 3.6. Let A and B be two closed subsets of a complete metric space (X, d) for which Ao and By are nonempty.
Let F: X X X — X be a continuous mapping which satisfies the following conditions:

1) P(Ao X Bo) C By,

2) F(By X Ap) C Aoy,

3) Pair (A, B) has the (P)-property.

Also, suppose there exist functions ¢ and 0 € © such that

d(F(x,y), F(u,v))
< (p(max{d(x, Ll), d(y/ U)}) + Q(d(u/ F(x/ ]/)) - d(A/ B)/ d(U, F(yr X)) - d(A/ B)r
d(x, F(x, y)) — d(A, B),d(y, F(y,x)) — d(A, B)) 7)

holds for all x, y, u,v € X.
Then, there exists a unique best proximity coupled point of F of the form (u, u).

Proof. Choose xp € Ap and 1y € By. Since F(xg, o) € By, we choose x1 € A such that d(x;, F(xo, y0)) = d(A, B).
Also, since F(yo,x0) € Ag we choose y; € B such that d(y1, F(yo, x0)) = d(B,A). As F(x1,y1) € By, we
choose x; € A such that d(xy, F(x1,11)) = d(A,B). Also, since F(y1,x1) € Ay we choose 1, € B such that
d(y2, F(y1,x1)) = d(B, A). Continuing this process, we construct two sequences (x,) in A and (y,) in B such
that

d(xns1, F(xn, yn)) = d(A, B)
and
A(Yn+1, F(Yn, xn)) = d(B, A)
hold for all n € N U {0}.
Suppose there exists n € IN such that d(x,, x,+1) = 0 and d(yy,, yn+1) = 0. Thus
d(xn, F(xXn, Yn))

A(xn, Xnr1) + d(Xpe1, F(xn, yn))
d(A, B).

d(A, B)

INIA

Thus we have d(A, B) = d(x,, F(x,, yx)). Similarly, we obtain d(A, B) = d(yx, F(yu, x4)). Therefore, (x,, y,) is a
best proximity coupled point of F.

So, we may assume that d(x,, x,+1) > 0 or d(Yu, Yun+1) > 0.

Since pair (A, B) has the (P)-property, d(x,, F(xy-1, yu-1)) = d(A, B), and d(x,+1, F(xn, yn)) = d(A, B), we
have

d(xn/ xn+1) = d(F(xn—lr yn—l)r F(Xn, ]/n))
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By (7), we obtain

A(xp, Xn41)

A(F(xXn-1, Yn-1), F(n, Yn))

p(max{d(x,-1, xn)rd(ynflr yn)} +0(d(xy, F(xy-1, ynfl)) —d(A,B),

A(Yn, F(yn-1,xn-1)) — d(A, B), d(xp-1, F(xn-1, Yn-1)) — d(A, B),

d(Yn-1, F(Yn-1,Xu-1)) — d(A, B))

= (p(max{d(xn—lr Xn), d(yn—lr ]/n)} (8)

Also, since pair (4, B) has the (P)-property, d(yu, F(Yn-1,Xn-1)) = d(A, B), and d(y,+1, F(yu, xn)) = d(A, B),
we have

IN

d(]/n/ yn+1) = d(F(ynflr Xn—-1 )/ F(yn/ xn))'
Again by (7), we get

d(]/m ]/n+1)

d(F(yn—lr Xn-1), F(ynz Xn))

p(max{d(yn-1, Yn), d(xXn-1,%n)}) + 6(@d(Yn, F(Yn-1, Xu-1)) — d(A, B),

d(xp, F(xn-1, Yn-1)) — d(A, B), d(yn-1, F(Yn-1, Xn-1)) — d(A, B),

d(xy-1, F(xn-1, Yn-1)) — d(A, B))

= pmax{d(yn-1, Yn), d(xn-1,X0)})- 9)

IN

Combining (8) and (9), we get
max{d(xu, Xn41), A(Yn, Yna1)} < @(max{d(xn-1, xn), d(Yn-1, Yn)}). (10)
Repeating (10) n-times, we obtain

p(max{d(x,-1, x), d(Yn-1, Yn)})
(Pz(max{d(xn—b xn—l)r d(}/n—z, yn—l)})

max{d(xn, xn+l)/ d(yn, yn+1)}

INIA

A ee-

" (max{d(xo, x1), d(yo, y1)}).
Thus
nl—i>r-§1:100 A(Xn, Xp41) = ngﬁlw A(Yn, Yn+1) = 0.
On other hand,

d(A,B) < d(xn, F(xn, yn))
< d(xn, xn+1) + d(xn+1r F(Xn, ]/n))
= d(xn/ xn+1) + d(Ar B)

Letting n — +oo in the above inequalities, we get

liIP d(xy, F(xn, yn)) = d(A, B).

Similarly, one can show that
liIP AYn, F(Yn, xn)) = d(A, B).

Consider € > 0. Since ¢"(max{d(xo, x1), d(yo, y1)} = 0 as n — +oo, there exists 1y € IN such that

A(xy, Xp41) < %(e - @(€))
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and .
d(]/n/ yn+1) < E(e - (P(E))

hold for all n > ny.
Now, we use the induction on m to prove that

max{d(xu, Xm), AYn, Ym)} <€ ¥ m>n > no. 11

Note that (11) holds for m = n + 1 because max{d(x,, xm), d(Yn, Ym)} < %((—: — @(€)) < € holds for all n > ny.
Assume inequality (11) holds for m = k. Now, we prove relation (11) for m = k + 1. By using the triangular
inequality, we have

A, Xes1) < d(Xn, Xpa1) + A1, Xier1)- (12)
Since pair (A, B) has the (P)-property, d(x,4+1, F(xn, yn)) = d(A, B), and
A(xXrs1, F(xx, yx)) = d(A, B)

we have
d(xn+1/ xk+1) < d(F(x‘rl/ yn)l F(xk/ yk))

Using the contraction condition (7), we have

A(Xp41, Xir1)
= d(F(xn, Yn), F(xk, Y1)
< p(max{d(xy, xx), d(Yn, yi)}) + O(d(xi, F(xn, yn)) — d(A, B),
d(Y, F(Yn, xn)) — d(A, B), d(xn, F(xXn, yu)) — d(A, B), d(Yn, F(Yn, xn)) — d(A, B)),
(13)
and
A(Yn+1, Yrs1)
= d(F(Yn, xn), F(Yx, X))
< p(max{d(xn, xx), d(Yn, yi)}) + O@d(Yi, F(xn, x1)) — d(A, B),
d(xi, F(xn, yn)) — d(A, B), d(yYn, F(xn, Xn)) — d(A, B), d(xn, F(xn, yn)) — d(A, B)),
(14)

Using the properties of 0, and the fact that limy, .o d(x, F(X4, 1)) = d(A, B), and limy,— 100 (Y, F(Yn, Xn)) =
d(A, B) we have

lim sup 6(d(xk, F(xn, yn)) — d(A, B), d(yk, F(yn, x1)) — d(A, B),

n—+00

d(x,, F(xu, yn)) —d(A,B), d(yn/F(ynr xn)) —d(A,B)) =0,
and

lim sup Q(d(ykr P(yn/ xn)) - d(Ar B)/ d(Xk, P(xn/ y‘rl)) - d(Ar B)/

n—+oo

d(ynl F(]/n/ xn)) - d(A/ B)r d(xn/ F(xnr ]/n)) - d(A/ B)) = 01
Thus for ng large enough, we have
6(d(xkl F(xn/ yl’l)) - d(A, B)r d(ykr P(yn/ xn)) - d(A, B)/

d(xn, F(xu, Yn)) — d(A, B), d(Yn, F(yn, xn)) — d(A, B)) < %(E = @(€)).
(15)
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and
Q(d(]/k/ F(]/m x}’l)) - d(A/ B)/ d(xk/ F(xn/ yn)) - d(A/ B)/

Ay, F(yn, ) = dCA, B) (5, i, ) = (A, B) < (€ = ()
(16

From relation (11)-(16), we get
max{d(, ¥, A, i)} < 56 = PO +p(E) + 3(e — p(e)) < e 7)

Thus (11) holds for m = k + 1. Thus (11) holds for all m > n > ng. Thus (x,) and (y,) are Cauchy sequences
in A and B respectively. Since (X, d) is complete, there exist u, v € X such that

Iim x, =u
n—+co
and
lim =0.
n—+co Yn

Since A and B are closed, we get u € A and v € B.
Letting n — +o0 in
d(xn+l/ F(xn/ ]/n)) = d(A/ B)

and using the continuity of F, we get
d(u, F(u,v)) = d(A, B).

Similarly, we get
d(v,F(v,u)) = d(A, B).
Thus, (u,v) is a best proximity coupled point of F. Now, we show that # = v. Using the (P)-property of pair
(A, B), we get
d(u, v) = d(F(u,v), F(v, u)).

Using inequality (7), we get

d(u,v) = d(F(u,v), F(v, u))
p(max{d(u,v),d(v, u)}) + 0(d(v, F(u,v)) — d(A, B),
d(u/ F(v/ Ll)) - d(A/ B)/ d(u/ F(u/ U)) - d(A/ B)/ d(v/ F(U, u)) - d(A/ B))
= (P(d(u/ U)) + e(d(vr P(M, U)) - d(Al B)/ d(”r P(Ur M)) - d(Ar B)/ O/ 0)
= ¢(d(u,v)).
Since @(t) < t for all t > 0, we conclude that d(u,v) = 0. Thus u = v.
To prove the uniqueness of the best proximity coupled point of F, we assume that w is another best
proximity coupled point of F; thatis, d(u, F(u, u)) = d(A, B) and d(w, F(w, w)) = d(A, B). Using the (P)-property
of pair (A, B), we get d(u, w) = d(F(u, u), F(w, w)). Now using (7), we get

IA

d(u, w) = d(F(u, u), F(w, w))

P(d(u, w)) + O(d(w, F(u, u)) — d(A, B),

d(w, F(u,u)) — d(A, B),d(u, F(u,u)) — d(A, B),d(u, F(u, u)) — d(A, B))
= @(d(u,v)) + 6(d(w, F(u,u)) — d(A, B), d(w, F(u, u)) — d(A, B),0,0)

= @d(u,w)).

Again, since ¢(t) < t for all t > 0, we conclude that d(u,w) = 0. Thusu =w. 0O

IA
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Define ¢: [0, +00) — [0, +00) via ¢(t) = kt, where k € [0, 1) and
0: [0, +00)* > [0, +00), O(t1, t2, 1,3, ts) = Lminfty, o, £, ta},
for some L > 0. The following results are corollaries of Theorem 3.6.

Corollary 3.7. Let A and B be two closed subsets of a complete metric space (X, d) for which Ag and By are nonempty.
Let F: X X X — X be a continuous mapping which satisfies the following conditions:

1) P(Ao X Bo) C By,

2) F(BO X Ao) C Ay,

3) The pair (A, B) has the (P)-property.

Also, suppose there exist k € [0,1) and L > 0 such that

d(F(x, y), F(u,v))

< kmax{d(x,u),d(y,v)} + Lmin{d(u, F(x, v)) — d(A, B),d(v, F(y, x)) — d(A, B),
d(x,F(x,y)) — d(A, B),d(y, F(y, x)) — d(A, B)}

holds for all x, y, u,v € X Then, there exists a unique best proximity coupled point of F of the form (u, u).
Take B = A in Theorem 3.6, we have the following result.

Corollary 3.8. Let A a closed subsets of a complete metric space (X,d). Let F: X X X — X be a continuous mapping
with F(A X A) C A. Suppose there exists a comparison function ¢ and 6 € © such that

d(F(x, y), F(u,v))
< @(maxid(x, u),d(y,v)}) + 0(d(u, F(x, v)),d(v, F(y, x)),
d(x, F(x, v)),d(y, F(y, x)))

holds for all x, y,u,v € X Then F has a unique coupled fixed point of the form (u, u); that is F(u, u) = u.

4. Examples and concluding remark

Now we shall provide an example to substantiate our Theorem 3.2. Function ¢ which will be used here
is a comparison, but not a c-comparison, proving that Theorem 2.6 from the work of Samet [10] cannot be
applied in our case.

Example 4.1. Consider

We endow X with the metric

‘ [ o, ifx=y;
d: XxX - X, d(x/y)_{max{x,y}, ifx;ty-

LetT: X - X, Tx = ——

To v 0: [0, +c0)* — [0, +0), O(t,s,u,v) = inf{t,s, u,v}, and @: [0, +o0) — [0, +o0),

t
ot = T3¢ Then
1. TAy C Bo.
2. Pair (A, B) has the (P)-property.
3. T is an almost (¢, 6)-contraction.



W. Shatanawi, A. Pitea / Filomat 29:1 (2015), 63-74 73

Proof. Here, Ay = {0}, By = {0} and d(A, B) = 0. So the proofs of (1) and (2) are clear.
We spill the proof of (3) into three cases.

1 . . .. .
Casel. x = py y= p n < m and n, m are even (the situation n > m is similar to this one).
We obtain

11 1 1 1 1 1 1 1 1
o4+ 0l ) 4G ) 4 ) A 5t)

n n+1’
11
a n+1+a

1 1 1
= n+1=d(n+1'm+1)
= d(T%,Tl),

so the almost (¢, 0)-contraction inequality is satisfied.
Caske 2. x = y = 0. This case is straightforward.

1 1
Case 3. x =0, and y = —, where m is even (which is similar to y = 0, and x = a).
We get

d(O,T%) = d(o’mi_l):mi—l
< @(%)“P(d(()’%))

o[d(0, ) + 6(a(,0),d(.. 0), 40,00, d( -, ——)).

Therefore, T is an almost (¢, 6)-contraction. This end the proof of part (3).
By using Theorem 3.2, we conclude that T has a best proximity pointin A, x* =0. [J

Example 4.2. Let X = {0,2,3,4,5}, define a metricd : X x X — X by d(x,y) = %Ix —yl. Take A = {0,3} and
B = {2,4,5}. Define a mapping T: A — Bby T0 = 5 and T3 = 4. Also, define ¢: [0, +o0) — [0, +00) by
@(t) = £ and 0 : [0, +00)* — [0, +00), by O(t1, t2, t3, t4) = inf{ty, t5, t3, t4}. Then

1. TAp C Bo.
2. Pair (A, B) has the weak (P)-property.
3. Tis a generalized almost (¢, 0)-contraction.

Proof. Here Ay = {3}, Bo = {2,4} and d(A,B) = % Thus TAy € By. To prove that (A, B) has the weak
P-property, let d(x1,11) = d(A,B) and d(x,y2) = d(A,B). Then d(x1,1y1) = % and d(xz, y2) = % Thus
(x1, 1), (x2,12) € {(3,2),(3,4)}). Therefore d(x1,x2) = 0 < d(y1,y2). Hence pair (4, B) has the weak (P)-
property. To prove (3), let x, y € A. We have only the following cases:

Case 1: x = y. Here d(Tx, Ty) = 0 and hence

d(Tx, Ty) < @(d(x,y))+ 0(d(y, Tx) —d(A, B),d(x, Ty) — d(A, B),
d(x, Tx) — d(A, B),d(y, Ty) — d(A, B)).
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Case 2: x # y. Here (x =0 A y = 3) V(x = 3 A y = 0). Without loss of generality, we assume x = 1 and
3. and hence

d(To,T3) = d(5,4) = %
= o)
< (d,3))
< @(x,y) + 6@y, Tx) —d(A,B),d(x, Ty) — d(A, B),

d(x, Tx) — d(A, B), d(y, Ty) — d(A, B)).

Thus T is a generalized almost (¢, 0)-contraction. By Theorem 3.2, we conclude that T has a unique best
proximity point in A. Here x* = 3 is the best proximity pointof T. [

Remark 4.3. Theorem 2.6 of [10] is a special case of our result Theorem 3.2.
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