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Abstract. The object of the present paper is to study some geometric properties of a generalized quasi-
Einstein manifold. The existence of such a manifold have been proved by several non-trivial examples.

1. Introduction

A Riemannian or semi-Riemannian manifold (Mn, 1), n = dimM ≥ 2, is said to be an Einstein manifold
if the following condition

S =
r
n
1 (1)

holds on M, where S and r denote the Ricci tensor and the scalar curvature of (Mn, 1) respectively. According
to Besse([3], p. 432), (1) is called the Einstein metric condition. Einstein manifolds play an important role
in Riemannian Geometry as well as in general theory of relativity. Also Einstein manifolds form a natural
subclass of various classes of Riemannian or semi-Riemannian manifolds by a curvature condition impossed
on their Ricci tensor([3],p.432-433). For instance, every Einstein manifold belongs to the class of Riemannian
or semi-Riemannian manifolds (Mn, 1) realizing the following relation:

S(X,Y) = a1(X,Y) + bA(X)A(Y), (2)

where a, b ∈ R and A is a non-zero 1-form such that

1(X,U) = A(X), (3)

for all vector fields X. Moreover, different structures on Einstein manifolds have been studied by several
authors. In 1993, Tamassy and Binh[29] studied weakly symmetric structures on Einstein manifolds.
A non-flat semi-Riemannian manifold (Mn, 1) (n > 2) is defined to be a quasi-Einstein manifold if its Ricci
tensor S of type (0, 2) is not identically zero and satisfies the condition (2).
It is to be noted that Chaki and Maity[6] also introduced the notoin of quasi-Einstein manifolds in a different

2010 Mathematics Subject Classification. 53C25, 53C35
Keywords. Quasi-Einstein manifolds, generalized quasi-Einstein manifolds, generalized quasi-constant curvature, Codazzi type

of Ricci tensor, cyclic parallel Ricci tensor, Killing vector field, concurrent vector field, recurrent vector field.
Received: 23 Oktober 2014; Accepted: 17 November 2014
Communicated by Ljubica Velimirović and Mića Stanković
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way. They have taken a, b as scalars and the vector field U metrically equivalent to the 1-form A as a unit
vector field. Such an n-dimensional manifold is denoted by (QE)n. Quasi-Einstein manifolds have been
studied by several authors such as Bejan[2], De and Ghosh[11], De and De[12] and De, Ghosh and Binh[13]
and many others.
Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well
as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces. For instance, the
Robertson-Walker spacetimes are quasi-Einstein manifolds. Also, quasi-Einstein manifolds can be taken
as a model of the perfect fluid spacetime in general relativity[10]. So quasi-Einstein manifolds have some
importance in the general theory of relativity.
Quasi-Einstein manifolds have been generalized by several authors in several ways such as generalized
quasi-Einstein manifolds([7],[14],[15],[16],[21],[24]), generalized Einstein manifolds[1], super quasi-Einstein
manifolds([8],[18],[23]), N(k)-quasi-Einstein manifolds([9],[22],[27],[28]) and many others.
In a paper De and Ghosh[14] introduced the notion of generalized quasi-Einstein manifolds in another way.
A non-flat Riemannian or semi-Riemannian manifold (Mn, 1) (n > 2) is called a generalized quasi-Einstein
manifold if its Ricci tensor S of type (0,2) is non-zero and satisfies the condition

S(X,Y) = a1(X,Y) + bA(X)A(Y) + cB(X)B(Y), (4)

where a, b, c ∈ R and A, B are two non-zero 1-forms such that

1(A,B) = 0, ‖A‖ = ‖B‖ = 1.

The unit vector fields U and V corresponding to the 1-forms A and B respectively, defined by

1(X,U) = A(X), 1(X,V) = B(X),

for every vector field X are orthogonal, that is, 1(U,V) = 0. Such a manifold is denoted by G(QE)n. If c = 0,
then the manifold reduces to a quasi-Einstein manifold[6].

Gray[19] introduced two classes of Riemannian manifolds determined by the covariant differentiation
of Ricci tensor. The class A consisting of all Riemannian manifolds whose Ricci tensor S is a Codazzi type
tensor, i.e.,

(∇XS)(Y,Z) = (∇YS)(X,Z).

The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, i.e.,

(∇XS)(Y,Z) + (∇YS)(Z,X) + (∇ZS)(X,Y) = 0.

A non-flat Riemannian or semi-Riemannian manifold (Mn, 1) (n > 2) is called a generalized Ricci recurrent
manifold[17] if its Ricci tensor S of type (0,2) satisfies the condition

(∇XS)(Y,Z) = γ(X)S(Y,Z) + δ(X)1(Y,Z),

where γ and δ are non-zero 1-forms. If δ = 0, then the manifold reduces to a Ricci recurrent manifold[25].
The present paper is organized as follows:

After introduction in Section 2, it is shown that if the generators U and V are Killing vector fields, then
the generalized quasi-Einstein manifold satisfies cyclic parallel Ricci tensor. Section 3 deals with G(QE)n
satisfying Codazzi type of Ricci tensor. In the next two sections we consider G(QE)n with generators U
and V both as concurrent and recurrent vector fields. Finally, we give some examples of generalized
quasi-Einstein manifolds.

2. The generators U and V as Killing vector fields

In this section let us consider the generators U and V of the manifold are Killing vector fields. Then we
have

(£U1)(X,Y) = 0 (5)
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and

(£V1)(X,Y) = 0, (6)

where £ denotes the Lie derivative.
From (5) and (6) it follows that

1(∇XU,Y) + 1(X,∇YU) = 0 (7)

and

1(∇XV,Y) + 1(X,∇YV) = 0. (8)

Since 1(∇XU,Y) = (∇XA)(Y) and 1(∇XV,Y) = (∇XB)(Y), we obtain from (7) and (8) that

(∇XA)(Y) + (∇YA)(X) = 0 (9)

and

(∇XB)(Y) + (∇YB)(X) = 0, (10)

for all X, Y.
Similarly, we have

(∇XA)(Z) + (∇ZA)(X) = 0, (11)

(∇ZA)(Y) + (∇YA)(Z) = 0, (12)

(∇XB)(Z) + (∇ZB)(X) = 0, (13)

(∇ZB)(Y) + (∇YB)(Z) = 0, (14)

for all X, Y, Z.
Now from (4) we have

(∇ZS)(X,Y) = b[(∇ZA)(X)A(Y) + A(X)(∇ZA)(Y)]
+c[(∇ZB)(X)B(Y) + B(X)(∇ZB)(Y)]. (15)

Using (15) we obtain

(∇XS)(Y,Z) + (∇YS)(Z,X) + (∇ZS)(X,Y) = b[{(∇XA)(Y)
+(∇YA)(X)}A(Z) + {(∇XA)(Z) + (∇ZA)(X)}A(Y)

+{(∇YA)(Z) + (∇ZA)(Y)}A(X)] + c[{(∇XB)(Y)
+(∇YB)(X)}B(Z) + {(∇XB)(Z) + (∇ZB)(X)}B(Y)

+{(∇YB)(Z) + (∇ZB)(Y)}B(X)]. (16)

By virtue of (9)−(14) we obtain from (16) that

(∇XS)(Y,Z) + (∇YS)(Z,X) + (∇ZS)(X,Y) = 0.

Thus we can state the following theorem:

Theorem 2.1. If the generators of a G(QE)n are Killing vector fields, then the manifold satisfies cyclic parallel Ricci
tensor.
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3. G(QE)n satisfying Codazzi type of Ricci tensor

A Riemannian or semi-Riemannian manifold is said to satisfy Codazzi type of Ricci tensor if its Ricci
tensor satisfies the following condition

(∇XS)(Y,Z) = (∇YS)(X,Z), (17)

for all X, Y, Z.
Using (15) and (17), we obtain

b[(∇XA)(Y)A(Z) − (∇YA)(X)A(Z) + A(Y)(∇XA)(Z) −
A(X)(∇YA)(Z)] + c[(∇XB)(Y)B(Z) − (∇YB)(X)B(Z)

+B(Y)(∇XB)(Z) − B(X)(∇YB)(Z)] = 0. (18)

Putting Z = U in (18) and using (∇XA)(U) = 0 we get

(∇XA)(Y) − (∇YA)(X) = 0, i.e., dA(X,Y) = 0.

Similarly, putting Z = V in (18) and using (∇XB)(V) = 0 yields dB(X,Y) = 0.
Thus we can state the following:

Theorem 3.1. If a G(QE)n satisfies the Codazzi type of Ricci tensor, then the associated 1-forms A and B are closed.

Again putting X = Z = U in (18) we have

(∇UA)(Y) = 0, (19)

which means that 1(X,∇UU) = 0 for all Y, that is, ∇UU = 0.
Similarly, putting X = Z = V in (18) we have

(∇VB)(Y) = 0, (20)

which yields ∇VV = 0. This leads to the following theorem:

Theorem 3.2. If a generalized quasi-Einstein manifold satisfies Codazzi type of Ricci tensor, then the integral curves
of the vector fields U and V are geodesic.

4. The generators U and V as concurrent vector fields

A vector field ξ is said to be concurrent if[26]

∇Xξ = ρX, (21)

where ρ is a non-zero constant. If ρ = 0, the vector field reduces to a parallel vector field.
In this section we consider the vector fields U and V corresponding to the associated 1-forms A and B

respectively are concurrent. Then

(∇XA)(Y) = α1(X,Y) (22)

and

(∇XB)(Y) = β1(X,Y), (23)

where α and β are non-zero constants.
Using (22) and (23) in (15) we get

(∇ZS)(X,Y) = b[α1(X,Z)A(Y) + α1(Y,Z)A(X)]
+c[β1(X,Z)B(Y) + β1(Y,Z)B(X)]. (24)
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Contracting (24) over X and Y we obtain

dr(Z) = 2[bαA(Z) + cβB(Z)], (25)

where r is the scalar curvature of the manifold.
Again from (4) we have

r = an + b + c. (26)

Since, a, b, c ∈ R, it follows that dr(X) = 0, for all X. Thus equation (25) yields

bαA(Z) + cβB(Z) = 0. (27)

Since α and β are not zero, using (27) in (4), we finally get

S(X,Y) = a1(X,Y) + (b +
b2α2

cβ2 )A(X)A(Y).

Thus the manifold reduces to a quasi-Einstein manifold. Hence we can state the following theorem:

Theorem 4.1. If the associated vector fields of a G(QE)n are concurrent vector fields, then the manifold reduces to a
quasi-Einstein manifold.

5. The generators U and V as recurrent vector fields

A vector fiels ξ corresponding to the associated 1-form η is said to be recurrent if[26]

(∇Xη)(Y) = ψ(X)η(Y), (28)

where ψ is a non-zero 1-form.
In this section we suppose that the generators U and V corresponding to the associated 1-forms A and

B are recurrent. Then we have

(∇XA)(Y) = λ(X)A(Y) (29)

and

(∇XB)(Y) = µ(X)B(Y), (30)

where λ and µ are non-zero 1-forms.
Now, using (29) and (30) in (15) we get

(∇ZS)(X,Y) = 2bλ(Z)A(X)A(Y) + 2cµ(Z)B(X)B(Y). (31)

We assume that the 1-forms λ and µ are equal, i.e.,

λ(Z) = µ(Z), (32)

for all Z. Then we obtain from (31) and (32) that

(∇ZS)(X,Y) = 2λ(Z)[bA(X)A(Y) + cB(X)B(Y)]. (33)

Using (4) and (33) we have
(∇ZS)(X,Y) = α1(Z)S(X,Y) + α2(Z)1(X,Y),

where α1(Z) = 2λ(Z) and α2(Z) = −2aλ(Z).
Thus we can state the following:

Theorem 5.1. If the generators of a G(QE)n corresponding to the associated 1-forms are recurrent with the same
vector of recurrence, then the manifold is a generalized Ricci recurrent manifold.
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6. Examples of G(QE)n

In this section we prove the existence of generalized quasi-Einstein manifolds by constructing some
non-trivial concrete examples.

Example 6.1. Let us consider a semi-Riemannian metric 1 on R4 by

ds2 = 1i jdxidx j = x2[(dx1)2 + (dx2)2 + (dx3)2] − (dx4)2, (34)

where i, j = 1, 2, 3, 4. Then the only non-vanishing components of the Christoffel symbols, the curvature
tensors and the derivatives of the components of curvature tensors are

Γ2
11 = Γ2

33 = −
1

2x2 , Γ2
22 = Γ1

12 = Γ3
23 =

1
2x2 ,

R1221 = R2332 = −
1

2x2 , R1331 =
1

4x2 , R1232 = 0,

and the components obtained by the symmetry properties. The non-vanishing components of the Ricci
tensor Ri j are

R11 = R33 = −
1

4(x2)2 , R22 = −
1

(x2)2 .

It can be easily shown that the scalar curvature of the resulting manifold (R4, 1) is − 3
2(x2)3 , 0. We shall now

show that (R4, 1) is a generalized quasi-Einstein manifold.
Let us now consider the associated scalars as follows:

a =
1

(x2)3 , b = −
5

2(x2)3 , c = −
2

(x2)3 . (35)

Again let us choose the associated 1-forms as follows:

Ai(x) =

 1
√

2

√

x2, for i=1, 3
0, otherwise,

(36)

Bi(x) =

{ √
x2, for i=2

0, otherwise,
(37)

at any point x ∈ R4. To verify the relation (4), it is sufficient to check the following equations:

R11 = a111 + bA1A1 + cB1B1, (38)

R22 = a122 + bA2A2 + cB2B2, (39)

R33 = a133 + bA3A3 + cB3B3, (40)

since for the other cases (4) holds trivially. By virtue of (35), (36), (37) and (38) we get

R.H.S. of (38) = a111 + bA1A1 + cB1B1

=
1

(x2)3 x2 + (−
5

2(x2)3 )
1
2

(x2) + 0

= −
1

4(x2)2 = R11

= L.H.S. of (38).
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By similar argument it can be shown that (39) and (40) are also true. We shall now show that the associated
vectors Ai and Bi are unit.
Here

1i jAiA j = 1, 1i jBiB j = 1, 1i jAiB j = 0.

Therefore the vectors Ai and Bi are unit and also they are orthogonal.
So, (R4, 1) is a generalized quasi-Einstein manifold.

Example 6.2. We consider a Riemannian manifold (M4, 1) endowed with the Riemannian metric 1 given
by

ds2 = 1i jdxidx j = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2 + (dx4)2, (41)

where i, j = 1, 2, 3, 4. The only non-vanishing components of Christoffel symbols, the curvature tensor and
the Ricci tensor are

Γ1
22 = −x1, Γ2

33 = −
x2

(x1)2 , Γ2
12 =

1
x1 , Γ3

23 =
1
x2 ,

R1332 = −
x2

x1 , S12 = −
1

x1x2 .

It can be easily shown that the scalar curvature of the manifold is zero. We shall now show that (R4, 1) is a
generalized quasi-Einstein manifold.
We take the associated scalars as follows:

a =
1

x1(x2)2 , b = −
8

3(x1)2x2 , c = −
2

3(x1)2x2 .

We choose the 1-forms as follows:

Ai(x) =


1
√

3
, for i=1

x1
√

3
, for i=2

x2
√

3
, for i=3

0, for i=4

and

Bi(x) =


1
√

2
, for i=1

−
x1
√

2
, for i=2

0, otherwise

at any point x ∈ M. In our (M4, 1), (4) reduces with these associated scalars and 1-forms to the following
equation:

S12 = a112 + bA1A2 + cB1B2 (42)

It can be easily prove that the equation (42) is true.
We shall now show that the associated vectors Ai and Bi are unit and also they are orthogonal.
Here,

1i jAiA j = 1, 1i jBiB j = 1, 1i jAiB j = 0.

So, the manifold under consideration is a generalized quasi-Einstein manifold.

Example 6.3. [16] A 2-quasi-umbilical hypersurface of a space of constant curvature is a G(QE)n, which
is not a quasi-Einstein manifold.

Example 6.4. [16] A quasi-umbilical hypersurface of a Sasakian space form is a G(QE)n, which is not a
quasi-Einstein manifold.
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Example 6.5. De and Mallick [16] considered a Riemannian metric 1 on R4 by

ds2 = 1i jdxidx j = (x4)
4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2. (43)

Then they showed that (M4, 1) is a generalized quasi-Einstein manifold, which is not a quasi-Einstein
manifold.

Example 6.6. Özgür and Sular [24] assumed an isometrically immersed surface M̄ in E3 with non-zero
distinct principal curvatures λ and µ. Then they considered the hypersurface M = M̄ × En−2 in En+1,n ≥ 4.
The principal curvatures of M are λ̃, µ̃, 0,..., 0, where 0 occures (n-2)-times. Hence the manifold is a 2-quasi
umbilical hypersurface and so it is generalized quasi-Einstein.

Example 6.7. Özgür and Sular [24] assumed a sphere S2 in Ek+2 given by the immersion f : S2
→ Ek+2 and

BS2 be the bundle of unit normal to S2. The hypersurface M defined by the map ϕt : BS2
→ Ek+2, ϕt(x, ξ) =

F(x, tξ) = f (x) + tξ is called the tube of radius t over S2. It was proved in [5] that if (λ, λ) are the principal
curvature of S2 then the principal curvatures of M are ( λ

1−tλ ,
λ

1−tλ ,−
1
t , ...,−

1
t ), where − 1

t occures (k-1)-times.
So M is 2-quasi umbilical and hence it is generalized quasi-Einstein.

Example 6.8. The study of warped product manifold was initiated by Kručkovič [20] in 1957. Again in
1969 Bishop and O’Neill [4] also obtained the same notion of the warped product manifolds while they were
constructing a large class of manifolds of negative curvature. Warped product are generalizations of the
Cartesian product of Riemannian manifolds. Let (M̄, 1̄) and (M∗, 1∗) be two Riemannian or semi-Riemannian
manifolds. Let M̄ and M∗ be covered with coordinate charts (U; x1, x2, ...., xp) and (V; yp+1, yp+2, ...., yn)
respectively. Then the warped product M = M̄ × f M∗ is the product manifold of dimension n furnished
with the metric

1 = π∗(1̄) + ( f ◦ π)σ∗(1∗), (44)

where π : M→ M̄ and σ : M→M∗ are natural projections such that the warped product manifold M̄× f M∗

is covered with the coordinate chart

(U × V; x1, x2, ...., xp, xp+1 = yp+1, xp+2 = yp+2, ...., xn = yn).

Then the local components of the metric 1with respect to this coordinate chart are given by

1i j =


1̄i j for i=a and j=b,
f1∗i j for i = α and j = β,

0 otherwise,
(45)

Here a, b, c, ... ∈ {1, 2, ..., p} and α, β, γ, ... ∈ {p+1, p+2, ...,n} and i, j, k, ... ∈ {1, 2, ...,n}.Here M̄ is called the base,
M∗ is called the fiber and f is called warping function of the warped product M = M̄ × f M∗. We denote by
Γi

jk, Ri jkl, Ri j and r as the components of Levi-Civita connection ∇, the Riemann-Christoffel curvature tensor
R, Ricci tensor S and the scalar curvature of (M, 1) respectively. Moreover we consider that, when Ω is a
quantity formed with respect to 1, we denote by Ω̄ and Ω∗, the similar quantities formed with respect to 1̄
and 1∗ respectively. Then the non-zero local components of Levi-Civita connection ∇ of (M, 1) are given by

Γa
bc = Γ̄a

bc, Γαβγ = Γ∗αβγ, Γa
βγ = −

1
2
1̄ab fb1∗βγ, Γαaβ =

1
2 f

faδαβ , (46)

where fa = ∂a f =
∂ f
∂xa . The local components Rhijk = 1hlRl

i jk = 1hl(∂kΓ
l
i j − ∂ jΓ

l
ik + Γm

ij Γ
l
mk − Γm

ikΓ
l
mj), ∂k = ∂

∂xk , of the
Riemann-Christoffel curvature tensor R of (M, 1) which may not vanish identically are the following:

Rabcd = R̄abcd,Raαbβ = − f Tab1
∗

αβ,Rαβγδ = f R∗αβγδ − f 2G∗αβγδ, (47)
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where Gi jkl = 1il1 jk − 1ik1 jl and

Tab = −
1

2 f
(∇b fa −

1
2 f

fa fb), tr(T) = 1abTab,

P =
1

4 f 2 1
ab fa fb,

Q = f {(n − p − 1)P − tr(T)}.

Again the non-zero local components of the Ricci tensor R jk = 1ilRi jkl of (M, 1) are given by

Rab = R̄ab + (n − p)Tab, Rαβ = R∗αβ −Q1∗αβ, (48)

The scalar curvature r of (M, 1) is given by

r = r̄ +
r∗

f
− (n − p)[(n − p − 1)P − 2tr(T)]. (49)

Here we consider warped product manifold M = I × f M?, dimI = 1, dimM? = n − 1 (n ≥ 3), f = exp{ q2 }. We
take the metric on I as (dt)2 and M? is a quasi-Einstein manifold.

Using the above consideration and (48) we get

Rtt = R̄tt + (n − 1)Ttt

which implies

Rtt = −
(n − 1)

16
[(q′)2 + 4q′′], (50)

since R̄tt of I is zero.
Also

Rαβ = R?αβ −Q1?αβ,

which implies

Rαβ = R?αβ −
e

q
2

16
[(2n − 3)(q′)2 + 4(n − 1)q′′]1?αβ, (51)

where ‘ ′ ’ and ‘ ′′ ’ denote the 1st order and 2nd order partial derivatives respectively with respect to t.
Since M? is (QE)n, we obtain

R?αβ = λ1?αβ + µA?
αA?

β , (52)

where λ and µ are certain non-zero scalars and A?
α is unit covariant vector such that 1?αβA?

αA?
β = 1 and

Aα(x) =

{
Āα for α = 1
A∗α otherwise. (53)

Using (52) in (51) we get

Rαβ = λ1?αβ + µA?
αA?

β −
e

q
2

16
[(2n − 3)(q′)2 + 4(n − 1)q′′]1?αβ, (54)

Again, using (45) and (53) in (54) we can write

Rαβ = −
1

16
{(2n − 3)(q′)2 + 4(n − 1)q′′}1αβ +

λ

e
q
2

1αβ + µAαAβ. (55)
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Now if we choose 1αβ = e
q
2 BαBβ, where

Bα(x) =

{
B̄α for α = 1
B∗α otherwise, (56)

then

Rαβ =
1

16
{(2n − 3)(q′)2 + 4(n − 1)q′′}1αβ + λBαBβ + µAαAβ. (57)

Again from (50) we obtain

Rtt =
1

16
[(2n − 3)(q′)2 + 4(n − 1)q′′]1tt −

1
16

[(2n − 3)(q′)2 + 4(n − 1)q′′]

−
(n − 1)

16
[(q′)2 + 4q

′′

], (58)

since 1̄tt = 1 and 1tt = 1̄tt in I.
Thus (58) can be written as

Rtt =
1

16
[(2n − 3)(q′)2 + 4(n − 1)q′′]1tt −

3n − 4
16

(q′)2

+
2(n − 1)

4
q
′′

. (59)

Since dim I = 1, we can take

Āt = q
′

(60)

and

B̄t =
√

q′′ , (61)

where q′ and q′′ are functions on M.
Then using (53), (56), (60) and (61), equation (59) can be written as follows:

Rtt =
1

16
[(2n − 3)(q′)2 + 4(n − 1)q′′]1tt −

3n − 4
16

AtAt

+
2(n − 1)

4
BtBt. (62)

Thus from (57) and (62) we can conclude that M = I × f M? is a generalized quasi-Einstein manifold if M∗ is
a quasi-Einstein manifold.

References

[1] C. L. Bejan and T. Q. Binh, Generalized Einstein manifolds, WSPC-Proceeding Trim Size, DGA 2007, 47-54.
[2] C. L. Bejan, Characterizations of quasi-Einstein manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.), Tomul LIII, 2007

(Supliment), 67-72.
[3] A. L. Besse, Einstein manifolds, Ergeb. Math. Grenzgeb., 3. Folge, Bd. 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[4] R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1969), 1-49.
[5] T. E. Cecil and P. J. Ryan, Tight and Taut Immersions of Manifolds, Research Notes in Mathematics, 107, Pitman (Advanced

Publishing Program), Boston, M. A., 1985.
[6] M. C. Chaki and R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57(2000), 297-306.
[7] M. C. Chaki, On generalized quasi-Einstein manifolds, Publ. Math. Debrecen, 58(2001), 683-691.
[8] M. C. Chaki, On super quasi-Einstein manifolds, Publ. Math. Debrecen, 64(2004), 481-488.
[9] M. Crasmareanu, Parallel tensors and Ricci solitons in N(k)-quasi-Einstein manifolds, Indian J. Pure Appl. Math., 43(2012),

359-369.



U. C. De, S. Mallick / Filomat 29:3 (2015), 599–609 609

[10] U. C. De and G. C. Ghosh, On quasi-Einstein and special quasi-Einstein manifolds, Proc. of the Int. Conf. of Mathematics and its
applications, Kuwait University, April 5-7, 2004, 178-191.

[11] U. C. De and G. C. Ghosh, On quasi-Einstein manifolds, Period. Math. Hungar., 48(2004), 223-231.
[12] U. C. De and B. K. De, On quasi-Einstein manifolds, Commun. Korean Math. Soc., 23(2008), 413-420.
[13] G. C. Ghosh, U. C. De and T. Q. Binh, Certain curvature restrictions on a quasi-Einstein manifold, Publ. Math. Debrecen, 69(2006),

209-217.
[14] U. C. De and G. C. Ghosh, On generalized quasi-Einstein manifolds, Kyungpook Math. J., 44(2004), 607-615.
[15] U. C. De and G. C. Ghosh, Some global properties of generalized quasi-Einstein manifolds, Ganita 56, 1(2005), 65-70.
[16] U. C. De and S. Mallick, On the existence of generalized quasi-Einstein manifolds, Arch. Math. (Brno), 47(2011), 279-291.
[17] U. C. De, N. Guha and D. Kamilya, On generalized Ricci-recurrent manifolds, Tensor(N.S.), 56(1995), 312-317.
[18] P. Debnath and A. Konar, On super quasi-Einstein manifolds, Publications de L’institut Mathematique, Nouvelle serie, Tome

89(103)(2011), 95-104.
[19] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicate 7(1998), 259-280.
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