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Abstract. We analyze the properties of harmonic quasiconformal mappings and by comparing some suit-
ably chosen conformal metrics defined in the unit disc we obtain some geometrically motivated inequalities
for those mappings (see for instance [15, 17, 20]). In particular, we obtain the answers to many questions
concerning these classes of functions which are related to the determination of different properties that
are of essential importance for validity of the results such as those that generalize famous inequalities of
the Schwarz-Pick type. The approach used is geometrical in nature, via analyzing the properties of the
Gaussian curvature of the conformal metrics we are dealing with. As a consequence of this approach we
give a note to the co-Lipschicity of harmonic quasiconformal self mappings of the unit disc at the origin.

1. Introduction

A sense preserving homeomorphism f : Ω → Ω′, where Ω and Ω′ are subdomains of the complex
plane C, is said to be k-quasiconformal if f is absolutely continuous on almost all horizontal and almost
all vertical lines in Ω and if there exists a constant k ∈ [0, 1) such that | fz̄(z)| 6 k| fz(z)|, for almost all z ∈ Ω.

The last requirement is equivalent to | fx(z)|2 + | fy(z)|2 6
(
K +

1
K

)
J f (z), for almost all z ∈ Ω, where J f is the

Jacobian of f and K =
1 + k
1 − k

> 1. Note that many authors, instead of k, sometimes use constant K as the

quasiconformal constant of some k-quasiconformal mapping f , where K =
1 + k
1 − k

.
Let D = {z ∈ C : |z| < 1} denote the unit disc in the complex plane. O. Martio (see [19]) was the

first who considered the importance of the Euclidean Lipschitz and co-Lipschitz character of the harmonic
quasiconformal mappings. By using the inequality (see Theorem 2.4)

| fz(z)|2 + | fz̄(z)|2 >
1
π2 , z ∈ D,

he noticed that every harmonic quasiconformal diffeomorphism f of D onto itself is also a co-Lipschitz
mapping. On the other hand, in joint work of the author of this note with M. Mateljević (see [17]), by
comparing some suitably chosen conformal metrics defined on the unit discD and using some versions of
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M. Knežević / Filomat 29:2 (2015), 335–341 336

Ahlfors-Schwarz lemma, it has been shown that every such a mapping is also a quasi-isometry with respect
to the hyperbolic metric. Moreover, the specific bi-Lipschitz constants were obtained. The same holds for
harmonic k-quasiconformal diffeomorphisms of the half plane. Those mappings are (K−1,K) bi-Lipschitz
with respect to the Euclidean metric too.

Theorem 1.1 ([17]). Let f be a k-quasiconformal harmonic diffeomorphism of the unit discD onto itself. Then f is a
quasi-isometry of the unit discD with respect to the hyperbolic metric. In addition, f is a (K−1,K) bi-Lipschitz with
respect to the hyperbolic metric.

Theorem 1.2 ([17]). Let f be a k-quasiconformal harmonic diffeomorphism of the upper half planeH = {z ∈ C : Im z > 0}
onto itself. Then f is a quasi-isometry of H with respect to the hyperbolic metric on H. More specifically, f is a
(K−1,K) bi-Lipschitz with respect to the hyperbolic metric onH, but also with respect to the Euclidean metric, i.e.

|z1 − z2|/K 6 | f (z1) − f (z2)| 6 K|z1 − z2|,

for all z1, z2 ∈H. The estimates are sharp.

For further properties and characterizations of the harmonic quasiconformal mappings, that act between
various subdomains of the complex plane C, we refer to [6, 11–14, 20, 22, 23, 25, 27, 28].

In [27] the authors D. Partyka and K. Sakan obtained important inequalities that determines the
bounds for bi-Lipschitz constants for a harmonic k-quasiconformal diffeomorphism f of the unit discD
that fixes the origin. They find explicit estimates of those constants by means of the quasiconformal constant
k and showed that the estimations are asymptotically sharp as K = (1 + k)/(1− k)→ 1+, so f behaves almost
like a rotation for sufficiently small k. In particular, for a lower bound for the co-Lipschitz constant they
obtained a constant m1(K), for which obviously holds m1(K) 6 1/K (see below).

Theorem 1.3 ([27]). Let f be a k-quasiconformal harmonic mapping of the unit discD onto itself such that f (0) = 0.
Then, for all z1, z2 ∈ D it follows

| f (z1) − f (z2)| > m1(K)|z1 − z2|,

where m1(K) =
2

5
2 (1−K2)(3+ 1

K )

K3K+1(K2 + K + 1)3K and K = (1 + k)/(1 − k).

Later, in [14], by using the properties of Mori’s constant M(K) for the class of k-quasiconformal self
mappings of the unit disc, K = (1 + k)/(1 − k), that leave the origin invariant, the authors D. Kalaj and M.
Pavlović obtained the better co-Lipschitz constant m2(K).

Theorem 1.4 ([14]). Let f be a k-quasiconformal harmonic mapping of the unit discD onto itself and let f (0) = 0.
Then, for all z1, z2 ∈ D it follows

| f (z1) − f (z2)| > m2(K)|z1 − z2|, (1)

where m2(K) =
22K−2Γ(K − 1

2 )
√
πK2Γ(K)(M(K))2K

and K = (1 + k)/(1 − k).

Motivated by some questions from the Belgrade complex analysis Seminar, the author of this note, as a
corollary of the previous result (see Theorem 3.2), with an additional condition that the mapping f leaves

the origin fixed, obtained upper and lower bounds for the quantity
| f (z)|
|z|

, z ∈ D, z , 0, and then concrete

constants of Euclidean bi-Lipschicity of such a mapping at the point z = 0. In particular, it was shown that

1
K
|z| 6 | f (z)| 6 K|z|,

whenever z ∈ D. Otherwise, it was known that if m(K) ∈ (0, 1] is the best possible constant for which
m(K)|z| 6 | f (z)|, whenever z ∈ D, then lim

K→1+

m(K) = 1 (see [14] and [27]), which also follows directly from our

results, since 1/K 6 m(K) 6 1. Hence, it seems to us that it is important to get to know the properties of the
constant m(K) (see, for example, [5]).
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2. Preliminary results

In the classical theory of functions of one complex variable, the next result takes a substantial place.

Lemma 2.1 (Schwarz). Let f : D → D be an analytic function and f (0) = 0. Then | f (z)| 6 |z|, z ∈ D, and
| f ′(0)| 6 1. If | f (z)| = |z|, for some z , 0, or | f ′(0)| = 1, then f (z) = eiαz, for some α ∈ [0, 2π).

The first impression is that the Schwarz lemma has only analytic character, but Pick gives to the Schwarz
lemma a geometric interpretation.

Lemma 2.2 (Schwarz-Pick). Let f be an analytic function from the unit discD into itself. Then f does not increase
the corresponding hyperbolic (pseudo-hyperbolic) distances.

Also, there is a harmonic counterpart of Lemma 2.1 (for details see [9]).

Theorem 2.3 (Heinz). Let f be a harmonic mapping from the unit discD into itself. If f (0) = 0, then

| f (z)| 6
4
π

arctan |z|, (2)

for all z ∈ D.

Theorem 2.4 (Heinz). Let f be a univalent harmonic mapping of the unit discD onto itself and let f (0) = 0. Then

| fx(z)|2 + | fy(z)|2 >
2
π2 , (3)

for all z ∈ D. In addition, | fz(z)|2 + | fz̄(z)|2 >
1
π2 , z ∈ D.

Otherwise, in the classical theory of quasiconformal self mappings of the unit disc, which leave the
origin fixed, a result known as Mori’s theorem is important (see [18] and [26]).

Theorem 2.5 ([26]). Let f be a k-quasiconformal mapping from the unit discD onto itself. If f (0) = 0, then

| f (z1) − f (z2)| 6 16|z1 − z2|
1
K ,

for all z1, z2 ∈ D, where K = (1 + k)/(1 − k). The constant 16 is optimal as an absolute constant, i.e. it cannot be
replaced by any smaller bound if the inequality is to hold for all K.

Note that this estimate is meaningful if |z1 − z2| is small.

Let QCK(D), K =
1 + k
1 − k

> 1, be the family of all k-quasiconformal mappings of the unit discD onto itself
fixing the origin. For such a family we define the constant

M(K) = sup
{
| f (z1) − f (z2)|

|z1 − z2|
1
K

: f ∈ QCK(D), z1, z2 ∈ D, z1 , z2

}
,

which is sometimes known as Mori’s constant. Ahlfors (see [1]) was the first who noticed that this constant is
finite, but later, in 1956, Mori proved that M(K) 6 16 and that the constant 16 cannot be replaced by a smaller
one independent of K. He also conjectured that M(K) = 161− 1

K . In [18] it was shown that M(K) > 161− 1
K . On

the other hand, there are many upper bounds for that constant. Here we mention only the following upper
bound.

Theorem 2.6 ([30]). If K > 1, then M(K) 6 161− 1
K min

(23
8

)1− 1
K

,
(
1 + 23−2K

) 1
K

.

For the properties of Mori’s constant of the quasiconformal mappings in higher dimensions we refer to [8].
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3. Properties of harmonic quasiconformal quasi-isometries

Let f be a harmonic k-quasiconformal mapping of the unit disc D into itself, with complex dilatation

µ : z 7→ µ(z) =
fz̄(z)
fz(z)

, z ∈ D, and let σ(z) = λ( f (z))| fz(z)|2, z ∈ D, be the density of a conformal metric

ds2 = σ(z)|dz|2 on D, where λ(z) =
4

(1 − |z|2)2 , z ∈ D, is the well known hyperbolic metric density on D. In

[17] we showed that

Kσ(z) = −

1 + |µ(z)|2 + 2Re

 ( f (z))2 fz̄(z)
fz(z)

 ,
and therefore,

−(1 + |µ(z)|)2 6 Kσ(z) 6 −(1 − |µ(z)|)2,

for all z ∈ D, where Kσ denotes the Gaussian curvature of the conformal metric ds2 = σ(z)|dz|2 defined on
D. Hence, by applying the Ahlfors-Schwarz lemma, we obtained the following result (see [15, 17]).

Proposition 3.1. Let f be a harmonic k-quasiconformal mapping from the unit discD into itself. Then for any two
points z1 and z2 inD we have

dD( f (z1), f (z2)) 6 K dD(z1, z2),

where by dD we denoted the hyperbolic distance, induced by the hyperbolic metric ds2 = λ(z)|dz|2, on the unit discD
and K = (1 + k)/(1 − k).

In order to show the opposite inequality, and hence Theorem 1.1, we had to suppose that the mapping f is
onto. Thus, according to the completeness of the conformal metric ds2 = σ(z)|dz|2 and by applying opposite
version of Ahlfors-Schwarz lemma (see [21]), we conclude the next proposition to be valid.

Proposition 3.2. Let f be a harmonic k-quasiconformal mapping from the unit discD onto itself. Then for any two
points z1 and z2 inD we have

dD( f (z1), f (z2)) >
1
K

dD(z1, z2),

where dD and K are as before.

As a corollary we get a new result.

Corollary 3.3. Let w = f (z) be a harmonic k-quasiconformal mapping of the unit discD onto itself and let f (0) = 0.
Then,

| f (z)| 6
(1 + |z|)K

− (1 − |z|)K

(1 + |z|)K + (1 − |z|)K (4)

and

| f (z)| >
(1 + |z|)

1
K − (1 − |z|)

1
K

(1 + |z|)
1
K + (1 − |z|)

1
K

, (5)

where K = (1 + k)/(1 − k).

Proof. In this case if w = f (z) and if dD is corresponding hyperbolic distance function onD, we have

dD(w, 0) 6 KdD(z, 0) and dD(w, 0) >
1
K

dD(z, 0),

as we proved earlier. Since, dD(r, 0) = ln
1 + r
1 − r

, 0 6 r < 1, we get the estimates.
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To obtain the main result of this note, we have to prove a lemma below (see also [16]).

Lemma 3.4. Let a > 0, a , 1, be a real number. Then the function

s : x 7→ s(x) =
(1 + x)a

− (1 − x)a

(1 + x)a + (1 − x)a , 0 < x < 1,

is strictly increasing on the interval (0, 1). In addition, if a > 1, then s(x) < ax, for all 0 < x < 1, whereas, if
0 < a < 1, then s(x) > ax, for all 0 < x < 1.

Proof. By easy calculation we get

s′(x) =
4a(1 − x2)a−1

((1 − x)a + (1 + x)a)2 > 0,

for all 0 < x < 1. On the other hand,

s′′(x) =
8a(1 − x2)a−2 ((1 + x)a(x − a) + (1 − x)a(a + x))

((1 − x)a + (1 + x)a)3 , 0 < x < 1.

Therefore, since for a > 1,
a − x
a + x

>
1 − x
1 + x

>
(1 − x

1 + x

)a

, for all 0 < x < 1, we obtain that in this case the function

s is concave on (0, 1). Otherwise, if 0 < a < 1, we have
a − x
a + x

<
1 − x
1 + x

<
(1 − x

1 + x

)a

, whenever 0 < x < 1, and

the function s is then convex on (0, 1). Now, the statement easily follows from the fact that s′+(0) = a, where
s′+(0) is the right derivative of the function s at the point x = 0.

We are now ready to prove the main result.

Theorem 3.5. Let f be a harmonic k-quasiconformal mapping of the unit discD onto itself and let f (0) = 0. Then,
for all z ∈ D we have

1
K
|z| 6 | f (z)| 6 K|z|, (6)

where K =
1 + k
1 − k

.

Proof. According to the inequalities (4) and (5), the proof easily follows by applying the Lemma 3.4.

Corollary 3.6. If m(K), K = (1+k)/(1−k) > 1, is the best possible constant for which m(K)|z| 6 | f (z)|, for all z ∈ D,
where f is a harmonic k-quasiconformal self diffeomorphism of the unit discD, that leaves the origin invariant, then
lim

K→1+

m(K) = 1.

Remark 3.7. In [16] we obtained a result, similar to the result stated in the Theorem 3.5, for the class of k-
quasiconformal hyperbolic harmonic self diffeomorphisms of the unit discD, which fix the point z = 0. In particular,
for a mapping f that belongs to such a class we get 2|z|/(K+1) 6 | f (z)| 6

√
K |z|, for all z ∈ D, where K = (1+k)/(1−k).

4. Further results

Lemma 4.1. The function ψ(x) =
Γ′(x)
Γ(x)

, x > 0, is strictly increasing on (0,+∞), where Γ : x 7→ Γ(x), x > 0, is the

Gamma function.

Proof. The proof follows immediately from the log-convexity of the Gamma function on (0,+∞).

Lemma 4.2. For all x > 1 the inequality
Γ(x − 1

2 )
√
πΓ(x)

6 1 holds.
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Proof. By Lemma 4.1 we have

Γ(x − 1
2 )

√
πΓ(x)

′ =
Γ(x − 1

2 )
√
πΓ(x)

(ψ(x − 1
2 ) − ψ(x)) < 0, for x > 1

2 . Thus, the function

x 7→ 1(x) =
Γ(x − 1

2 )
√
πΓ(x)

, x ∈ (
1
2
,+∞), is strictly decreasing, so 1(x) =

Γ(x − 1
2 )

√
πΓ(x)

6 1(1) = 1, for all x > 1.

Lemma 4.3. h(x) = −
1
x

+
43(1−x)Γ(x − 1

2 )
√
πx2Γ(x)

6 0, for all x > 1.

Proof. According to the Lemma 4.2, h(x) 6
1
x2

(
−x + 43(1−x)

)
6 0, for x > 1.

Theorem 4.4. If M(K), K > 1, is Mori’s constant, then

m2(K) =
22K−2Γ(K − 1

2 )
√
πK2Γ(K)(M(K))2K

6
1
K
.

Proof. The proof is immediate consequence of the fact that M(K) > 161− 1
K (see [18]) and of the previous

lemma.

Remark 4.5. It is obvious that for K >
4
π

the right hand side of the inequality (6) we obtained is certainly not better
than the well known inequality (2) stated in the Schwarz Lemma 2.3 for harmonic mappings. On the other hand, for

1 6 K <
4
π

, that inequality gives better bound only for |z| small. But, if we put z2 = 0 in the inequality (1), we get

| f (z)| >
1
K
|z| > m2(K)|z| =

22K−2Γ(K − 1
2 )

√
πK2Γ(K)(M(K))2K

|z|, for all z ∈ D.
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