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Abstract. We study the stability of John domains in Banach spaces under removal of a countable set of
points. In particular, we prove that the class of John domains is stable in the sense that removing a certain
type of closed countable set from the domain yields a new domain which also is a John domain. We apply
this result to prove the stability of the inner uniform domains. Finally, we consider a wider class of domains,
so called ψ-John domains and prove a similar result for this class.

1. Introduction

The class of domains, nowadays known as John domains and originally introduced by John [12] in the
study of elasticity theory, has been investigated during the past three decades by many people in connection
with applications of classical analysis and geometric function theory. See for instance [3, 18, 19] and the
references therein. Here we study the class of John domains and the wider class of ψ-John domains [9, 26]
and the stability of these two classes of domains under the removal of a countable closed set of points. The
motivation for this paper stems from the discussions in [10, 28], where the effect of the removal of a finite
set of points was examined. See also the very recent paper [14].

Suppose that D is a domain in a real Banach space E with dimension at least 2 and let PD denote a
countable set in D such that the quasihyperbolic distance w.r.t. D between each pair of distinct points in PD
is at least b where b > 0 is a constant. We note that, in Banach spaces, the properties of the quasihyperbolic
metric were first studied by Väisälä in a series of articles in 1990’s [23–27]. The quasihyperbolic metric
is a critical tool for studying quasiconformal mappings in the infinite dimensional Banach spaces because
quasiconformality is defined in terms of it. The first main result of this paper shows that D is a c-John
domain if and only if D \ PD is a c1-John domain, where c and c1 are two constants depending only on each
other and on b. Applying this result, we show that D is inner uniform if and only if D \PD is inner uniform.
Our second main result shows that D is a ψ-John domain if and only if D \ PD is a ψ1-John domain, where
ψ and ψ1 depend only on each other and on b.

The methods applied in the proofs rely on standard notions of metric space theory: curves, their lengths,
and nearly length-minimizing curves. It should be noted that we employ several metric space structures
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on the domain D including hyperbolic type metrics. We use three metrics: the norm metric, the distance
ratio metric and the quasihyperbolic metric on the domain D and, moreover, also on its subdomains.

2. Preliminaries and main results

Throughout the paper, we always assume that E denotes a real Banach space with dimension at least 2.
The norm of a vector z in E is written as |z|, and for each pair of points z1, z2 in E, the distance between them
is denoted by |z1 − z2|, the closed line segment with endpoints z1 and z2 by [z1, z2]. We always use B(x0, r)
to denote the open ball {x ∈ E : |x − x0| < r} centered at x0 with radius r > 0. Similarly, for the closed balls
and spheres, we use the usual notations B(x0, r) and S(x0, r), respectively.

For each pair of points z1, z2 in D, the distance ratio metric jD(z1, z2) between z1 and z2 is defined by

jD(z1, z2) = log
(
1 +

|z1 − z2|

min{dD(z1), dD(z2)}

)
,

where dD(z) denotes the distance from z to the boundary ∂D of D.
The quasihyperbolic length of a rectifiable arc or a path γ in D is the number (cf. [1, 5, 6, 23])

`k(γ) =

∫
γ

1
dD(z)

|dz|.

For each pair of points z1, z2 in D, the quasihyperbolic distance kD(z1, z2) between z1 and z2 is defined in
the usual way:

kD(z1, z2) = inf `k(α),

where the infimum is taken over all rectifiable arcs α joining z1 to z2 in D.
For all z1, z2 in D, we have (cf. [23])

kD(z1, z2) ≥ inf
{

log
(
1 +

`(α)
min{dD(z1), dD(z2)}

)}
≥ jD(z1, z2) (2.1)

≥

∣∣∣∣ log
dD(z2)
dD(z1)

∣∣∣∣,
where the infimum is taken over all rectifiable curves α in D connecting z1 and z2, `(α) denotes the length
of α. Next, if |z1 − z2| < dD(z1), then we have [23], [31, Lemma 2.11]

kD(z1, z2) ≤ log
(
1 +

|z1 − z2|

dD(z1) − |z1 − z2|

)
≤

|z1 − z2|

dD(z1) − |z1 − z2|
, (2.2)

where the last inequality follows from the following elementary inequality

r
1 − r/2

≤ log
1

1 − r
≤

r
1 − r

for 0 ≤ r < 1 .

Gehring and Palka [5] introduced the quasihyperbolic metric of a domain in Rn. Many of the basic
properties of this metric may be found in [6, 11, 13, 15, 20, 21, 30]. Recall that an arc α from z1 to z2 is
a quasihyperbolic geodesic if `k(α) = kD(z1, z2). Each subarc of a quasihyperbolic geodesic is obviously a
quasihyperbolic geodesic. It is known that a quasihyperbolic geodesic between every pair of points in E
exists if the dimension of E is finite, see [6, Lemma 1]. This is not true in infinite dimensional Banach spaces
(cf. [23, Example 2.9]). In order to remedy this shortage, Väisälä introduced the following concepts [24].

Definition 2.3. Let D , E and c ≥ 1. An arc α ⊂ D is a c-neargeodesic if `k(α[x, y]) ≤ c kD(x, y) for all x, y ∈ α.
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In [24], Väisälä proved the following property concerning the existence of neargeodesics in E.

Lemma 2.4. ([24, Theorem 3.3]) Let z1, z2 ∈ D , E and let c > 1. Then there is a c-neargeodesic joining z1 and z2
in D.

Definition 2.5. A domain D in E is called c-John domain in the norm metric provided there exists a constant c with
the property that each pair of points z1, z2 in D can be joined by a rectifiable arc α in D such that for all z ∈ α the
following holds:

min{`(α[z1, z]), `(α[z2, z])} ≤ c dD(z), (2.6)

where α[z j, z] denotes the part of α between z j and z (cf. [3, 19]). The arc α is called to be a c-cone arc .

A domain D in E is said to be a c-uniform domain (cf. [17, 18, 22, 24, 27]) if there is a constant c ≥ 1 such
that each pair of points z1, z2 ∈ D can be joined by an arc α satisfying (2.6) and

`(α) ≤ c |z1 − z2|. (2.7)

We also say that α is a c-uniform arc (cf. [28]).
For z1, z2 ∈ D, the inner length metric λD(z1, z2) between these points is defined by

λD(z1, z2) = inf{`(α) : α ⊂ D is a rectifiable arc joining z1 and z2}.

We say that a domain D in E is an inner c-uniform domain if there is a constant c ≥ 1 such that each pair
of points z1, z2 ∈ D can be joined by an arc α satisfying (2.6) and

`(α) ≤ cλD(z1, z2). (2.8)

Such an arc α is called to be an inner c-uniform arc (cf. [26]).
Obviously, uniform domains are inner uniform domains, but inner uniform does not imply uniform.

See [2, 4, 6, 17, 18, 22, 24, 28] for more details on uniform domains and inner uniform domains.
Remarks. If we replace (2.6), (2.7) and (2.8) by

min{diam(α[z1, z]), diam(α[z2, z])} ≤ c dD(z), (2.9)

diam(α) ≤ c |z1 − z2| (2.10)

and

diam(α) ≤ cλD(z1, z2), (2.11)

then we get concepts which in the case E = Rn are n-quantitatively equivalent to c-John domain, c-uniform
domain and inner c-uniform domain, respectively [19]. Note that in general Banach space, each of these
three conditions leads to a wider class of domains. For example, the broken tube domain considered by
Väisälä [23, 4.12] (see also [29]) is neither John nor quasiconvex (a metric space is c-quasiconvex if each pair
of points x, y can be joined by an arc such that (2.7) holds). Nevertheless, one can join a given pair of points
in this bounded domain by arcs satisfying (2.9), (2.10) and (2.11).

Various classes of domains have been studied in analysis (e.g. see [7]). For some classes, the removal of
a finite number of points from a domain may yield a domain no longer in this class [7]. In [10], the authors
proved that remove a finite number of points from a John domain still yields a John domain.

Proposition 2.12. ([10, Theorem 1.4]) A domain D ⊂ Rn is a John domain if and only if G = D \ P is also a John
domain, where P = {p1, p2, · · · , pm} ⊂ D.
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In general, when P is an infinite closed set in D, D \ P need not be a John domain ([10, Example 1.5]).
In this paper, we continue the study of the removability properties of John domains and prove that if P
satisfies a certain separation condition, then D \ P is still a John domain if D is a John domain.

Let b > 0 be a constant. In what follows, for a domain D in E, and for a sequence X = {x j : j = 1, 2, ...} of
points in D satisfying the quasihyperbolic separation condition

kD(xi, x j) ≥ b for i , j,

we always write
PD = X.

Further, we assume that the set PD satisfying the quasihyperbolic separation condition contains at least two
points, and in the following, without loss of generality, we may assume that b = 1

2 . Our main results are as
follows.

Theorem 2.13. A domain D ⊂ E is a c-John domain if and only if G = D \ PD is a c1-John domain, where c ≥ 1 and
c1 ≥ 1 depend only on each other.

As an application, we get the following result concerning inner uniform domains.

Theorem 2.14. A domain D ⊂ E is an inner c-uniform domain if and only if G = D \ PD is an inner c1-uniform
domain, where c ≥ 1 and c1 ≥ 1 depend only on each other.

Moreover, as a generalization of John domains, we consider the ψ-John domains [9] whose definition
will be given in Section 4.

Theorem 2.15. A domain D ⊂ E is a ψ-John domain if and only if G = D \ PD is a ψ1-John domain, where ψ and
ψ1 are homeomorphisms depending only on each other.

The proofs of Theorems 2.13 and 2.14 will be given in Sectin 3, and the proof of Theorem 2.15 will be
given in section 4.

3. Proofs of Theorems 2.13 and 2.14

3.1. Some crucial lemmas

We first give some lemmas which are crucial to the proofs of our main results.
Let D ⊂ E be a domain. Given x ∈ D and s ∈ (0, 1), for z1, z2 ∈ B(x, sdD(x)), we see from (2.2) that

kD(z1, z2) ≤ 2 log(1/(1 − s)).

This fact, together with the definition of PD, yields the following lemma.

Lemma 3.1. For all w ∈ D, there exists at most one point xi of PD such that xi ∈ B(w, 1
6 dD(w)).

Lemma 3.2. ([28, Lemma 6.7]) Suppose that G is a c-uniform domain and that x0 ∈ G. Then G0 = G \ {x0} is
c1-uniform with c1 = c1(c) (This means that c1 is a constant depending only on c). Moreover, from the proof of [28,
Lemma 6.7] we see that c1 ≤ 9c.

We note that each ball B(x, r) is 2-uniform and B(x, r) \ {x} is 10-uniform by the proof of [28, Theorem
6.5]. By Lemma 3.1 and 3.2, the following holds.

Lemma 3.3. For x0 ∈ D, B(x0, 1
6 dD(x0)) \ PD is c2-uniform with 2 ≤ c2 ≤ 18.
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Lemma 3.4. For x, y ∈ D, if there is a c3-cone arc γ joining x, y in D, then for each w ∈ γ the following holds:

dD(w) ≥
1

2c3
min{dD(x), dD(y)}.

Moreover, if `(γ[x,w]) ≤ `(γ[y,w]), then

dD(w) ≥
1

2c3
dD(x).

Otherwise,

dD(w) ≥
1

2c3
dD(y).

Proof. Let w0 ∈ γ bisect the arclength of γ. Obviously, we only need to consider the case w ∈ γ[x,w0] since
the discussion for the case w ∈ γ[y,w0] is similar.

If `(γ[x,w]) ≤ 1
2 dD(x), then

dD(w) ≥ dD(x) − `(γ[x,w]) ≥
1
2

dD(x).

If `(γ[x,w]) > 1
2 dD(x), then we have

dD(w) ≥
1
c3
`(γ[x,w]) >

1
2c3

dD(x).

The proof is complete.

Let us recall the following result from [16].

Lemma 3.5. ([16, Theorem 1.2]) Suppose that D1 and D2 are convex domains in E, where D1 is bounded and D2 is c-
uniform, and that there exist z0 ∈ D1∩D2 and r > 0 such thatB(z0, r) ⊂ D1∩D2. If there exist R1 > 0 and a constant
c0 > 0 such that R1 ≤ c0r and D1 ⊂ B(z0,R1), then D1 ∪D2 is a c′-uniform domain with c′ = 1

2 (c + 1)(6c0 + 1) + c.

By Lemma 3.1, 2.4 and 3.5, we easily have the following lemma.

Lemma 3.6. Let D ⊂ E be a domain. For y1, w1 ∈ D, if

B(y1,
1

32
dD(y1)) ∩ B(w1,

1
32

dD(w1)) , ∅,

then D0 \ PD is a 660c2
2-uniform domain, where D0 = B(y1, 1

16 dD(y1)) ∪ B(w1, 1
32 dD(w1)).

Lemma 3.7. Let D ⊂ E be a domain. For z1, z2 ∈ G = D \ PD, let γ be a rectifiable arc joining z1 and z2 in D. Then
there exists an arc α ⊂ G joining z1 and z2 such that `(α) ≤ 660c2

2`(γ). Moreover, if γ is a c-cone arc in D, then α is
a (218cc3

2 + 660c2
2)-cone arc in G, where c > 1 is a constant and c2 is the constant from Lemma 3.3.

Proof. For given z1 and z2 in G, let γ be a rectifiable arc joining z1 and z2 in D and let

U = {u ∈ γ : dD(u) > 64dG(u)}.

If U = ∅, then let α0 = γ. Obviously, Lemma 3.7 holds.
In the following, we assume that U , ∅. We prove this lemma by considering three cases.

Case 3.8. There exists some point w0 ∈ γ such that {z1, z2} ⊂ B(w0, 1
32 dD(w0)).

Then by Lemma 3.3, we know that there is a c2-uniform arc α1 joining z1 and z2 in G which is the desired
one since

`(α1) ≤ c2|z1 − z2| ≤ c2`(γ).

Let z0 ∈ γ be a point such that `(γ[z1, z0]) = `(γ[z2, z0]) .
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Case 3.9. For all w ∈ γ, {z1, z2} * B(w, 1
32 dD(w)), but there is a point w1 ∈ γ[z1, z0] such that z2 ∈ B(w1, 1

32 dD(w1))
or a point w2 ∈ γ[z2, z0] such that z1 ∈ B(w2, 1

32 dD(w2)).

Obviously, we only need to consider the former case since the discussion for the latter case is similar.
Without loss of generality, we may assume that w1 is the first point in γ[z1, z0] along the direction from z1

to z0 such that z2 ∈ B(w1, 1
32 dD(w1)).

Subcase 3.10. U ∩ γ[z1,w1] = ∅.

That is, for all w ∈ γ[z1,w1], dD(w) ≤ 64dG(w). By Lemma 3.3, there exists a c2-uniform arc η1 joining w1
and z2 in G. Then we come to prove that α2 = γ[z1,w1]∪ η1 is the desired arc. By the choice of η1, we know
that

`(α2) ≤ c2|w1 − z2| + `(γ[z1,w1]) ≤ c2`(γ).

Assume further that γ is a c-cone arc. Then we let u0 ∈ η1 be a point bisecting the arclength of η1. If
w ∈ γ[z1,w1], then

`(α2[z1,w]) = `(γ[z1,w]) ≤ cdD(w) ≤ 64cdG(w).

If w ∈ η1[w1,u0], then Lemma 3.4 yields

`(α2[z1,w]) = `(γ[z1,w1]) + `(η1[w1,w]) ≤ 64cdG(w1) + c2dG(w) ≤ (128c + 1)c2dG(w).

If w ∈ η1[u0, z2], then
`(α[z2,w]) = `(η1[z2,w]) ≤ c2dG(w).

Hence α2 is the desired arc.

Subcase 3.11. U ∩ γ[z1,w1] , ∅.

If z1 ∈ U, then let y1 = z1. Otherwise, let y1 be the first point in γ[z1,w1] along the direction from z1 to
w1 such that

dD(y1) = 64dG(y1). (3.12)

We first consider the case:
B(y1,

1
32

dD(y1)) ∩ B(w1,
1

32
dD(w1)) , ∅.

By Lemma 3.6, we know that there is a 660c2
2-uniform arc η2 joining y1 and z2 in G, then let α3 = γ[z1, y1]∪η2.

Here and in the following, we assume that γ[z1, y1] = {z1} if z1 = y1.
If y1 = z1, then α3 = η2, and obviously, it satisfies Lemma 3.7. If y1 , z1, then replacing c2 by 660c2

2,
similar arguments as in Subcase 3.10 show that α3 is the desired arc.

In the following, we assume

B(y1,
1
32

dD(y1)) ∩ B(w1,
1

32
dD(w1)) = ∅

and we come to construct an arc α4 satisfying the lemma. We first show the following claim.

Claim 3.13. There exists a sequence of points {yi}
p1

i=1 in γ, where p1 ≥ 3 is an odd number, satisfying the following
conditions.

1. y1 = z1 or y1 is first point in γ[z1,w1] from z1 to w1 such that dD(y1) = 64dG(y1);
2. For each even number j ∈ {1, 2, . . . , p1}, dG(y j) ≥ 1

66 dD(y j) and dD(yp1 ) ≤ 128dG(yp1 );
3. If p1 ≥ 5, then for each even number j ∈ {1, 2, . . . , p1 − 2}, y j+1 is the first point in γ[y j,w1] from y j to w1 such

that dD(y j+1) = 128dG(y j+1);
4. p1 is the smallest integer with yp1 ∈ S(w1, 1

32 dD(w1)) or B(yp1 ,
1
32 dD(yp1 )) ∩ B(w1, 1

32 dD(w1)) , ∅(see Figures
1 and 2).
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For a proof, we let y2 ∈ γ[y1,w1] ∩ S(y1, 1
32 dD(y1) be such that

γ(y2,w1] ∩ S(y1,
1
32

dD(y1)) = ∅,

where γ(y2,w1] denote the part γ from y2 to w1 such that y2 < γ[y2,w1]. Then

dD(y2) ≤ dD(y1) + |y1 − y2| =
33
32

dD(y1). (3.14)

By Lemma 3.1 and (3.12), we know that there exists one and only one point, say xs, in B(y1, 1
6 dD(y1)) ∩ PD,

and so
dG(y2) = |y2 − xs| ≥ |y2 − y1| − |y1 − xs| ≥

1
64

dD(y1),

which, together with (3.14), shows that

dG(y2) ≥
1

66
dD(y2). (3.15)

By Lemma 3.3 we know that there exists an arc β1 ⊂ G joining y1 and y2 such that β1 is c2-uniform in G
with c2 ≤ 18.

Figure 1: For all w ∈ γ[yp1−1,w1] \ B(w1,
1

32 dD(w1)), dD(w) ≤ 128dG(w)

Figure 2: B(yp1 ,
1

32 dD(yp1 )) ∩ B(w1,
1
32 dD(w1)) , ∅

If for all w ∈ γ[y2,w1] \ B(w1, 1
32 dD(w1)), dD(w) ≤ 128dG(w), then the claim obviously holds by letting

y3 ∈ γ[y2,w1] ∩ S(w1, 1
32 dD(w1) and p1 = 3.
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If there is some w0 ∈ γ[y2,w1] \ B(w1, 1
32 dD(w1)) such that dD(w0) > 128dG(w0), then let y3 be the first

point in γ[y2,w1] from y2 to w1 such that dD(y3) = 128dG(y3). If B(y3, 1
32 dD(y3)) ∩ B(w1, 1

32 dD(w1)) , ∅, then
the claim holds and p1 = 3. Otherwise, let y4 ∈ γ[y3,w1] ∩ S(y3, 1

32 dD(y3) be such that

γ(y4,w1] ∩ S(y3,
1
32

dD(y3)) = ∅.

Then by Lemma 3.1, and a similar argument as in the proof of (3.15), we have

dG(y4) ≥
1
66

dD(y4).

If for all w ∈ γ[y4,w1] \ B(w1, 1
32 dD(w1)), dD(w) ≤ 128dG(w), then we complete the proof of the claim by

letting y5 ∈ γ[y4,w1] ∩ S(w1, 1
32 dD(w1)).

By repeating this process for finite steps, we get a sequence {yi}
p1

i=1 ∈ γ satisfying Claim 3.13, where
p1 < M

log 33
32

, since for each i ∈ {1, 2, . . . , p1−1
2 },

`kD (γ[y2i−1, y2i]) ≥ log
(
1 +
|y2i−1 − y2i|

dD(y2i−1)

)
= log

33
32
,

and M = `kD (γ[z1, z2]). Hence Claim 3.13 holds.

We continue the construction of α4. Let γ1 = γ[z1, y1] and for each j ∈ {2, . . . , p1+1
2 }, let γ j = γ[y2 j−2, y2 j−1].

By Lemma 3.3, we know that for each j ∈ {1, 2, . . . , p1−1
2 }, there exists a c2-uniform arc β j ⊂ G joining y2 j−1

and y2 j. By Lemmas 3.3 and 3.6, there exists a 660c2
2-uniform arc η3 joining yp1 and z2. Take

α4 = γ1 ∪ β1 ∪ γ2 ∪ . . . ∪ β p1−1
2
∪ γ p1+1

2
∪ η3.

Now, we are going to show that α4 is the desired arc.
First observe that

`(α4) ≤ 660c2
2`(γ). (3.16)

To prove that α4 is a cone arc in G, it is enough to show that

min{`(α4[z1,w]), `(α4[w, z2])} ≤ (218cc3
2 + 660c2

2)dG(w).

If w ∈ γ1∪γ2∪. . .∪γ p1+1
2

, then from the assumption, Claim 3.13 and (3.16), the above inequality obviously
holds.

For the case where w ∈ β1 ∪ . . . ∪ β p1−1
2

, we see that there exists some i ∈ {1, 2, . . . , p1−1
2 } such that w ∈ βi.

By Claim 3.13,

dG(y2i) ≥
1

66
dD(y2i) ≥

1
66

(dD(y2i−1) − |y2i−1 − y2i|) ≥
62
33

dG(y2i−1),

whence Lemma 3.4 yields

dG(w) ≥
1

2c2
min{dG(y2i−1), dG(y2i)} =

1
2c2

dG(y2i−1), (3.17)

which, together with Claim 3.13, leads to

`(α4[z1,w]) ≤ c2`(γ[z1, y2i−1]) + c2|y2i−1 − y2i|

≤ 4c2(32c + 1)dG(y2i−1) ≤ 8c2
2(32c + 1)dG(w).
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For the remaining case where w ∈ η3, we let u0 ∈ η3 be a point which bisecting the arclength of η3. If
w ∈ η3[z2,u0], then, obviously,

`(α4[z2,w]) ≤ c2dG(w).

If w ∈ η3[y3,u0], then by Lemma 3.4 and Claim 3.13, we have

`(α4[z1,w]) ≤ c2`(γ[z1, yp1 ]) + `(η3[yp1 ,w])

≤ 128cc2dG(yp1 ) + 660c2
2dG(w) ≤ (218cc3

2 + 660c2
2)dG(w).

Case 3.18. z1 <
⋃

w∈γ[z2,z0]B(w, 1
32 dD(w)) and z2 <

⋃
w∈γ[z1,z0]B(w, 1

32 dD(w)).

We may assume that U ∩ γ[z1, z0] , ∅. Then by similar discussions as in the proof of Claim 3.13, we get
the following Claim.

Claim 3.19. There exists a sequence of points {ui}
p2

i=1 in γ, where p2 ≥ 2 is an integer, satisfying the following
conditions.

1. u1 = z1 or u1 is first point in γ[z1, z0] from z1 to z0 such that dD(u1) = 64dG(u1);
2. For each even number j ∈ {1, 2, . . . , p2}, dD(u j) ≤ 66dG(u j) and if p2 is an odd number, then dD(up2 ) ≤

128dG(up2 );
3. If p2 ≥ 4, then for each even number j ∈ {1, 2, . . . , p2 − 2}, u j+1 is the first point in γ[u j, z2] from u j to z2 such

that dD(u j+1) = 128dG(u j+1);

4. p2 is the smallest integer such that up2 = z0 or z0 ∈ B(up2−1, 1
32 dD(up2−1)).

Figure 3: r1 = 1
128 dD(up2−2) and x j ∈ PD

Figure 4: r1 = 1
128 dD(up2−1) and xi ∈ PD

We note that there are two possibilities for up2 (see Figures 3 and 4) : One is up2 = z0 and for all
w ∈ γ[up2−1,up2 ], dD(w) ≤ 128dG(w); and the other is up2 ∈ B(up2−1, 1

32 dD(up2−1))∩γ[z0, z2]. No matter in which
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case, the proof is similar. So, in the following, we assume that up2 ∈ B(up2−1, 1
32 dD(up2−1))∩ γ[z0, z2]. Then p2

is an even number, and by Claim 3.19, we note that

dD(up2 ) ≤ 66dG(up2 ). (3.20)

We assume that U∩ γ[z2,up2 ] , ∅. Then by similar discussions as in the proof of Claim 3.13, we also get the
following claim.

Claim 3.21. There exists a sequence of points {vi}
p3

i=1 in γ[z2,up2 ], where p3 ≥ 2 is an integer, satisfying the following
conditions.

1. v1 = z2 or v1 is the first point in γ[z2,up2 ] from z2 to up2 such that dD(v1) = 64dG(v1);
2. For each even number j ∈ {1, 2, . . . , p3}, dD(v j) ≤ 66dG(v j) and dD(up3 ) ≤ 66dG(up3 );
3. If p3 ≥ 4, then for each even number j ∈ {1, 2, . . . , p3 − 2}, v j+1 is the first point in γ[v j,up2 ] from v j to up2 such

that dD(v j+1) = 128dG(v j+1);

4. p3 is the smallest integer such that up2 = vp3 or up2 ∈ B(vp3−1, 1
32 dD(vp3−1)).

We note that what we consider here is the case when p2 is an even number, then by using the similar
method as in the discussion of Case 3.9, together with Lemma 3.3, Claims 3.19 and 3.21, we construct an
arc α5 = α′5 ∪ α

′′

5 in G such that

α′5 = γ[z1,u1] ∪ β1,1[u1,u2] ∪ . . . ∪ β1,i[u2i−1,u2i] ∪ γ[u2i,u2i+1] ∪ . . . ∪ β1, p2
2

[up2−1,up2 ]

and if p3 is an odd number, then

α
′′

5 = γ[z2, v1] ∪ β2,1[v1, v2] ∪ . . . ∪ β2,i[v2i−1, v2i] ∪ γ[v2i, v2i+1] ∪ . . . ∪ γ[vp3−1,up2 ];

if p3 is en even number, then

α
′′

5 = γ[z2, v1] ∪ β2,1[v1, v2] ∪ . . . ∪ β2,i[v2i−1, v2i] ∪ γ[v2i, v2i+1] ∪ . . . ∪ β2, p3
2

[vp3−1,up2 ],

where β1,i[u2i−1,u2i] and β2,i[v2i−1, v2i] are c2-uniform arcs in G.
Obviously,

`(α5) ≤ c2`(γ).

Moreover, if γ is a c-cone arc, we prove that for all w ∈ α5,

min{`(α5[z1,w]), `(α5[w, z2])} ≤ 8c2
2(32c + 1)dG(w).

To show this, we only need to consider the case w ∈ α′5.
If w ∈ γ ∩ α′5, then

`(α5[z1,w]) ≤ c2`(γ[z1,w]) ≤ 128cc2dG(w).

If w ∈ β1,1[u1,u2] ∪ . . . ∪ β1, p2
2

[up2−1,up2 ], then there exists some i ∈ {1, 2, . . . , p2

2 } such that w ∈ β1,i. Hence
by Lemma 3.4, Claim 3.19, (3.17) and (3.20), we have for all w ∈ β1,i[u2i−1,u2i],

`(α5[z1,w]) ≤ c2`(γ[z1,u2i−1]) + `(β1,i[u2i−1,w])
≤ 128cc2dG(u2i−1) + c2|u2i−1 − u2i|

≤ 4c2(32c + 1)dG(u2i−1) ≤ 8c2
2(32c + 1)dG(w).

Hence, Lemma 3.7 is follows from Cases 3.8, 3.9 and 3.18.
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3.2. Proof of Theorem 2.13

Necessity: Let D be a c-John domain. For given z1, z2 ∈ G, there is a c-cone arc γ in D joining z1 and z2.
By Lemma 3.7, we know that there exists a (218cc3

2 + 660cc2
2)-cone arc in G joining z1 and z2. Then G is a John

domain.
Sufficiency: Let c = 65

63 c1. For each z1, z2 ∈ D, we prove that there exists an arc β ⊂ D joining z1 and z2
such that

min{`(β[z1,w]), `(β[z2,w])} ≤ cdD(w) for all w ∈ β. (3.22)

If |z1 − z2| ≤
1
4 max{dD(z1), dD(z2)}, then let

β = [z1, z2],

and obviously,
min{|z1 − w|, |z2 − w|} ≤ dD(w) for all w ∈ [z1, z2],

which shows that (3.22) holds.
In the following, we assume that |z1 − z2| > 1

4 max{dD(z1), dD(z2)}. If z1, z2 ∈ G, then let γ be a c1-cone arc
joining z1 and z2 in G, and take

β = γ.

Then β satisfies (3.22) since G ⊂ D.
If z1 ∈ PD but z2 < PD, then let x ∈ G be such that |z1 − x| = 1

64 dD(z1), and γ be a c1-cone arc joining x and
z2 in G. Take

β = [z1, x] ∪ γ.

If z1 < PD but z2 ∈ PD, then let y ∈ G be such that |z2 − y| = 1
64 dD(z2), and γ be a c1-cone arc joining y and z1

in G. Take
β = [z2, y] ∪ γ.

If z1, z2 ∈ PD, then let x ∈ G such that |z1 − x| = 1
64 dD(z1) and y ∈ G such that |z2 − y| = 1

64 dD(z2), and γ be a
c1-cone arc joining x and y in G. Take

β = [z1, x] ∪ γ ∪ [y, z2].

To prove that these three arcs β are cone arcs in D, it is enough to consider the third case where z1 z2 ∈ PD.
In this case, β = [z1, x] ∪ γ ∪ [y, z2].

Let z0 ∈ γ be a point which bisecting the arclength of γ. It suffices to prove that for all w ∈ β[z1, z0],

`(β[z1,w]) ≤
65
63

c1dD(w).

On one hand, if w ∈ [z1, x], then

`(β[z1,w]) = |z1 − w| ≤
1

64
dD(z1) ≤

1
63

dD(w). (3.23)

On the other hand, if w ∈ γ[x, z0], then Lemma 3.4 shows

dD(w) ≥
1

2c1
dD(x),

which, together with (3.23), shows that

`(β[z1,w]) = |z1 − x| + `(γ[x,w]) ≤
1

63
dD(x) + c1dD(w) ≤

65
63

c1dD(w).

Hence (3.22) holds, and so the proof of Theorem 2.13 is complete.
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3.3. Proof of Theorem 2.14
We first prove the necessary part of the theorem, that is, if D is an inner c-uniform domain, we need

to prove that each pair of points z1, z2 ∈ G can be joined by an inner c1-uniform arc in G, where c1 =
218c2c3

2 + 660c2
2, and c2 (2 ≤ c2 ≤ 18) is a constant from Lemma 3.3.

For z1, z2 ∈ G, since D is an inner c-uniform domain, then there is an arc γ joining z1 and z2 in D such
that for all w ∈ γ

min{`(γ[z1,w]), `(γ[z2,w])} ≤ cdD(w)

and
`(γ) ≤ cλD(z1, z2).

By Lemma 3.7, we know that there exists an arc α ⊂ G such that α is a (218c2c3
2 + 660c2

2)-cone arc in G and
`(α) ≤ 660c2

2`(γ). Hence

`(α) ≤ 660c2
2`(γ) ≤ 660cc2

2λD(z1, z2) ≤ 660cc2
2λG(z1, z2),

which shows that α is the desired arc.

To prove the sufficient part of Theorem 2.14, we need to prove that for each z1, z2 ∈ D, there exists an arc
β joining z1 and z2 in D such that

min{`(β[z1,w]), `(β[z2,w])} ≤ (1485c1c2
2 +

1
8

)dD(w) for all w ∈ β, (3.24)

and

`(β) ≤ (1485c1c2
2 +

1
8

)λD(z1, z2). (3.25)

If |z1 − z2| ≤
1
4 max{dD(z1), dD(z2)}, then let

β = [z1, z2].

Obviously, β satisfies (3.24) and (3.25).
In the following, we assume that

|z1 − z2| >
1
4

max{dD(z1), dD(z2)}. (3.26)

We divide the proof of this case into two parts.

Case 3.27. z1, z2 ∈ G.

Since G is an inner c1-uniform domain, then there is a c1-cone arc γ joining z1 and z2 in G such that

`(γ) ≤ c1λG(z1, z2). (3.28)

Obviously, γ satisfies (3.24) since G ⊂ D. In order to prove γ satisfies (3.25), we let α be an arc joining z1
and z2 in D with

`(α) ≤ 2λD(z1, z2). (3.29)

By Lemma 3.7, we join z1 and z2 by an arc α1 ⊂ G such that

`(α1) ≤ 660c2
2`(α),

which, together with (3.28) and (3.29), shows that

`(γ) ≤ c1λG(z1, z2) ≤ c1`(α1) ≤ 1320c1c2
2λD(z1, z2).

Now we take β = γ. Obviously, β satisfies (3.24) and (3.25).
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Case 3.30. z1 < G or z2 < G.

Without loss of generality, we may assume that z1 < G and z2 < G, since the proof for the case z1 ∈ G,
z2 < G or z1 < G, z2 ∈ G is similar. Let x, y ∈ G be such that

|z1 − x| =
1
64

dD(z1), |z2 − y| =
1

64
dD(z2), (3.31)

and let γ be an inner c1-uniform arc joining x and y in G. Take

β = [z1, x] ∪ γ ∪ [y, z2].

By Theorem 2.13 and its proof, we know that β satisfies (3.24). It follows from Case 3.27 that

`(γ) ≤ 1320c1c2
2c2λD(x, y),

which, together with (3.26) and (3.31), shows that

`(β[z1, z2]) = |z1 − x| + `(γ[x, y]) + |y − z2|

≤
1
8
|z1 − z2| + 1320c1c2

2λD(x, y)

≤ (1485c1c2
2 +

1
8

)λD(z1, z2),

from which we see that β satisfies (3.25). Hence the proof of Theorem 2.14 is complete.

4. Proof of Theorem 2.15

Definition 4.1. ([9]) A domain D is said to be a ψ-John domain if ψ is an increasing self-homeomorphism of [0,∞]
and if for some fixed x0 ∈ D and for all y ∈ D, we have

kD(x0, y) ≤ ψ
(

|x0 − y|
min{dD(x0), dD(y)}

)
.

The following lemma follows immediately from (2.1).

Lemma 4.2. Ifψ : [0,∞]→ [0,∞] is a homeomorphism such that a domain is aψ-John domain, then log(1+t) ≤ ψ(t)
holds for all t ≥ 0.

By [28, Theorem 2.23], we have the following lemma which is useful for the discussion in the rest of this
section.

Lemma 4.3. Suppose that D ⊂ E is a domain and that D1 ⊂ D is a c-uniform domain. Then for all x, y ∈ D1,

kD(x, y) ≤ c1 jD(x, y)

with c1 = c1(c) ≤ 7c3.

From Lemma 3.3 and Lemma 4.3, we easily get the following corollary.

Corollary 4.4. Suppose that D ⊂ E is a domain and G = D \ PD. For x, y ∈ D, if dD(x) = 128dG(x) and
y ∈ B(x, 1

32 dD(x)), then kG(x, y) ≤ µ jG(x, y), where µ ≤ 7 × 183 is a constant.

Meanwhile, [32, Lemma 3.7(2)] yields the following corollary.

Corollary 4.5. Suppose that D ⊂ E is a domain. For x, y ∈ D, if |x − y| ≤ 1
2 min{dD(x), dD(y)}, then kD(x, y) ≤

2 jD(x, y).
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Before the statement of our main result in this section, we prove the following two lemmas.

Lemma 4.6. Let D be a domain and G = D \PD. For each x ∈ D, there exists some point w ∈ S(x, 1
32 dD(x)) such that

1
48

dD(x) <
1
33

dD(w) ≤ dG(w) ≤
33
31

dD(w).

Proof. Let x ∈ D. By Lemma 3.1, there exists at most one point in PD ∩ B(x, 1
6 dD(x)). On one hand, if

PD ∩B(x, 1
6 dD(x)) = ∅, let w ∈ S(x, 1

32 dD(x)). On the other hand, if PD ∩B(x, 1
6 dD(x)) , ∅, then there exists one

and only one point xi in PD∩B(x, 1
6 dD(x)). Let l be a line determined by x and xi, and take w ∈ l∩S(x, 1

32 dD(x))
such that dG(w) ≥ 1

32 dD(x). Then

dD(w) ≤ dD(x) + |w − x| ≤
33
32

dD(x),

and so
dG(w) ≥

1
32

dD(x) ≥
1

33
dD(w).

Hence
dD(w) ≥ dD(x) − |x − w| =

31
32

dD(x) ≥
31
33

dG(w)

and
dG(w) ≥

1
33

dD(w) >
1
48

dD(x).

The proof is complete.

Lemma 4.7. Let D be a domain and G = D \ PD. For each x ∈ D and w ∈ S(x, 1
32 dD(x)), if dD(x) ≥ 128dG(x), then

dG(w) ≥ 1
44 dD(w).

Proof. Observe first that

dD(w) ≤ dD(x) + |w − x| ≤
33
32

dD(x).

Let x ∈ D. Since dD(x) ≥ 128dG(x), then by Lemma 3.1, there exists one and only one point, namely xi, in
PD ∩ B(x, 1

6 dD(x)). Hence

dG(w) = |w − xi| ≥ |x − w| − |x − xi| ≥
3

128
dD(x) ≥

1
44

dD(w).

Thus the proof of the lemma is complete.

Proof of Theorem 2.15. We first prove the necessary part of the theorem. For this, we assume that D is
ψ-John domain with center x0, where x0 ∈ D. By Lemma 4.6, there exists some point w0 in S(x0, 1

32 dD(x0))
such that

1
48

dD(x0) <
1

33
dD(w0) ≤ dG(w0) ≤

33
31

dD(w0) (4.8)

and

dD(w0) ≤ dD(x0) + |x0 − w0| ≤
33
32

dD(x0). (4.9)

We come to prove that there exists some homeomorphism ψ′ of [0,∞) such that G is a ψ′-John domain with
center w0. That is, we need to find a homeomorphism ψ′ of [0,∞) such that for each y ∈ G,

kG(w0, y) ≤ ψ′
(

|w0 − y|
min{dG(w0), dG(y)}

)
. (4.10)
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For y ∈ G, if |w0 − y| ≤ 1
2 max{dG(w0), dG(y)}, then Lemmas 4.2 and Corollary 4.5 show that

kG(w0, y) ≤ 2 log
(
1 +

|w0 − y|
min{dG(w0), dG(y)}

)
≤ 2ψ

(
|w0 − y|

min{dG(w0), dG(y)}

)
,

which shows that (4.10) holds with ψ1(t) = 2ψ(t). Hence, in the following, we assume that

|w0 − y| >
1
2

max{dG(w0), dG(y)}. (4.11)

Let γ be a 2-neargeodesic joining w0 and y in D. We leave the proof for a moment and prove the following
claim.

Claim 4.12. There exists a sequence of points {wi}
p
i=0 in γ, where p ≥ 1 is an integer, satisfying the following

conditions.

1. For each even number j ∈ {0, . . . , p − 1}, dD(w j) ≤ 44dG(w j);
2. For each even number j ∈ {0, . . . , p − 1}, w j+1 is the first point in γ[w j, y] from w j to y such that dD(w j+1) =

128dG(w j+1);

3. If p ≥ 2, then for each even number j ∈ {1, . . . , p}, w j ∈ B(w j−1, 1
32 dD(w j−1)).

Obviously, by (4.8), we have
dD(w0) ≤ 33dG(w0) < 44dG(w0).

If for all w ∈ γ, dD(w) < 128dG(w), then let w1 = y. Then the claim obviously holds with p = 1. If there exists
some point v0 ∈ γ such that dD(v0) ≥ 128dG(v0), then by (4.8), we can choose a point w1 ∈ γ be the first point
from w0 to y such that

dD(w1) = 128dG(w1).

If y ∈ B(w1, 1
32 dD(w1)), then the claim holds by letting w2 = y, and then p = 2. Otherwise, let w2 ∈

γ ∩ S(w1, 1
32 dD(w1)) such that

γ[w2, y] ∩ B(w1,
1

32
dD(w1)) = ∅.

Then by Lemma 4.7, we have

dG(w2) ≥
1
44

dD(w2).

If for all w ∈ γ[w2, y],
dD(w) ≤ 128dG(w),

then the claim holds with w3 = y, and then p = 3. Otherwise, let w3 be the first point in γ[w2, y] from w2 to
y such that

dG(w3) =
1

128
dD(w3).

By repeating this process for finite steps, we get a sequence {wi}
p
i=0 ∈ γ satisfying the claim, where p < M

log 33
32

,
since for each even number i ∈ {1, 2, . . . , p},

`kD (γ[wi−1,wi]) ≥ log
(
1 +
|wi−1 − wi|

dD(wi−1)

)
= log

33
32
,

and M = `kD (γ[w0, y]). Hence Claim 4.12 holds.
Now, we come back to the proof of the necessary part of the theorem. By Claim 4.12, we know that for

each even number j ∈ {0, . . . , p − 1} the following holds: for all w ∈ γ[w j,w j+1],

dD(w) ≤ 128dG(w).
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Hence

kG(w j,w j+1) ≤
∫
γ[w j,w j+1]

|dw|
dG(w)

< 128`kD (γ[w j,w j+1]) ≤ 256kD(w j,w j+1). (4.13)

By Claim 4.12, we also know that if p ≥ 2, then for each even number j ∈ {1, . . . , p}, w j ∈ B(w j−1, 1
32 dD(w j−1)).

Hence by Corollary 4.4 and Claim 4.12, we have

kG(w j−1,w j) ≤ µ log
(
1 +

|w j−1 − w j|

min{dG(w j−1), dG(w j)}

)
≤ 128µkD(w j−1,w j), (4.14)

where µ is the constant from Corollary 4.4.
Now we divided the rest part of proof into two cases.

Case 4.15. dG(y) ≥ 1
128 dD(y).

By (4.8) and (4.11), we have

|x0 − w0| =
1

32
dD(x0) <

3
2

dG(w0) ≤ 3|y − w0| (4.16)

and

|x0 − y| ≤ |x0 − w0| + |y − w0| ≤ 4|y − w0|, (4.17)

which, together with (4.8), (4.9), Claim 4.12, (4.13) and (4.14), shows that

kG(w0, y) ≤

p−1∑
i=0

kG(wi,wi+1) ≤ 256µ
p−1∑
i=0

kD(wi,wi+1) (4.18)

≤ 512µkD(w0, y) ≤ 512µ(kD(x0,w0) + kD(x0, y))

≤ 512µψ
(

|x0 − w0|

min{dD(x0), dD(w0)}

)
+ 512µψ

(
|x0 − y|

min{dD(x0), dD(y)}

)
≤ ψ2

(
|y − w0|

min{dG(y), dG(w0)}

)
,

where ψ2(t) = 1024µψ(8t).

Case 4.19. dG(y) < 1
128 dD(y).

In this case, by Claim 4.12, we see that p must be an even number and p ≥ 2, and then y ∈ B(wp−1, 1
32 dD(wp−1)).

If w0 ∈ B(wp−1, 1
32 dD(wp−1)), then by Corollary 4.4 and Claim 4.12, we get

kG(w0, y) ≤ µ log
(
1 +

|w0 − y|
min{dG(w0), dG(y)}

)
≤ ψ3

(
|w0 − y|

min{dG(w0), dG(y)}

)
,

where ψ3(t) = µψ(t).
If w0 < B(wp−1, 1

32 dD(wp−1)), then by (4.17),

dG(y) <
1

128
dD(y) ≤

1
128

(dD(wp−1) + |wp−1 − y|) <
1
64

dD(wp−1)
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and
|wp−1 − x0| ≤ |wp−1 − y| + |x0 − y| < 5|y − w0|,

which, together with Lemma 4.2, (4.8), (4.13), (4.14) and (4.16), shows that

kG(w0, y) ≤ 256µ
p−2∑
i=0

kD(wi,wi+1) + kG(wp−1, y)

≤ 512µkD(w0,wp−1) + µ log
(
1 +

|wp−1 − y|
min{dG(wp−1), dG(y)}

)
≤ 512µ(kD(x0,w0) + kD(x0,wp−1)) + µ log

(
1 +

|wp−1 − y|
min{dG(wp−1), dG(y)}

)
≤ 512µ

(
ψ

(
|x0 − w0|

min{dD(x0), dD(w0)}

)
+ ψ

(
|x0 − wp−1|

min{dD(x0), dD(wp−1)}

))
+ µ log

(
1 +

|wp−1 − y|
min{dG(wp−1), dG(y)}

)
≤ ψ1

(
|w0 − y|

min{dG(w0), dG(y)}

)
,

where ψ4(t) = 1025µψ(8t). Hence (4.10) holds with ψ′(t) = 1025µψ(8t).

Now we are going to prove the sufficiency part of Theorem 2.15.
Assume that G is ψ1-John domain with center z0, where z0 ∈ G. By Lemma 4.6, there exists some point

y0 in S(z0, 1
32 dD(z0)) such that

1
48

dD(z0) <
1

33
dD(y0) ≤ dG(y0) ≤

33
31

dD(y0). (4.20)

We show that there exists a homeomorphism ψ of [0,∞) such that D is a ψ-John domain with center y0. By
the necessary part of the theorem, we know that G1 = G \ {z0} is a ψ′-John domain with center y0, where
ψ′(t) = 1025µψ1(8t).

For y ∈ D, if |y0 − y| ≤ 1
2 max{dD(y0), dD(y)}, then Lemma 4.2 and Corollary 4.5 show that

kD(y0, y) ≤ 2 log
(
1 +

|y0 − y|
min{dD(y0), dD(y)}

)
≤ ψ′1

(
|y0 − y|

min{dD(y0), dD(y)}

)
,

where ψ′1(t) = 2ψ1(t) and the constant 2 is from Corollary 4.5. In the following, we assume that

|y0 − y| ≥
1
2

max{dD(y), dD(y0)}. (4.21)

If dD(y) ≤ 62dG(y), then by (4.20),

|y − z0| ≥ |y − y0| − |y0 − z0| ≥
1

128
dD(z0).

Now we claim that

dG(y) ≤ 129dG1 (y). (4.22)

In fact, if dG(y) = dG1 (y), then the above inequality is obvious. If dG(y) > dG1 (y), then dG1 (y) = |y− z0|. Hence

dG(y) ≤ dD(z0) + |z0 − y| ≤ 129dG1 (y),

which shows (4.22).
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Similarly, we have

dG(y0) ≤ 129dG1 (y0). (4.23)

Hence (4.20) and (4.22) yield

kD(y0, y) ≤ kG1 (y0, y) ≤ ψ′
(

|y0 − y|
min{dG1 (y0), dG1 (y)}

)
≤ ψ′2

(
|y0 − y|

min{dD(y0), dD(y)}

)
,

where ψ′2(t) = 1025µψ1(215t).
If dD(y) ≥ 62dG(y), then for y1 ∈ S(y, 1

16 dD(y)), Lemma 3.1 implies

dD(y1) ≤ dD(y) + |y1 − y| ≤ 32dG(y1). (4.24)

Hence, a similar proof as to (4.22) leads to

dG(y1) ≤ 129dG1 (y1),

which, together with Corollary 4.5, (4.20), (4.21), (4.23) and (4.24), shows that

kD(y0, y) ≤ kG1 (y0, y1) + kD(y1, y)

≤ ψ′
(

|y0 − y1|

min{dG1 (y0), dG1 (y1)}

)
+ 2 log

(
1 +

|y1 − y|
min{dD(y1), dD(y)}

)
≤ ψ′3

(
|y0 − y|

min{dD(y0), dD(y)}

)
,

where ψ′3(t) = 1025(µ + 2)ψ1(215t), and µ is the constant from Corollary 4.4. By letting ψ(t) = 1025(µ +

2)ψ1(215t), we get the sufficient part of the theorem. Hence the proof of the theorem is complete.

Remark 4.25. Let ψ : [0,∞] → [0,∞] be a homeomorphism and c, λ1, λ2 be positive constants. We define the
following class:

Ψλ1,λ2 = {ψ : λ1 ≤
ψ(ct)
ψ(t)

≤ λ2}.

The proof of Theorem 2.15 yields the following quantitative statement: ψ1(t) = b1ψ(b2t) and ψ2(t) = b3ψ(b4t)
for some positive constants b j. Thus we see that if D is a ψ-John domain with ψ ∈ Ψλ1,λ2 , then D \ PD is a ψ1-John
domain with ψ1 ∈ Ψλ1,λ2 . The converse implication also holds.
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