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Abstract. We give the lower bound for the modulus of the radial derivatives and Jacobian of harmonic
injective mappings from the unit ball onto convex domain in plane and space. As an application we show
co-Lipschitz property of some classes of qch mappings. We also review related results in planar case using
some novelty.

Throughout the paper we denote by Ω, G and D open subset of Rn, n > 1.
Let Bn(x, r) = {z ∈ Rn : |z − x| < r}, Sn−1(x, r) = ∂Bn(x, r) (abbreviated S(x, r)) and let Bn, S = Sn−1 stand

for the unit ball and the unit sphere in Rn, respectively. In particular, by D we denote the unit disc B2 and
T = ∂D we denote the unit circle S1 in the complex plane.

For a domain D in Rn with non-empty boundary, we define the distance function d = dD = dist(D) by
d(x) = d(x; ∂D) = dist(D)(x) = inf{|x − y| : y ∈ ∂D}; and if f maps D onto D′ ⊂ Rn, in some settings it is
convenient to use short notation d∗ = d∗(x) = d f (x) for d( f (x); ∂D′). It is clear that d(x) = dist(x, Dc), where
Dc is the complement of D in Rn. Let G be an open set in Rn. A mapping f : G → Rm is differentiable at
x ∈ G if there is a linear mapping f ′(x) : Rn

→ Rn, called the derivative of f at x, such that

f (x + h) − f (x) = f ′(x)h + |h|ε(x, h)

where ε(x, h)→ 0 as h→ 0. For a vector-valued function f : G→ Rn, where G ⊂ Rn, is a domain, we define

| f ′(x)| = max
|h|=1
| f ′(x)h| and l( f ′(x)) = min

|h|=1
| f ′(x)h| ,

when f is differentiable at x ∈ G . Occasionally we use the notation Λ f (x) and λ f (x) instead of | f ′(x)| and
`( f ′(x) (in particular in planar case) respectively.

For x ∈ Rn, we use notation r = |x|. We say that Jacobian J of mapping on a domain Ω satisfies minimum
principle if for every compact F ⊂ Ω we have infF J > in f∂F J. A C1 (in particular diffemorphisam) mapping
f : Ω→ Ω∗ is K-qc iff

| f ′(x)|n/K 6 |J(x, f )| 6 K `(( f ′(x))n (1)
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holds for every x ∈ Ω. For ξ ∈ S, define

hb(ξ) = h∗(ξ) = lim
r→1

h(rξ)

when this limit exists.
The directional derivative of a scalar function f (x) = f (x1, x2, . . . , xn) along a vector v = (v1, . . . , vn) is the

function defined by the limit

∇v f (x) = lim
h→0

f (x + hv) − f (x)
h

.

If the function f is differentiable at x, then the directional derivative exists along any vector v, and one
has

∇v f (x) = ∇ f (x) · v ,

where the ∇ on the right denotes the gradient and · is the dot product. Intuitively, the directional derivative
of f at a point x represents the rate of change of f with respect to time when it is moving at a speed and
direction given by v. Instead of ∇v f we also write Dv f . If v = x

|x| , x , 0, 1(t) = f (x + tv) and Dv f (x) exists,
we define ∂r f (x) = Dv f (x) = 1′(0).

Let Ω ∈ Rn and R+ = [0, ∞) and f , 1 : Ω → R+. If there is a positive constant c such that f (x) 6
c 1(x) , x ∈ Ω , we write f � 1 on Ω. If there is a positive constant c such that

1
c
1(x) 6 f (x) 6 c 1(x) , x ∈ Ω ,

we write f ≈ 1 (or f � 1 ) on Ω.
O.Martio [31] observed that, every quasiconformal harmonic mapping of the unit disk onto itself is

co-Lipschitz. Then the subject was intensively studied by the participants of Belgrade Analysis Seminar,
see for example [25, 34, 39, 42] and the literature cited there. In particular Kalaj and Mateljević, shortly
KM-approach, study lower bound of Jacobian. The corresponding results for harmonic maps between
surfaces were obtaind previously by Jost and Jost-Karcher [17, 18]. We refer to this results shortly as
JK- result (approach). Recently Iwaniec has communicated the proof of Rado-Kneser-Choquet theorem1)

(shortly Theorem RKC), cf. [14], Iwaniec- Onninen cf. [15]. We refer to this communication shortly as
IwOn-approach. It seems that there is some overlap between KM- results with [14, 15] and [17, 18] (we will
shortly describe it in Section 1). Note only here that in planar case JK- result is reduced to Theorem RKC.

The author has begun to consider harmonic functions in the space roughly since 2006 trying to generalize
theory in the plane, cf [1, 3, 27, 35, 36, 39].
He realized some differences between theory in the plane and space and some difficulties to develop
the space theory. It was observed that gradient mappings of harmonic functions are good candidate for
generalization of the planar theory to space outlining some ideas and asking several open problems on
the Belgrade Analysis seminar. Having studied Iwaniec’s lecture [14] recently the author has found an
additional motivation to investigate in this direction. For the present state see also the recent arXiv papers
of Astala-Manojlović [6], Božin-Mateljević [8] and Mateljević [40].

Suppose that F is mapping from a domain G ⊂ Rn (in particular, from the unit ball B ⊂ Rn) onto a
bounded convex domain D = F(G). To every a ∈ ∂D we associate a nonnegative function u = ua = Fa. Since
D is convex, for a ∈ ∂D, there is a supporting hyper-plane (a subspace of dimension n − 1) Λa defined by
Λa = {w ∈ Rn : (w− a,na) = 0}, where n = na ∈ TaRn is a unit vector such that (w− a,na) > 0 for every w ∈ D.
Define u(z) = Fa(z) = (F(z) − a,na), cf. [21, 32–34]. Our approuch here is also based on function Fa.

1)V. Manojlović informed me about Iwaniec’s lecture [14].
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We provide explicit interior lower bounds on the Jacobian in terms of the regularity of the domains
and the boundary map in Section 1. For the convenience of the reader in Section 4 we mainly collect some
results which we used in Section 1 and give a few additional results.

In Section 5, we outline short review of results from [17] for Harmonic Maps Between surfaces concerning
lower bounds on the Jacobian, and the existence of harmonic diffeomorphisms which solve a Dirichlet
problem.

In Section 2, estimates for the modulus of the derivatives of harmonic univalent mappings in space are
given.

In Section 3 we generalize and develop the arguments used in planar theory of harmonic mappings to
gradient mappings of harmonic functions in domains of R3. For example, we can consider the proof of
Theorem 3.6 (which is not based on an approximation argument) as a suitable generalization of the proof
of Theorem 1.5.

In Section 6 we discuss shortly some results from [33, 36, 50] related to the subject and ask a few question.

1. Estimates for the modulus of the derivatives of harmonic univalent planar mappings from below

1.1.

For univalent harmonic maps between surfaces, estimates of Jacobian from below in terms of the
geometric data involved are given in Jost [17] (see Corollary 8.1, Theorem 8.1) and for univalent euclidean
harmonic maps in [21, 24, 34, 39]. In this subsection, we consider convex codomains and give short review
of a few result from [32, 33]. It seems that Theorem 1.5 is a new result. For a function h, we use notation
∂h = 1

2 (h′x − ih′y) and ∂h = 1
2 (h′x + ih′y); we also use notations Dh and Dh instead of ∂h and ∂h respectively

when it seems convenient.
Throughout this paper, if h is a complex harmonic function on simple connected planar domain, we will

write h in the form h = f + 1, where f and 1 are holomorphic. Note that every complex valued harmonic
function h on simply connected domain D is of this form.

Recall by D we denote the unit disc and T = ∂D we denote the unit circle, and we use notation z = reiθ.
For a function h we denote by h′r, h′x and h′y (or sometimes by ∂rh, ∂xh and ∂xh) partial derivatives with
respect to r, x and y respectively. Let h = f + 1 be harmonic, where f and 1 are analytic. Then ∂h = f ′,
h′r = f ′r + 1′r, f ′r = f ′(z)eiθ and Jh = | f ′|2 − |1′|2. If h is univalent, then |1′| < | f ′| and therefore |h′r| 6 | f ′r | + |1′r|
and |h′r| < 2| f ′|.

Theorem 1.1 ([33]). Suppose that
(a) h is a euclidean harmonic mapping from D onto a bounded convex domain D = h(D), which contains the disc
B(h(0); R0) . Then
(i.1) d(h(z), ∂D) > (1 − |z|)R0/2, z ∈ D.
(i.2) Suppose that ω = h∗(eiθ) and h∗r = h′r(eiθ) exist at a point eiθ

∈ T, and there exists the unit inner normal n = nω
at ω = h∗(eiθ) with respect to ∂D.
Then (h∗r,n) > c0, where c0 = R0

2 .
(i.3) In addition to the hypothesis stated in the item i.2), suppose that h′b exists at the point eiθ. Then |Jh| = |(h∗r,N)| =∣∣∣(h∗r,n)

∣∣∣|N| > c0|N|, where N = i h′b and the Jacobian is computed at the point eiθ with respect to the polar coordinates.
(i.4) If in addition to the hypothesis (a) suppose that h is an euclidean univalent harmonic mapping from an open

set G which contains D . Then | f ′| > R
4 on D.

A generalization of this result to several variables has been communicated at Analysis Belgrade Seminar,

cf. [35].
Note that (i.4) is a corollary of (i.2).
Outline of proof of (i.1). To every a ∈ ∂D we associate a nonnegative harmonic function u = ua. Since D

is convex, for a ∈ ∂D, there is a supporting line Λa defined by (w − a,na) = 0, where n = na is a unimodular
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complex number such that (w − a,na) > 0 for every w ∈ D. Define u(z) = (h(z) − a,na) and da = d(h(0),Λa).
Then u(0) = (h(0) − a,na) = d(h(0),Λa) and therefore, by the mean value theorem,

1
2π

∫ 2π

0
u(eit)dt = u(0) = da = d(h(0),Λa).

Since u = ua is a nonnegative harmonic function, for z = reiϕ
∈ D, we obtain

u(z) >
1 − r
1 + r

1
2π

∫ 2π

0
u(eit)dt.

Hence u(reiϕ) > da(1− r)/2, and therefore |h(z)− a| > da(1− r)/2 > (1− r)R0/2. Thus |h(z)− a| > (1− r)R0/2
for every a ∈ ∂D and therefore we obtain (1): d(h(z), ∂D) > (1 − r)R0/2. �

Note that if D is a convex domain, then in general for b ∈ ∂D there is no inner normal. However, there
is a supporting line Λb defined by (w − b,nb) = 0, where n = nb is a unimodular complex number such that
(w − b,nb) > 0 for every w ∈ D.

Note that proof of theorem can also be based on Harnack’s theorem (see also [48], Lemma 15.3.7) or
Hopf Lemma.

We use the notation λ f = l f (z) = |∂ f (z)| − |∂̄ f (z)| and Λ f (z) = |∂ f (z)| + |∂̄ f (z)|, if ∂ f (z) and ∂̄ f (z) exist.

Theorem 1.2 ([32]). (ii.1) Suppose that h = f + 1 is a Euclidean orientation preserving harmonic mapping fromD
onto bounded convex domain D = h(D), which contains a disc B(h(0); R0) . Then | f ′| > R0/4 onD.
(ii.2) Suppose, in addition, that h is qc. Then lh > (1 − k)| f ′| > (1 − k)R0/4 on D
(ii.3) In particular, h−1 is Lipschitz.

A proof of the theorem can be based on Theorem 1.1 and
(b): the approximation of a convex domain with smooth convex domains,
which is based on the hereditary property of convex functions: if an analytic function maps the unit disk univalently
onto a convex domain, then it also maps each concentric subdisk onto a convex domain. Now we outline an
approximation argument for convex domain G. Letφ be conformal mapping ofD onto G,φ′(0) > 0, Gn = φ(rnD),
rn = n

n+1 , Dn = h−1(Gn); and ϕn conformal mapping ofD onto Dn, ϕn(0) = 0, ϕ′n(0) > 0 and hn = h ◦ϕn. Since
Dn ⊂ Dn+1 and ∪Dn = D, we can apply the Carathéodory theorem; ϕn tends to z, uniformly on compacts,
whence ϕ′n(z)→ 1 (n→∞). By hereditary property Gn is convex.

Since the boundary of Dn is an analytic Jordan curve, the mapping ϕn can be continued analytically
across T, which implies that hn has a harmonic extension across T. An application of Theorem 1.1 (i.4) to
hn gives the proof.

Example 1.3. (ii.4) f (z) = (z − 1)2 is univalent onD. Since f ′(z) = 2(z − 1) it follows that f ′(z) tends 0 if z tends
1. This example shows that we can not drop the hypothesis that f (D) is a convex domain in Theorem 1.1 (i.4).
(ii.5) 1(z) =

√
z + 1 is univalent onD is not Lipshitz onD.

(ii.6) 1−1(w) = w2
− 1 and (1−1)′(w) = 2w tends to 0 if w ∈ 1(D) tends to 0.

1.2.

Hall, see [9] p. 66-68, proved the following:

Lemma 1.4 (Hall lemma). (ii.7) For all harmonic univalent mappings f of the unit disk onto itself with f (0) = 0,
|a1|

2 + |b1|
2 > c0 = 27

4π2 ,
where a1 = D f (0), b1 = D f (0) and c0 = 27

4π2 = 0. 6839. . . .

(ii.8) If in addition f is orientation preserving, then |a1| > σ0, where σ0 = 3
√

3
2
√

2π
.
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Hence, one can derive:
(I0) There is a constant c > 0 such that if h is harmonic planar mapping and B(hx,R) ⊂ h(B(x, r)), then

rΛh(x) > cR.
Now we give another proof and generalization of the part (ii.3) of Theorem 1.2, which is not based on

the approximation of a convex domain with smooth convex domains.

Theorem 1.5. Suppose that (a.1): D and D∗ are simply-connected hyperbolic domains in R2 with non-empty
boundary and that f is a euclidean harmonic univalent mapping from D onto D∗. Then
(iii.1) dΛ f � d∗ on D, where w = f (z), d = dist(z, ∂D) and d∗(w) = dist(w, ∂D∗).
(iii.2) If in addition to hypothesis (a.1) we suppose that (a.2): D is a C1,α, 0 < α < 1, domain and D∗ is convex
bounded domain, then there is a constant c > 0 such that Λ f � c on D.

By Theorem 4.9(Kellogg) we can reduce the proof to the case D = D.

Proof. Let z ∈ D and φ0 conformal of B onto D such that φ0(0) = z and F = h ◦ φ0. Since ΛF = Λ f |φ′0|, by (I0)
version of Hall lemma, ΛF � d∗, |φ′0| � d. Hence we find (iii.1): dΛ f � d∗.

Now let z = φ(z′) be a conformal of B onto D and d′ = dist(z′). Then d′|φ′| � d and by Theorem
4.9(Kellogg) (iii.3): d′ � d.

Since D∗ convex, d∗ � d′ and therefore by (iii.3) we find d∗ � d. Hence by (iii.1) Λ f � c on D.

The following result is an immediate corollary of Theorem 1.5.

Theorem 1.6. If in addition to hypothesis (a.1) and (a.2) of Theorem 1.5 f is qc, then f−1 is Lipschitz on D∗.

Corollary 1.7. In particular, if f is conformal, then f−1 is Lipschitz on D∗.

Proof. Using that f is qc, it follows that λ f � Λ f � c and the rest of the proof is routine.

Let G be simply connected hyperbolic planar domain and ρ = ρhyp
G hyperbolic density; we also use short

notation ρhyp = ρG. Using the uniformization theorem, one can define hyperbolic density for a hyperbolic
planar domain.

If G is a planar domain with non-empty boundary, f a C1 complex valued mapping d = dG and d∗ = d f (G),
we define H := |∂ f |qv

hyp =
d(z)

d∗( f (z)) | fz|. In addition if G is hyperbolic planar domain, ρ = ρG and ρ∗ = ρ f (G), we

define H := |∂ f |hyp =
ρ∗( f (z))
ρ(z)) | fz|.

Theorem 1.8. If G is simply connected, then
(iv.1) dG(w) 6 ρ−1

G 6 8dG(w).
There is an absolute constant c such that under the hypothesis (a.1) of Theorem 1.5 if f in addition orientation
preserving, we have
(iv.2) H := |∂ f |qv

hyp =
d(z)

d∗( f (z)) | fz| > c.
(iv.3) H := |∂ f |hyp > c/8.

Proof. Let φ : D → G be conformal. Then ρ(w)|φ′(z)| = ρ(z) and dG(w) 6 dD(z)|φ′(z)| 6 4dG(w). Hence
dG(w) 6 ρ−1

G 6 8dG(w).
Set w = φ(z), ζ = f (w) and F = f ◦ φ. Since Fz = fwφ′(z), by an application of Hall lemma, (ii.8), to F, we

find | fw(w)||φ′(z)| > d∗σ0. If w ∈ G, we can choose a conformal mapping φ0 : D → G such that w = φ0(0).
Then |φ′0(0)| 6 4d and therefore 4d| fw(w)| > d∗σ0. Hence we get (iv.2) with c = σ0/4.

The part (iv.3) has also been proved by Kalaj.
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1.3. The minimum principle for the Jacobian

(I1) Let h : Ω→ C be a harmonic map whose Jacobian determinant J = |hz|
2
− |hz|

2 is positive everywhere
in Ω. Then − ln J is subharmonic; More precisely, cf. [14, 15],

−
1
4

∆ ln J = −(ln J)zz =
|hzzhz − hz zhz|

2

J2 .

Note that in [30] it is proved previously that
(I2) X = lo1 1

Jh
is a subharmonic function.

We left to the reader to check the following fact (I3-I6):
If F is an analytic function, then |F|2zz = |F′|2. Hence

(I3) J(h)z = f ′′ f ′ − 1′′1′, J(h)zz = | f ′′|2 − |1′′|2.
(I4) In general, J(h) nether subharmonic nor superharmonic.
If τ : D→ I, I = (a, b), χ : I→ R, then
(I5) (χ ◦ τ)zz = (χ′′ ◦ τ)τzτz + (χ′ ◦ τ)τzz = (χ′′ ◦ τ)|τz|

2 + (χ′ ◦ τ)τzz.
If we set χ(x) = x−1 and τ = J, we find
(I6) −(J−1)zz J3 = |τz|

2 + |B + C|2.
If we set χ = lo1, τ = J, B = f ′1′′ and C = 1′ f ′′, then
(I7) −(ln J)zz J2 = |B + C|2.
(I8) Suppose that F and H are analytic function in a domain G such that |F|2 = m0 + |H|2 on G, where m0

is a positive constant. Then FzF = HzH and therefore
H′/F′ = F/H. Hence H′/F′ = a0, where a0 is a constant and therefore H/F = a0z + a1.
|F|2 = m0 + |a0z + a1|

2
|F|2 on G. Without loss of generality we can suppose that 0 ∈ G and that F =

b0 + bnzn + o(zn), n > 1.
This leads to a contradiction and so F = b0 and therefore H = c0 on G, where b0 and c0 are constants.

Proposition 1.9. (a.2) If h is harmonic on U and J(h) attains minimum (different from 0) at interior point a, then
J(h) is constant function, and h is affine.

(b.2) Functions lo1 1
Jh

and 1
Jh

are subharmonic function.
(c.2) In particular, lo1Jh is a superharmonic function.

Corollary 1.10 (Minimum Principle). Let h : Ω→ C be a harmonic map whose Jacobian determinant J is positive
everywhere in Ω. Then infF J > in f∂F J for every compact F ⊂ Ω.

Example h = f + 1, where f = 4z, 1 = z2/2, shows that that analog statement is not valid for maximum;
J = 16 − (x2 + y2) attains maximum 16 at (0, 0).

In general, minJ is attained at the boundary.
Proof of (a.2). Suppose that h is orientation preserving and J(h) = | f ′|2 − |1′|2 attains min (different from

0) at interior point a; then | f ′|2 − |1′|2 > J(h, a) = m, | f ′|2 > m + |1′|2 and therefore 1 > s(z), where

s =
m
| f ′|2

+
|1′|2

| f ′|2
.

Since s is subharmonic and s(a) = 1, s is a constant, ie. s = 1. Hence | f ′|2 = m + |1′|2, ie. J = m. By (I8), f ′ and
1′ are constant functions and therefore h is affine.

Proof of (b.2). Hence, since exp is a convex increasing function, it follows that exp ◦X = 1
Jh

is also a
subharmonic function.

Although χ(x) = e−x is convex the conclusion that χ ◦ X = J(h) is a subharmonic function is not true
in general. Note that here χ is a decreasing function. In general, the minimum modulus principle for
complex-valued harmonic functions is not valid; see the following examples:
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Example 1.11. 1. If f (z) = x + i, then | f (z)|2 = x2 + 1 and | f | attains minimum which is 1 for every points on y axis
2. If fc(z) = x+ i(x2

− y2 + c), then J f = −2y. Let d : C→ R is given by d(z) = |z|, z ∈ C, 1 = f−1, C(x) = x+ i(x2
−1)

and D = {(x, y) : y < x2
− 1}. Since 1(C) = D and 0 < D, then d attains minimum on tr(C) at some point w0 and

there is a real point x0 such that 1(x0) = w0, 1 maps C onto D and |1| attains minimum at x0.
Let c < 0 and Dc = {(x, y) : y < x2

− |c|}. Then fc(C) = Dc and 0 < Dc. At first sight someone can guess that
| fc(0)| = |c| is the minimum value for | fc| if c < 0? We leave to the interested reader to show that |c| is not the minimum
value.

1.4. Outline of proof of Theorem RCK given in [14, 15]

For f : T → C, we define f
¯

on [0, 2π] by f
¯
(t) = f (eit). Let γ be a closed Jordan curve, G = Int(γ),

f0 : S1 onto
−→ γ a monotone map and F = P[ f0].

Theorem 1.12 (T. Radó H. Kneser G. Choquet, Theorem RKC). If G is convex, then F is a homeomorphism of
D onto G.

Iwaniec-Onninen [14, 15] presented a new analytic proof of RKC-Theorem. The approach is based on
the following steps.
c1) Prove the theorem if f0 is diffeomorphism and G is a smooth strictly convex domain, using the minimum
principle for the Jacobian determinant and explicit interior lower bounds on the Jacobian in terms of the
regularity of the domains and the boundary map.
c2) Let G be still a smooth strictly convex domain, but f : S1 onto

−→ γ an arbitrary monotone map. This map
can easily be shown to be a uniform limit of diffeomorphisms. Now the Poisson extensions F j are harmonic
diffeomorphisms inD, converging uniformly onD to F and JF > 0, cf also [24, 35].
c3) the approximation of a convex domain with smooth convex domains.
c4) there is a conformal map φ of D onto G; by variation of boundary values deform this conformal map
into a harmonic diffeomorphism.

It is convenient to give kinematic description of f : S1 onto
−→ γ, to view it as motion of an object along γ in

which S1 is labeled as a clock. As time runs from 0 to 2π the motion t→ f
¯
(t) begins at the point f

¯
(0) = 0 and

terminates at the same point f
¯
(2π) = 0. The velocity vector υ(t) = f

¯
′(t) is tangent to γ at s = s(t) =

∫ t

0 |υ(τ)|dτ.
We call |υ(t)| the speed. Let z = z(s) be the length parametrization of γ. Since |z′(s)| = 1, we have z(s) = eiϕ(s),
where ϕ(s) referred to as the tangential angle, is uniquely determined by the arc parameter s because G is
smooth and strictly convex. The derivative is exactly the curvature of γ; that is κ(s) = ϕ′(s). The speed |υ(t)|,
being positive, uniquely represents unique diffeomorphism f : S1 onto

−→ γ. An explicit formula for f involves
the curvature of γ.

Theorem 1.13 ([14, 15]). Let f : S1 onto
−→ γ be a C∞ -difeomorphism and F : D → C its continuous harmonic

extension. Then F : D onto
−→ G is a C1-smooth diffeomorphism whose Jacobian determinant satisfies:

JF >
km3

2πKM
everywhere in D (2)

provided 0 < k 6 minκ(s) 6 maxκ(s) 6 K and 0 < m 6 min υ(t) 6 max υ(t)(s) 6M, where υ(t) = | f ′(t)|.

In [14, 15] the strategy is used to prove first The Lower Bound of the Jacobian along S1. Then the proof is
reduced to showing inequality (2) at the boundary of the disk, as one may have expected from the Minimum
Principle.
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1.5.

We also can use Theorem 1.14 below, which yields appriori estimate, instead of Theorem 1.13 in the
procedure of proof of Theorem RKC.

Let A(γ) be the family of C1 -difeomorphism f : S1 onto
−→ γ. Set υ(t) = υ f (t) = | f ′(t)|.

Let d be diameter of G, b ∈ G, B = B(b; d/2, γ1 the part of γ out of B and I = {t : f (t) ∈ tr(γ1)}. Then
d/2 6 |γ1| 6M|I|.

Theorem 1.14. Let f ∈ A(γ) and 0 < m 6 min υ(t) 6 max υ(t)(s) 6M. Then

JF >
dm

8πM
on D. (3)

Using approuch outlined in [33, 34], we can prove

Lemma 1.15. The inequality (3) holds everywhere in S1.

Naturally, the interior estimate at (3) would follow from the already established estimate at the boundary
(via the minimum principle) if we knew that the Jacobian of F was positive inD.

But, by Theorem RKC the Jacobian of F is positive in D. Theorem 1.16 below yields better estimate.
Using Theorem 1.1, the part (i.3), and the minimum principle for Jacobian one can derive:

Theorem 1.16. d1) Let Ω be a convex Jordan domain, f : T → ∂Ω absolutely continuous homeomorphism which
preserves orientation, and let w = P[ f ] be a harmonic function between the unit disk and Ω, such that w(0) = 0,
d2) | f ′(t)| > m, for almost every 0 6 t 6 2π,
d3) f ′ is Dini’s continuous.
Then the following results hold (iv.1) : Jw(z) > m dist(0, ∂Ω)/2, for every z ∈ D, and
(iv.2) w is bi-Lipschitz.

Let X be a compact subset of a metric space with metric d1 (such asRn) and let f : X→ Y be a function from X
into another metric space Y with metric d2 . The modulus of continuity of f isω f (t) = supd1(x,y)6t d2( f (x), f (y)) ,
t > 0. The function f is called Dini-continuous if∫ 1

0

ω f (t)
t

dt < ∞.

Dini continuity is a refinement of continuity. Every Dini continuous function is continuous. Every Lipschitz
continuous function is Dini continuous. Note that under the above hypothesis f ′ has continuous extension

to [0, 2π] and partial derivatives of w have continuous extension to D and one can show that w is bi-
Lipschitz. We can use an aproximation argument to prove (iv.1) for C1,α domains Ω without the hypothesis
d3). Moreover, an application of Hp theory shows that the following result, due to Kalaj, holds in general:

Theorem 1.17 (Theorem 2.8, Corollary 2.9 [23]). Under hypothesis d1) and d2) of Theorem 1.16, J∗w exsists a.e.
on T and (iv.1) holds.

Under hypothesis d1) of Theorem 1.16, Theorem RKC states that
(v.1) Jw > 0 onD.
Question 1. Can we modify approach in [14, 15] to give analytic proof of Theorem 1.17 (of course without
appeal to Theorem RKC (moreprecisely to (v.1))?
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2. Estimates for the modulus of the derivatives of harmonic univalent mappings in space

Definition 2.1. Let G be a subset of the Euclidean space Rn and let

ϕ : G→ R ∪ {+∞}

be an lower semi-continuous function. Then, ϕ is called q- superharmonic, 0 < q 6 1, if for any closed ball B(x, r)
of center x and radius r contained in G and every real-valued continuous function h on B(x, r) that is harmonic in
B(x, r) and satisfies ϕ(y) > qh(y) for all y on the boundary ∂B(x, r) of B(x, r) we have ϕ(y) > h(y) for all y ∈ B(x, r).
If q = 1 we say superharmonic instead of 1- superharmonic.

Definition 2.2. Let G be a domain in Rn. Suppose that f : G → Rn is a C1 function and there is a constant c > 0
such that for every x ∈ G
(a) if B(x, r) ⊂ G and B( f x,R) ⊂ f (B(x, r)), then rΛ f (x) > cR.
(a’) if B( f x,R) ⊂ f (B(x, r)), then rΛ f (x) > cR.

We say that f has H-property (respectively weak H-property) if (a) (respectively (a’)) holds.

By Hall lemma planar euclidean harmonic mappings have H-property.
We say that F ⊂ HQCK(G,G′) has H-property if F is closed with respect to uniform convergence, and for

f ∈ F, J( f ) has no zeros in G.
If F ⊂ HQCK(G,G′) has H-property, then f ∈ F has weak H-property.
By Lemma 3.8, there is a constant c > 0 such that d(x)Λ f (x) > cd( f x), x ∈ G.

Lemma 2.3. Let FK be a family of harmonic K-qc mapping f : B → Rn such that for f ∈ FK, J( f ) has no zeros, FK
is closed with respect to uniform convergence, f (B) ⊃ B and f (0) = 0. Then there is a constant c > 0 such that if
f ∈ FK is harmonic K-qc mapping f (B) ⊃ B, f (0) = 0, then Λ f (0) > c.

Contrary there is a sequence fn ∈ FK such that Λ fn (0)→ 0. Sequence fn forms a normal family and there is
a subsequence of fn which converges uniformly to a limit f0 ∈ FK; this is a contradiction.

Suppose that F is mapping from the unit ball B ⊂ Rn into Rm and suppose that ω = F∗(x) and (∂rF)∗(x)
exist at a point x ∈ S. Then
(A1) F′r(x) exists and (∂rF)∗(x) = F′r(x).

Proof of (A1). By Lagrange theorem, there is tk ∈ [r, 1) such that Fk(rx) − Fk(x) = −(Fk)′r(tkx)(1 − r). Hence,
since (∂rh)∗(x) exist at a point x ∈ S, if r tends 1, then (Fk)′r(tkx) tends (Fk)′r(x).

The next theorem concerns harmonic maps onto a convex domain. See Appendix 6 for short discussion
about it where the part (i.1) is stated as Theorem 6.4.

Theorem 2.4. (a1) Suppose that h is a euclidean harmonic mapping from the unit ball B ⊂ Rn onto a
bounded convex domain D = h(B), which contains the ball B(h(0); R0) . Then
(i.1) d(h(z), ∂D) > (1 − |z|)cnR0, z ∈ B, where cn = 1

2n−1 .
(i.2) For every x ∈ S and for 0 < r < 1, there is t ∈ [r, 1) such that |h′r(tx)| > c0.
(i.3) If h is K-qc and (a2) h has H-property or (a3) for some k, |h′xk

|
n is q- super harmonic, then h is co-Lipschitz

on B.
(a4) Suppose, in addition, to (a1) that h is K-qc and D is C2 domain. Then

(i.4) h′r(x) exists and (∂rh)∗(x) = h′r(x) > c0 for almost everywhere x ∈ S.

Proof of (i.1). To every a ∈ ∂D we associate a nonnegative harmonic function u = ua. Since D is convex,
for a ∈ ∂D, there is a supporting hyper-plane Λa defined by (w − a,na) = 0 where n = na ∈ TaRn is a unit
vector such that (w − a,na) > 0 for every w ∈ D. Define u(z) = (h(z) − a,na) and da = d(h(0),Λa). Then
u(0) = (h(0) − a,na) = d(h(0),Λa). Let a0 ∈ Λa be the point such that da = |h(0) − a0|. Then from geometric
interpretation it is clear that da > R0.

By Harnack’s inequality, cn(1 − r)u(0) 6 u(x), x ∈ B and r = |x|, where cn = 1
2n−1 . In particular, cnd(x)R0 6

u(x) 6 |h(x) − a| for every a ∈ ∂D. Hence, for a fixed x, dh(x) = infa∈∂D |h(x) − a| > cnR0d(x) and therefore we
obtain (i.1). �
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Proof of (i.2). Set u(z) = (h(z) − h(x),nh(x)) and c0 = cnR0. Since u(x) = 0, then
(i.5) for x ∈ S, u(rx) − u(x) > c0(1 − r).

By Lagrange theorem, there is t ∈ [r, 1) such that u(rx) − u(x) = u′r(tx)(1 − r). �

Proof of (i.3). Suppose for example (b1). By Theorems 2.4 and 2.6, J(x) � d∗
d � c for every x ∈ B. By (a3),

|h′xk
(x)|n > q 1

|Bx |

∫
Bx
|h′xk

(z)|ndz , x ∈ B. Hence |h′xk
(x)| � J(x) � c

and λ(h′(x) � c and therefore h is co-Lipschitz on B. �

Proof of (i.4). First, suppose that h′r(x) exists for some x ∈ S. By (i.5), ( h(rx)−h∗(x)
1−r ,n) > c0, where n = na and

a = h∗(x). Hence, since h′r(x) exists, it follows
(i.6) (h′r(x),n) > cnR0.

By a result of D. Kalaj [25], partial derivatives of h are bounded and therefore h′r(x) exists for almost
everywhere x ∈ S and therefore by (i.2) and (i.6), (∂rh)∗(x) = h′r(x) > c0 for almost everywhere x ∈ S. �

In [27] it is proved the following theorem: a K quasiconformal harmonic mapping of the unit ball Bn

(n > 2) onto itself is Euclidean bi-lipschitz, providing that u(0) = 0 and that K < 2n−1, where n is the
dimension of the space. It is an extension of a similar result for hyperbolic harmonic mappings with respect
to hyperbolic metric (see Tam and Wan, (1998)). The proof makes use of Möbius transformations in the
space, and of a recent result which states that, harmonic quasiconformal self-mappings of the unit ball are
Lipschitz continuous; this result first has been proved by the first author and then generalized also by the
second author.
Introduce the quantity

a f (x) = a f ,G(x) := exp
(

1
n|Bx|

∫
Bx

logJ f (z)dz
)
, x ∈ G,

associated with a quasiconformal mapping f : G→ f (G) ⊂ Rn; here J f is the Jacobian of f ; while Bx = Bx,G
stands for the ball B(x; d(x, ∂G)); and |Bx| for its volume. Astala and Gehring [5] observed that for certain
distortion property of quasiconformal mappings the function a f , defined the above, plays analogous role
as | f ′| when n = 2 and f is conformal; and they establish quasiconformal version of the well-know result
due to Koebe, cited here as Lemma 2.5:

Lemma 2.5 ([5]). Suppose that G and G′ are domains in Rn: If f : G→ G′ is K-quasiconformal, then

1
c

d( f (x), ∂G′)
d(x, ∂G)

6 a f ,G(x) 6 c
d( f (x), ∂G′)

d(x, ∂G)
, x ∈ G,

where c is a constant which depends only on K and n.

Our next result concerns the quantity

E f ,G(x) :=
1
|Bx|

∫
Bx

J f (z)dV(z) , x ∈ G,

associated with a quasiconformal mapping f : G → f (G) ⊂ Rn; here dV(z) = dz is the Euclidean volume
element dz1dz2 · · · dzn and z = (z1 · · · zn) and J f is the Jacobian of f ; while Bx = Bx,G stands for the ball
B(x, d(x, ∂G)/2) and |Bx| for its volume.

Define

J
f

= J
f ,G

= n

√
E f ,G .
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Theorem 2.6 ([39]). Suppose that G and G′ are domains in Rn: If f : G→ G′ is K-quasiconformal, then

1
c

d( f (x), ∂G′)
d(x, ∂G)

6 J
f ,G

(x) 6 c
d( f (x), ∂G′)

d(x, ∂G)
, x ∈ G,

where c is a constant which depends only on K and n.

If G and G′ are domains inRn, by QCH(G,G′) (respectively QCHK(G,G′) ) we denote the set of Euclidean
harmonic quasiconformal mappings (respectively K-qc) of G onto G′.

If D is a domain in Rn, by QCH(D) we denote the set of Euclidean harmonic quasiconformal mappings
of D onto itself.

Definition 2.7. Let QH(G) be a family of harmonic mappings h from G into Rn such that
(b1) J(h) has no zeros in G, and
(b2) which is closed with respect to uniform convergence on compact subsets and
(b3) for every sequence xn which tends to a x0 ∈ ∂G, hn ∈ QH, where hn(x) = 1

dn
h((dnx+xn)) and dn = d(xn) = dist(xn).

If G is the unit ball B we write QH instead of QH(G).

Using a criteria for normality of a qc family, one can establish criteria when a subfamily Q of QCH(G), for
which KO( f ) < 3n−1 for every f ∈ Q, is QH(G)-family.

Definition 2.8. Let f : G→ G′ be a C1 function. We say that f has Jacobian non zero normal family-property if
(b1) J( f ) has no zeros in G, and
(b2) for every sequence xn which tends to a x0 ∈ ∂G, ( fn) forms a normal family, where fn(x) = 1

d∗n
f ((dnx + xn)), and

dn = d(xn) = dist(xn) and d∗n = d( f (xn)) and
(b3) for every limit f0 of ( fn) in sense of the uniform convergence, f0 is a C1 function and J( f0) has no zeros in G. In
this setting, we say that the sequence ( fn) is associated sequence to the sequence (xn) and that f0 is the associated limit.

Theorem 2.9. (a) Suppose that h is a euclidean harmonic K-qc mapping from the unit ball B ⊂ Rn onto a
bounded convex domain D = h(B), which contains the ball B(h(0); R0) .
(i.7) If h has Jacobian non zero normal family-property (or h ∈ QH), then h is co-Lipschitz on B.
(i.8) If log Jh is q-superharmonic, then Jh > c.

Proof. (i.7): Suppose that there is sequence xn such that |h′r(xn)| → 0 and set dn = d(xn). Since by Theorems
2.4 and 2.6, J(xn) � d∗

d � c, there is a point yn ∈ B(xn) such that |h′r(yn)| � c. Apply a normal family argument
on hn(x) = 1

d∗n
h((dnx + xn)).

(i.8) follows from Theorem 2.4,(i.8), and Lemma 2.5.

Using the Thom splitting lemma, we can prove

Proposition 2.10. Suppose that f is real-valued function defined at a neighboorhood U(x0) of a point x0 ∈ Rn, f has
partial derivatives up to the order 3 at x0 and that f : U(x0) → Rn is injective, where U(x0) is a neighborhood of x0
in Rn. If ∂k f (x0) = 0, then ∂2

i j f (x0) = 0, i, j = 1, 2, · · · ,n, that is Hess(f)(x0) = [0].

Frequently we use notation X = (x, y, z) ∈ R3. If we work in Rn it is convenient to switch the notation to
x = (x1, x2, · · · , xn) ∈ Rn.

Example 2.11. Let a , 0. A radial mapping fa in n-space is given by: f (X) = fa(X) = |X|a−1 X, where X ∈ Rn.
Prove
(i.2) KI( f ) = |a|, KO( f ) = |a|n−1 if |a| > 1; in particular K( f3) = KO( f3) = 3n−1;
KI( f ) = |a|1−n, KO( f ) = |a|−1 if |a| 6 1.
In particular, for n = 3, X = (x, y, z) ∈ R3,
KI( f ) = |a|, KO( f ) = |a|2 if |a| > 1;
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Now we consider 3-space.
(i.3) For a = 3 set 1 = f3; then ∂k1(0) = 0, ∂2

i j1(0) = 0 and 11(X) = x3 + xy2 + xz2.
(i.4) For |a| > 1, fa is co-Lipschitz on B r F, where F is a compact subset of B.

Set x′ = f (x), x = (x1, x2, x3); then |x′| = |x|a and by the cosine formula, we find |x|2a + |y|2a
− |x′ − y′|2 =

|x|a−1
|y|a−1(|x|2 + |y|2 − |x − y|2).

|x′ − y′|2 = |x|a−1
|y|a−1

|x − y|2 + R(x, y), (4)

where R(x, y) = |x|2a + |y|2a
− |x|a+1

|y|a−1
− |x|a−1

|y|a+1.
Without loss of generality we can suppose that |y| = λ|x|, 0 6 λ 6 1. Then R(x, y) = (1−λa−1)(1−λa+1)|x|2a > 0 .

Therefore |x′ − y′|2 > |x|a−1
|y|a−1

|x − y|2 and thus

|x′ − y′| > λ(a−1)/2
|x|a−1

|x − y| . (5)

We need the following Proposition concerning the distortion property of qr mappings.

Proposition 2.12 (Corollary 11.3 [? ]). Let f : Bn
→ Bn be K-qr, f (0) = 0 and α = KI( f )1/(1−n). Then

(i.5) | f (x)| 6 ϕK,n(|x|) 6 λ1−α
n |x|α.

(i.6) If 1 : Bn
→ Bn is K-qc, 1(0) = 0 and 1/α = KI(1−1)1/(n−1), then

m|x|1/α 6 |1(x)|.

Set f = 1−1, y = 1(x), x = f (y) and α = KI(1−1)1/(1−n). Then by (i.5), |x| 6 λ1−α
n |y|α and hence (i.6).

Suppose that 1 is analytic (more generally C(3) at 0), 1(0) = 0, ∂k1(0) = 0 and ∂2
i j1(0) = 0. Then

|∂k1(x)| 6M|x|2 and therefore |1(x) − 1(y)| 6M|x|2|x − y| if |y| 6 |x|. In particular, |1(x)| 6M|x|3.
Note that, if in addition, f is C(4) at 0 and ∂3

i jk1(0) = 0, then |1(x) − 1(y)| 6 M|x|3|x − y| if |y| 6 |x| and fa + 1 is

K-qc for a < 4. In particular, |1(x)| 6M|x|4.

Proposition 2.13. Suppose that f has partial derivatives up to the order 3 at a point x0 ∈ Rn and that f : U(x0)→ Rn

is K-qc, where U(x0) is a neighborhood of x0 in Rn. If ∂k f (x0) = 0 and ∂2
i j f (x0) = 0, then KO( f ) > 3n−1 on U(x0).

Example 2.11 shows that the result is optimal.

Proof. By the Taylor formula, there is M such | f (x)| 6 M|x|3. Set 1 = f−1 and α = KI(1)1/(1−n) so that
1/α = KI( f−1)1/(n−1).
Then by Proposition 2.12, m|x|1/α 6 | f (x)| 6 M|x|3. Hence 1/α > 3, ie. KI( f−1) > 3n−1 and therefore
KO( f ) > 3n−1, because KO( f ) = KI( f−1).

Proposition 2.14. Suppose that f has continuous partial derivatives up to the order 3 at the origin 0 and that
f : U(0)→ Rn is K-qc, where U(0) is a neighborhood of 0 in Rn. If KO( f ) < 3n−1, then J( f , 0) , 0.
In particular, if 1 is analytic (more generally C(3)(U(0)) or 1 only has partial derivatives up to the order 3), and
if 1 is K-qc with KO(1) < 3n−1, then J(1, 0) , 0.

Proof. Contrary suppose that J( f , 0) = 0. Since f is K-qc, ∂k f (x0) = 0, hence by Proposition 2.10 we find
∂2

i j f (x0) = 0. Now, by Proposition 2.13, KO( f ) > 3n−1 and this yields a contradiction.

Theorem 2.15. If in addition to hypothesis (a) of Theorem 2.9 we suppose that h is qc with KO(h) < 3n−1, then
h is co-Lipschitz on B.

Proof. The proof follows from Theorem 2.9 and Proposition 2.14. We leave the details to the interested
reader.
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3. The Lower Bound of the Jacobian in R3

It seems a natural project to generalize and develop the arguments used in planar theory of harmonic
mappings to harmonic functions in domains of Rn, > 3. In Section 1 we used the fact that every complex
harmonic function h on simple connected planar domain, can be written in the form h = f + 1, where f and
1 are holomorphic that | f ′| satisfies minimum principle. There is no appropriate analogy of this result in
space. The next example shows that the minimum principle does not hold for modulus of vector valued
harmonic mapping.

Example 3.1. Define h(M) = (x, y, x2 + y2
− 1 − 2z2), where M = (x, y, z), f0(x, y) = (x, y, x2 + y2

− 1) and
G = {(x, y, z) : z < x2 + y2

− 1}. Then J(h) = −4z, the restriction of h on xy-plane is f0, Γ f0 = ∂G and h(R3) = G.
Let d(M) = |OM|. Then d attains minimum on Γ f0 at some point M1 and there is a point M0 = (x0, y0, 0) such that
f0(M0) = M1 = h(M0), h maps R3 onto G and therefore |h| attains minimum at M0.

If h is a harmonic mapping from a domain in Rn to Rn, then |h′xk
| is subharmonic, but it does not satisfy

minimum principle in general (adapt the above example to the dimension n > 3).
In fact, Lewy’s theorem is false in dimensions higer than two (see [9] p. 25-27 for Wood’s counterexam-

ple).
Consider the polynomial map from R3 to R3 defined by h(x, y, z) = (u, v,w), where

u = x3
− 3xz2 + yz, v = y − 3xz, w = z .

Since z = w, u = x3+zv = x3+vw, we find x = 3
√

u − vw and therefore y = v+3xz = v+3xw = v+3w 3
√

u − vw,
we conclude that h is injective. A calculation shows that h has the Jacobian

Jh(x, y, z) = 3x2,

which vanishes on the plane x = 0. Jacobian of C1 orientation preserving mapping f is nonnegative.
Iwaniec [14] suggest a project (for students): Generalize and develop the arguments used in planar theory
of harmonic mappings to gradient mappings of harmonic functions in domains ofR3. Recall that, in planar
theory of harmonic mappings we used

(I.0) version of Hall and
(II.0) If analytic function does not vanish then its modulus satisfies minimum principle.
For harmonic gradient mapping in 3-space Proposition 3.4 and Theorem 3.2 are analogy of (I.0) and

(II.0) respectively.
For n = 3, Lewy proved that the Hessian of a harmonic function (the determinant of its matrix of second

derivatives) cannot vanish at an interior point of its domain without changing sign, unless it vanishes
identically. More precisely, if the Hessian vanishes at some interior point x0 without vanishing identically,
then in each neighborhood of x0 it must take both positive and negative values. But the Jacobian of a
harmonic mapping f = grad u is the Hessian of u.

As a consequence, the Jacobian of a locally univalent harmonic gradient mapping fromR3 toR3 cannot
vanish at any interior point of its domain. Gleason and Wolff [13] generalized this result to Rn.

Throughout this text the subscripts with variables x, y and z designate partial derivatives.
A vector field F = ( f 1, f 2, f 3) is said to satisfy the Cauchy-Riemann equations (CR-equations, for short)

if its coordinates, (conjugate harmonic functions) satisfy:
f 1
y = f 2

x , f 1
z = f 3

x , f 2
z = f 3

y , f 1
x + f 2

y + f 3
z = 0, locally F = gradφ and 4φ = 0.

Equivalently, the Jacobian matrix of F is symmetric and has trace 0.

Theorem 3.2 (Lewy-Gleason-Wolff,[13]). Logarithm of modulus of the Hessian of a harmonic function in a domain
Ω ⊂ R3 is superharmonic outside its zeros. Precisely, ∆ ln |H| 6 0, wherever H , 0.

Remark. This inequality fails in dimensions greater than 3. Obviously, it holds (as equality) for planar
harmonic functions.
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Proposition 3.3. Suppose Hessian determinant H of a harmonic function in a domain Ω ⊂ R3 is positive. Then for
every compact F ⊂ Ω we have infF H > in f∂FH.

In particular, if f is injective harmonic gradient mapping, we have infF J( f ) > in f∂F J( f ).

Using a normal family argument one can prove (see subsection 3.1 for details):

Proposition 3.4. [35] Suppose that G and G′ are domains in R3: If f : G→ G′ is injective harmonic K-qc gradient
mapping, then f has weak H-property.

A more general result will appear in a forthcoming paper.

Proposition 3.5. Suppose that
(a1): f is injective harmonic gradient mapping from B onto D ⊂ R3 and
(b1): partial derivatives of f have continuous extension to B
(i.1) If Jh > j0 > 0 on S2, then Jh > j0 on B.
(i.2) If in addition f is K-qc, then f : B→ D is bi-Lipschitz.

Theorem 3.6. Suppose that
(a1) f is continuous on B, and univalent harmonic K-qc gradient mapping from B onto convex domain D ⊂ R3

and
(b1) partial derivatives of f have continuous extension to B.
(ii.1) Then f : B→ D is bi-Lipschitz and in particular f−1 : D→ B is L-Lipschitz.
(ii.2) If f is injective harmonic K-qc gradient mapping from B onto convex bounded domain D ⊂ R3, then f is

co-Lipschitz.

Proof. (i.1), (i.2) and (ii.1) are corollary of Proposition 3.3.
(ii.2) is a corollary of Proposition 3.4 and Theorem 2.4 (i.3).

Note that the above outline of proof of (ii.2) is not based on Theorem 3.2 (see subsection 3.1 for more details).
Astala-Manojlović first made publicly available proof of (ii.2) in Math.Arxiv, [6].

In particular, (ii.2) yields:

Proposition 3.7. (b) Suppose that f is univalent harmonic gradient mapping from B3 onto itself. Then f is co-
Lipschitz.

Note that this result also follows directly from Lewy-Gleason-Wolff Theorem 3.2, Astala-Gehring Lemma
2.5 and Theorem 2.4.

In communication between V. Zorich and the author, the question was asked to find examples of
functions that satisfy the condition (c). For example, if u = x2 + y2

− 2z2, then f = ∇u = (2x, 2y,−4z) is
injective harmonic gradient mapping from B3 onto the ellipsoid.

If u is real-valued function such that f = ∇u = (x, y, z), then u = x2/2 + y2/2 + z2/2 + c.
In particular, Id is not harmonic gradient mapping.
In complex plane, if u is real-valued harmonic function, then uz = 1

2 (u′x − u′y) is analytic function and
therefore ∇u = F, where F = 2uz is analytic function.

3.1. Hall lemma and co-Lipschitz property of qc gradient harmonic mappings
Here, we outline a proof of Theorem 3.6, the part (ii.2), stated here as:
(A0) A euclidean gradient harmonic mapping from the unit ballB ⊂ R3 onto a bounded convex domain

is co-Lipschitz.
Note that our proof of (A0) is based on the Hall lemma and a normal family argument and our approach

is different from that in [6]; see also [8].
We first prove Hall lemma for harmonic injective mappings in n-dimensional space.
If G and G′ are domains inRn, by QCH(G,G′) (respectively QCHK(G,G′) ) we denote the set of Euclidean

harmonic quasiconformal mappings (respectively K-qc) of G onto G′.
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Lemma 3.8. Let FK be a family of harmonic K-qc mapping f : B → Rn such that for f ∈ FK, J( f ) has no zeros, FK
is closed with respect to uniform convergence, f (B) ⊃ B and f (0) = 0. Then there is a constant c > 0 such that if
f ∈ FK is harmonic K-qc mapping f (B) ⊃ B, f (0) = 0, then Λ f (0) > c.

Proof. Suppose, on the contrary, that there is a sequence fn ∈ FK such that Λ fn (0) → 0. The sequence ( fn)
forms a normal family and there is a subsequence of fn which converges uniformly to a limit f0 ∈ FK; this
is a contradiction.

Our further considerations are related to weak H-property (see Definition 2.2).
By Hall lemma planar euclidean harmonic mappings have H-property. Let QCH0

K = QCH0
K(B,D) be

family of gradient harmonic mappings which maps B onto D.

Definition 3.9. We say that F ⊂ QCHK(G,G′) has J-property if F is closed with respect to uniform convergence, and
for f ∈ F, J( f ) has no zeros in G.

Now we sketch a proof of the statement (A0) in few steps (A1-A5):
(A1) If F ⊂ QCHK(G,G′) has J-property, then f ∈ F has weak H-property.
Outline of proof. By Lemma 3.8, there is a constant c > 0 such that d(x)Λ f (x) > cd( f x), x ∈ G.
(A2) Suppose that h is a euclidean harmonic mapping from the unit ballB ⊂ Rn onto a bounded convex

domain D = h(B). Then there is a constant c > 0 such that d∗( f (x)) > cd(x), x ∈ B.
(A3) If f is injective harmonic gradient mapping, which maps B ⊂ Rn onto a bounded convex domain

D = h(B), then any associated limit of f is harmonic gradient mapping.
In dimension n = 3, then it has Jacobian non zero normal family-property.

(A4) If F ⊂ QCHK(B,D) has H-property, then every f ∈ F is co-Lipschitz.
By (A1) there is a constant c > 0 such that d(x)Λ f (x) > cd∗( f (x)), x ∈ B, and by (A2), a constant c1 > 0

such that d∗( f (x)) > c1d(x). Hence λ f (x) > c2, where c2 = cc1/K.
(A5) In 3-dimensional space, QCH0

K = QCH0
K(B,D) has H-property.

From (A1-A5), it follows (A0).

4. Appendix 1

In this review section we follow [32, 33]. First we recall some results from Section 1 (Theorem 1.2) and
prove (I0) version of Hall lemma.

Theorem 4.1. Let h be an euclidean harmonic orientation preserving univalent mapping of the unit disc onto convex
domain Ω. If Ω contains a disc B(a; R) and h(0) = a then

|∂h(z)| >
R
4
, z ∈ D.

As a corollary of the previous Theorem we obtain

Theorem 4.2. Let h be an euclidean harmonic orientation preserving K-qc mapping of the unit disc onto convex
domain Ω. If Ω contains a disc B(a; R) and h(0) = a then

|∂h(z)| >
R
4
, z ∈ D,

lh(z) >
1 − k

4
R.
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Let c = 1−k
4 R. Since

|Dh(z)| 6 k |Dh(z)|,

it follows that lh(z) > c = 1−k
4 R and therefore |h(z2) − h(z1)| > c |z2 − z1|.

As a corollary of Theorem 4.1 we obtain

Proposition 4.3. Let h be an euclidean harmonic orientation preserving univalent mapping of the unit disc into C
such that f (D) contains a disc BR = B(a; R) and h(0) = a. Then

|∂h(0)| >
R
4
. (6)

Proof: Let V = VR = h−1(BR) and ϕ be a conformal mapping of the unit disc U onto V such that ϕ(0) = 0 and
let hR = h ◦ ϕ. By Schwarz lemma

|ϕ′(0)| 6 1. (7)

Since ∂hR(0) = ∂h(0)ϕ′(0), by Proposition 4.3 we get |∂hR(0)| = |∂h(0)||ϕ′(0)| > R
4 . Hence, using (0.2) we get

(0.1).

Also as an immediate corollary of Theorem 4.1 we obtain

Theorem 4.4 ([20, 22]). Let h be an euclidean harmonic diffeomorphism of the unit disc onto convex domain Ω. If
Ω contains a disc B(a; R) and h(0) = a then

D(h)(z) >
1
16

R2, z ∈ D,

where D(h)(z) = |∂h(z)|2 + |∂h(z)|2.

The following example shows that previous results are not true if we omit the condition h(0) = a.

Example. The mapping

ϕb(z) =
z − b

1 − b̄z
, |b| < 1,

is a conformal automorphism of the unit disc onto itself and

|ϕ′b(z)| =
1 − |b|2

|1 − b̄z|2
, z ∈ D.

In particular ϕ′b(0) = 1 − |b|2.

Heinz proved (see [16]) that if h is a harmonic diffeomorphism of the unit disc onto itself such that
h(0) = 0, then

D(h)(z) >
1
π2 , z ∈ D.

Using Proposition 4.3 we can prove Heinz theorem:

Theorem 4.5 (Heinz). There exists no euclidean harmonic diffeomorphism from the unit discD onto C.

Note that this result was a key step in his proof of the Bernstein theorem for minimal surfaces in R3 .

Schoen obtained a nonlinear generalization of Proposition 4.3 by replacing the target by complete surface
of nonnegative curvature (see Proposition 2.4 [46]) and using this result he proved
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Theorem 4.6 (Schoen). There exists no harmonic diffeomorphism from the unit disc onto a complete surface (S, ρ)
of nonnegative curvature Kρ > 0.

Suppose f is a harmonic diffeomorphism from Br to (S, ρ) and dist( f (0), ∂( f (Br)) > R. Then it suffices to
show that

|d f |2(0) > C
R2

r2 ,

where C is a universal constant. By hypothesis, we have |∂ f | > |∂ f | > 0 and

∆ln|∂ f | = −Kρ J f 6 0 . (8)

If we define a Riemannian metric λ on Br by λ = |∂ f |2 |dz|2, then (8) implies Kλ > 0. Therefore dist(0, ∂(Br) >
1
2 dist( f (0), ∂( f (Br)) > 1

2 R.

Lemma 4.7. If σ is a metric density of nonnegative curvature Kσ > 0 on Br and d = distσ (0,Tr), then σ(0) > C d2

r2 ,
where C is a universal constant.

A proof can be given by means the estimate of harmonic function in terms of curvature (Cheng-Yau, CPAM
28, 333-354 (1975)). We apply this lemma to metric density λ = |∂ f |2. By the above estimate,

|∂ f |2(0) > C
R2

r2 .

This proves the theorem.
Question 2. Can we prove Lemma 4.7 elementary? Note that lnσ is superharmonic function. Therefore

ln 1
σ and 1

σ are subharmonic functions.

4.1. Distortion of conformal mappings
The following form of Koebe’s One-Quarter Theorem applies in fact to all conformal mappings.

Theorem 4.8. Suppose that f is bijective conformal in D and f (D) = D′, z0 ∈ D. Then

1
4
| f ′(z0)|dist(z0, ∂D) 6 dist( f (z0), ∂D′) 6 4| f ′(z0)|dist(z0, ∂D).

If we set d = d(z0) = dist(z0, ∂D) and d′ = d′( f (z0) = dist( f (z0), ∂D′) then
(iv.1): d′ � d.

Proof. Let d = d(z0) = dD(z0) = dist(z0, ∂D), d′ = d( f (z0)) = dD′ ( f (z0)) = dist( f (z0), ∂D′);

1(z) =
f (z) − f (z0)
d · f ′(z0)

and f0(z) = 1(z0 + zd).

Set D0 = 1(D(z0; d)) and d0 = dist(1(z0), ∂D0). Note that d1 = dist(1(z0), ∂D) = d′
d| f ′(z0)| and d1 > d0. Since

f ′0(0) = 1, it follows from Koebe’s One-Quarter Theorem, applied to f0 that d0 > 1/4. Hence, since
d′

d| f ′(z0)| = d1 > d0 > 1/4, we get the left inequality.
Koebe’s Theorem applied to f−1 at w0 = f (z0) gives 1

4 |( f−1)′(w0)|d′ 6 d and the right inequality follows.

If we define D∗f (z0) =
d| f ′(z0)|

d′ , we can reformulate the above theorem as 1/4 6 D∗f (z0) 6 4. The interested
reader can check that

D∗f−1 (w0) = D∗f (z0).

The following two basic theorems are important for our research.

Theorem 4.9 (Kellogg, see for example [11, 12]). If a domain D = Int(Γ) is C1,α, 0 < α < 1, andω is a conformal
mapping ofD onto D, then ω′ and lnω′ are in Lipα. In particular, |ω′| is bounded from above and below onD.

Theorem 4.10 (Kellogg and Warschawski, see [49], Theorem 3.6). If a domain D = Int(Γ) is C2,α and ω is a
conformal mapping of D onto D, then |ω′′| has a continuous extension to the boundary. In particular it is bounded
from above onD.
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4.2. The uniformization theorem

The uniformization theorem says that every simply connected Riemann surface is conformally equiv-
alent to one of the three domains: the open unit disk, the complex plane, or the Riemann sphere. In
particular it admits a Riemannian metric of constant curvature. This classifies Riemannian surfaces as ellip-
tic (positively curved rather, admitting a constant positively curved metric), parabolic (flat), and hyperbolic
(negatively curved) according to their universal cover.

The uniformization theorem is a generalization of the Riemann mapping theorem from proper simply
connected open subsets of the plane to arbitrary simply connected Riemann surfaces. The uniformization
theorem implies a similar result for arbitrary connected second countable surfaces: they can be given
Riemannian metrics of constant curvature. Every Riemann surface is the quotient of a free, proper and
holomorphic action of a discrete group on its universal covering and this universal covering is holomor-
phically isomorphic (one also says: ”conformally equivalent”) to one of the following: the Riemann sphere,
the complex plane or the unit disk in the complex plane. Koebe proved the general uniformization theorem
that if a Riemann surface is homeomorphic to an open subset of the complex sphere (or equivalently if
every Jordan curve separates it), then it is conformally equivalent to an open subset of the complex sphere.
In 3 dimensions, there are 8 geometries, called the eight Thurston geometries. Not every 3-manifold ad-
mits a geometry, but Thurston’s geometrization conjecture proved by Grigori Perelman states that every
3-manifold can be cut into pieces that are geometrizable. The simultaneous uniformization theorem of
Lipman Bers shows that it is possible to simultaneously uniformize two compact Riemann surfaces of the
same genus > 1 with the same quasi-Fuchsian group. The measurable Riemann mapping theorem shows
more generally that the map to an open subset of the complex sphere in the uniformization theorem can be
chosen to be a quasiconformal map with any given bounded measurable Beltrami coefficient.

5. Appendix 2, Harmonic Maps Between surfaces

In [17] it is given self -contained account of the results on harmonic maps between surfaces. This
treatment contains several simplifications and unifications compared to the presentations available in the
existing literature. Upper and lower bounds for the sectional curvature K of a manifold are often denoted by
k2 and −ω2, i.e. −ω2 6 K 6 k2. This notation avoids square roots. It differs, however, from the terminology
in some of the papers frequently referred to in the book [17].

Here we give short review of results related to our consideration in section 1. First the lower bound for
Jacobinan are considerd.

Theorem 5.1. Suppose u : D → Σ is harmonic, and u(D) ⊂ B(p,M), where B(p,M) again is a disc with radius
M < π/2k. Suppose that ∂u(D) = u(T) and that 1 := u|T : T→ ∂u(D) is a C2- diffeomorphism with
(d1) 0 < b 6 |1′(t)| for all t ∈ [0, 2π].
Assume furthermore that 1(T) is strictly convex w.r.t, u(D), and that we have the following estimates for the geodesic
curvature of 1(T)
(d2) 0 < a1 6 κ1(1(t)) 6 a2 for all t ∈ [0, 2π].

Then (iv.1):
J > δ−1

1 , where δ1 = δ1(ω, k,M, τ, a1, a2, b, |1|1,α) (τ is given in Thm. 6.2 [17]).

Note that it is not assumed in the theorem that u is univalent; we needed only that u maps D onto the
convex side of u(T). If u is an injective harmonic map, then J > δ−1

2 onD.

Proposition 5.2. Assume u : D → Σ is an injective harmonic map, where u(D) ⊂ B(p,M), and B(p,M) is a disc
with radius M < π/2k. Suppose that 1 := u|T ∈ C1,α, and that (d1) and (d2) hold. Then (iii.2): for all z ∈ D,
J > δ−1

2 , where δ2 = δ2(ω, k,M, τ, a1, a2, b, |1|1,α).

We define d∗(q) := −dist(q, ∂u(D)) for q ∈ u(D). Since 4(d∗ ◦ u) > a1b2, d∗ ◦ u is subharmonic function.
This will enable us to get a lower bound for the radial derivative of d∗ ◦ u at boundary points with the
argument of the boundary lemma of E. Hopf.
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Taking Cor. 6.2[17] into account, we can therefore find a neighborhood V0 of T inD with the property
that d∗ is a C2 function with strictly convex level curves on u(V0). Suppose z0 ∈ T; we can choose some disc
B1 = B(z1, r1) ⊂ D, z0 ∈ S(z1, r1), in such a way that 4(d∗ ◦ u) > a1b2/2 for z ∈ B1.

Defining the auxiliary function v via v(z) =
r2

1
8 a1b2(1 − |z−z1 |

2

r2
1

), we find 4v = −a1b2/2 and therefore
4(d∗ ◦ u + v) > 0. The maximum principle now controls the derivative of d∗ ◦ u + v at z0 in the direction of
the outer normal.

Now,using the above estimates, the existence of harmonic diffeomorphisms which solve a Dirichlet
problem is considered.

Theorem 5.3. Suppose (e1): Ω is a compact domain with Lipschitz boundary ∂Ω on some surface, and that Σ is
another surface. We assume (e2): that f : Ω→ Σ maps Ω homeomorphically onto its image, that f (∂Ω) is contained
in some disc B(p,M) with radius M < π/2k (where k2 > 0 is an upper curvature bound on B(p,M)) and that the curves
f (∂Ω) are of Lipschitz class and convex w.r.t. f (Ω). Then (v.1): there exists a harmonic mapping u : Ω→ B(p,M)
with the boundary values prescribed by f which is a homeomorphism between Ω and its image, and a diffeomorphism
in the interior.
(v.2) Moreover, if f |∂Ω is even a C2 -diffeomorphism between C2 -curves, then u is a diffeomorphism up to the
boundary.

First of all, ∂Ω is connected. Otherwise, f (∂Ω) would consist of at least two curves, both of them convex
w.r.t. f (Ω). Since Ω is homeomorphic to f (Ω), we conclude that Ω is a disc, topologically. Since there is a
conformal map φ : D → 1(D), one have to prove the theorem only for the case where Ω is the plane unit
discD.

We first assume that f : T → f (T) is C2 -diffeomorphism between curves of class C2,α, that f (T) is not
only convex, but strictly convex, and that we have the following quantitative bounds
(e2) | f ′(t)| > b−1

2 and | f ′′(t)| 6 b1.
Now let Γ be the parametrization of the boundary curve of 1(D) by arclength. If l is length of ∂1(D), then

Γ maps [0, l] on ∂1(D). We set w(z, λ) = λΓ−1(φ(z) + (1 − λ)Γ−1(1(z)), ω(z, λ) = Γ(w(t, λ)), z ∈ T, λ ∈ [0, 1], and
ω(t, λ)ω(eit, λ). Using (e2), one can check that

ω(t, λ),
∂ω(t, λ)
∂t

and
∂2ω(t, λ)
∂2t

are continuous functions of λ.

Let now uλ denote the harmonic map from D to B(p,M) with boundary values ω(·, λ). In particular,
m(λ) := infz∈D |J(uλ)(z)| depends continuously on λ. We define L := {λ ∈ [0, 1] : m(λ) > 0}. 0 ∈ L; (u0 is the
conformal map φ), and therefore L is not empty.

By Proposition 5.2, m(λ) > m0 > 0 for λ ∈ L. Since m(λ) depends continuously on λ, (8.1.7) implies
L = [0, 1]. Thus, u1 is a local diffeomorphism and a diffeomorphism between the boundaries of D and u1(D),
and consequently a global diffeomorphism by topology. Theorem 5.3 and the uniqueness theorem of Jager
and Kaul (cf. Theorem 5.1 [17]) imply

Corollary 5.4. Under the assumptions of Theorem 5.3, each harmonic map which solves the Dirichlet problem defined
by 1 and which maps Ω into a geodesic disc B(p,M) with radius M < π/2k, is a diffeomorphism in Ω.

The above, we have assumed that the boundary of the image is strictly convex, and, in addition, that
the boundary values are a diffeomorphism of class C2. The theorem also holds for the case that
(f1): the boundary is only supposed to be convex and that
(f2): the boundary values are only supposed to induce a homeomorphism of the boundaries.
The procedure to handle the case (f1) is called the first approximation argument. It is a modification of the
corresponding one given by E. Heinz.

The case (f1) of a general boundary is handled by an approximation by smooth curves. More precisely
it is supposed that the boundary of the image f (D) is only convex, while the boundary values f are
still assumed to be a diffeomorphism of class C2. For approximation arguments in planar case see also
[14, 15, 24].
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6. Appendix 3

During the visiting position at Wayne State University, Detroit, 1988/89, the author2) started considering
hqc mappings. In particular, the author observed that the following results hold (see Proposition 6.1 and
6.2 below). When I returned to Belgrade, I used to talk on the seminar permanently and asked several open
questions related to the subject. Many research papers are based on these communications. Since I had not
published all of them it happens that some researchers discovered them later. Here we only discuss a few
results from Revue Roum. Math. Pures Appl. Vol. 51 (2006) 5–6, 711–722 3):

Proposition 6.1 (Proposition 5 [33]). If h is a harmonic univalent orientation preserving K-qc mapping of domain
D onto D′, then

d(z)Λh(z) 6 16 K dh(z), and d(z)λh(z) >
1 − k

4
dh(z) . (9)

Proposition 6.2 (Corollary 1, Proposition 5 [33]). Every e-harmonic quasi-conformal mapping of the unit disc
(more generally of a strongly hyperbolic domain) is a quasi-isometry with respect to hyperbolic distances.

From Proposition 6.1 directly follows next result (Proposition 6.3). 4)

Proposition 6.3 ( [30]). Every e-harmonic quasi-conformal mapping of a domain different fromC is a quasi-isometry
with respect to quasi-hyperbolic distances.

The next theorem concerns harmonic maps onto a convex domain. For the planar version of Theorem
2.4 cf. [32, 33], also [38], pp. 152-153. The space version was communicated on International Conference on
Complex Analysis and Related Topics (Xth Romanian-Finnish Seminar, August 14-19, 2005, Cluj-Napoca,
Romania), by Mateljević and stated in [33], cf. also [40].

Theorem 6.4 (Theorem 1.3, [33]). Suppose that h is an Euclidean harmonic mapping from the unit ball Bn onto a
bounded convex domain D = h(Bn), which contains the ball h(0) + R0Bn. Then for any x ∈ Bn

d(h(x), ∂D) > (1 − ‖x‖)R0/2n−1.

Now we outline an example related to a question that arose during author’s visit to Helsinki and Turku
in October 2005 (at a Seminar in Helsinki-Turku) and the small progress related to discussion there. LetHn

denote the half-space in Rn. If D is a domain in Rn, by QCH(D) we denote the set of Euclidean harmonic
quasiconformal mappings of D onto itself. In particular, if x ∈ R3, we use the notation x = (x1, x2, x3) and
denote f ′xk

= Dxk f = fxk the partial derivative with respect to xk. A fundamental solution of the Laplace
equation in R3 is 1

r , where r = |x|. Let u0 = 1
|x+e3 |

, where e3 = (0, 0, 1). Define h(x) = (x1 + e1u0, x2 + e2u0, x3).
We can verify that h ∈ QCH(H3) (harmonic quasiconformal ofH3 onto itself) for small e1 and e2.

Now we shortly follow [36]. Using the Herglotz representation of a nonnegative harmonic function u
(see Theorem 7.24 and Corollary 6.36 [7]), one can get:

Lemma A. If u is a nonnegative harmonic function on a half spaceHn, continuous up to the boundary
with u = 0 onHn, then u is (affine) linear.

In [33], the author has outlined a proof of the following result:
Theorem A. If h is a quasiconformal harmonic mapping of the upper half space Hn onto itself and

h(∞) = ∞, then h is quasi-isometry with respect to both the Euclidean and the Poincaré distance.
Note that the outline of proof in [33] can be justified by Lemma A.
We show that the analog statement of this result holds for p-harmonic vector functions (solutions of

p-Laplacian equations) using the mentioned result obtained in the paper [19], stated here as:
Theorem B. If u is a nonnegative p-harmonic function on a half spaceHn, continuous up to the boundary

with u = 0 onHn, then u is (affine) linear.

2)the author refers to me
3)It seems that there is some problems concerning visibility of this journal.
4)In that time, the author did not realized that quasi-hyperbolic metrics have important applications and did not state this version

which due to V. Manojlovic.
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Theorem 6.5 ([36]). If h is a quasiconformal p-harmonic mapping of the upper half spaceHn onto itself and h(∞) =
∞, then both h : (Hn, | · |) → (Hn, | · |) and h : (Hn, ρHn ) → (Hn, ρHn ) are bi-Lipschitz where ρHn is the Poincaré
distance.

Since 2-harmonic mapping are Euclidean harmonic this result includes Theorem A.
For a domain G ⊂ Rn let ρ : G → (0,∞) be a function. We say that ρ is a weight function or a metric

density if for every locally rectifiable curve γ in G, the integral

lρ(γ) =

∫
γ
ρ(x)ds

exists. In this case we call lρ(γ) the ρ-length of γ. A metric density defines a metric dρ : G × G → (0,∞) as
follows. For a, b ∈ G, let

dρ(a, b) = inf
γ

lρ(γ)

where the infimum is taken over all locally rectifiable curves in G joining a and b. It is an easy exercise
to check that dρ satisfies the axioms of a metric. For instance, the hyperbolic (or Poincaré) metric of D is
defined in terms of the density ρ(x) = c/(1 − |x|2) where c > 0 is a constant.

The quasihyperbolic metric k = kG of G is a particular case of the metric dρ when ρ(x) = 1
d(x,∂G) (see [45]).

For a domain G ⊂ Rn,n > 2, x, y ∈ G, let

rG(x, y) =
|x − y|

min{d(x), d(y)}
where d(x) = d(x, ∂G) ≡ inf{|z − x| : z ∈ ∂G} .

If the domain G is understood from the context, we write r instead rG. This quantity is used, for instance, in
the study of quasiconformal and quasiregular mappings, cf. [45]. It is a basic fact that [44, Theorem 18.1]
for n > 2,K > 1, c2 > 0 there exists c1 ∈ (0, 1) such that whenever f : G→ f G is a quasiconformal mapping
with G, f G ⊂ Rn then x, y ∈ G and rG(x, y) 6 c1 imply r f G( f (x), f (y)) 6 c2. We call this property the local
uniform boundedness of f with respect to rG .Note that quasiconformal mappings satisfy the local uniform
boundedness property and so do quasiregular mappings under appropriate conditions; it is known that
one to one mappings satisfying the local uniform boundedness property may not be quasiconformal. We
also consider a weaker form of this property and say that f : G → f G with G, f G ⊂ Rn satisfies the weak
uniform boundedness property on G (with respect to rG ) if there is a constant c > 0 such that rG(x, y) 6 1/2
implies r f G( f (x), f (y)) 6 c .

Theorem 6.6 ([36]). Suppose that G is a proper subdomain ofRn and h : G→ Rn is a harmonic mapping. Then the
following conditions are equivalent

(1) h satisfies the weak uniform boundedness property.
(2) h : (G, kG)→ (h(G), kh(G)) is Lipschitz.

Theorem 6.7 ([36]). Suppose that G ⊂ Rn, f : G→ Rn is K-qr and G′ = f (G). Let ∂G′ be a continuum containing
at least two distinct points. If f is a harmonic mapping, then f : (G, kG)→ (G′, kG′ ) is Lipschitz.

Now, we give a sufficient condition for a qc mapping f : G → f (G) to be a pseudo-isometry w.r.t.
quasihyperbolic metrics on G and f (G). First we adopt the following notation.

If V is a subset of Rn and u : V → Rm, we define

oscVu = sup{|u(x) − u(y)| : x, y ∈ V} .

Suppose that G ⊂ Rn and Bx = B(x, d(x)/2). Let OC1(G) denote the class of f ∈ C1(G) such that

d(x)| f ′(x)| 6 c1 oscBx f (10)
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for every x ∈ G. Similarly, let SC1(G) be the class of functions f ∈ C1(G) such that

| f ′(x)| 6 ar−1 ω f (x, r) for all Bn(x, r) ⊂ G, (11)

where ω f (x, r) = sup{| f (y) − f (x)| : y ∈ Bn(x, r)}.

The proof of Theorem 6.6 gives the following more general result:

Theorem 6.8 ([36]). Suppose that G ⊂ Rn, f : G → G′, f ∈ OC1(G) and it satisfies the weak property of uniform
boundedness with a constant c on G. Then

(e) f : (G, kG)→ (G′, kG′ ) is Lipschitz.
(f) In addition, if f is K-qc, then f is pseudo-isometry w.r.t. quasihyperbolic metrics on G and f (G).

In [25, 26, 50] Kalaj and the author study mappings in plane and space which satisfy

|∆u| 6 a|∇u|2 + b . (12)

Suppose that domains D and Ω are bounded domains inRn and its boundaries belong to class Ck,α, 0 6 α 6 1,
k > 2 (more generally C2). Suppose further that 1 and 1′ are C1 metric on D and Ω respectively. Using inner
estimate (cf. Theorem 6.14 [10]) we can prove

Theorem 6.9. If u : D→ Ω a qc (1, 1′)-harmonic map (or satisfies (12)), then u is Lipschitz on D.

We discussed this result at Workshop on Harmonic Mappings and Hyperbolic Metrics, Chennai, India,
Dec. 10-19, 2009, see Course-materials [50]. During the lectures we also pointed some differences between
the theory in the plane and the space.

We now present a few open questions; first recall two questions cf. [33].
Ql. In connection with Theorem A, we ask the corresponding question for p-harmonic functions.
Q2. If f is a homeomorphism of R2 onto itself with f (∞) = ∞, let h be the solution of the corresponding

Dirichlet problem inH3. Find a sufficient condition for f such that a) h is one-to-one, and b) h ∈ QCH(H3).
Consider also the corresponding question for dimension n > 3.

Note that Theorem 6.5 yields an affirmative answer to Ql.
Q3. Suppose that G ⊂ Rn is a proper subdomain, f : G→ Rn is harmonic K-qc and G′ = f (G). Determine

whether f is a quasi-isometry (ie. bi-Lipschitz) w.r.t. quasihyperbolic metrics on G and G′.
Q4. Describe zero set of Jacobian of injective harmonic maps in space?
Since this question sounds more general, we can specify it. For example consider the following question:
1.LetBm be hyperbolic space and let f : Bm

→ Bm, m > 3, be harmonic K-quasiconformal map. Whether
f has critical points on Bm ?

2. Whether injective euclidan-harmonic (or p-harmonic), m > 3, quasiconformal map has critical points?
Q5. Is there any appropriate version of the Radó-Kneser-Choquet theorem (RKC-Theorem) in space?
Acknowledgement. The author had some stimulating discussions related to this topic with V. Božin,

D. Kalaj, M. Knezević and M. Svetlik. In particular, D. Kalaj attracted my attention to the important
considerations in [17] and informed me about Iwaniec -Onninen paper [15]. K. Astala and V. Manojlović
have worked independently on this subject5). S. Pilipović and M. Pavlović showed interest concerning the
result of this paper and contributed in the communication 6). I would like to thank all of them.

5)In particular they gave some remarks concerning previous drafts, [40] v1 and [8].
6)In particular in the communication the question who has the priority of proof of Theorem 3.6(ii.2) has appeared and all the above

mentioned colleagues have been involved with it .
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[26] D. Kalaj, M. Mateljević: Inner estimate and quasiconformal harmonic maps between smooth domains, Journal d’Analise Math. 100.

117-132, (2006).
[27] D. Kalaj, M. S. Mateljević, Harmonic quasiconformal self-mappings and Möbius transformations of the unit ball. Pacific journal of

mathematics. ISSN 0030-8730. 247 : 2 (2010) 389-406.
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