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Abstract. The object of the present paper is to study some geometric properties of a generalized quasi-
Einstein manifold. The existence of such a manifold have been proved by several non-trivial examples.

1. Introduction

A Riemannian or semi-Riemannian manifold (M", g), n = dimM > 2, is said to be an Einstein manifold
if the following condition

.
5=-9 (1)

holds on M, where S and r denote the Ricci tensor and the scalar curvature of (M", g) respectively. According
to Besse([3], p. 432), (1) is called the Einstein metric condition. Einstein manifolds play an important role
in Riemannian Geometry as well as in general theory of relativity. Also Einstein manifolds form a natural
subclass of various classes of Riemannian or semi-Riemannian manifolds by a curvature condition impossed
on their Ricci tensor([3],p.432-433). For instance, every Einstein manifold belongs to the class of Riemannian
or semi-Riemannian manifolds (M", g) realizing the following relation:

S(X,Y) =ag(X,Y) + bAX)A(Y), (2)

where g, b € R and A is a non-zero 1-form such that
g(X, U) = A(X), 3)

for all vector fields X. Moreover, different structures on Einstein manifolds have been studied by several

authors. In 1993, Tamassy and Binh[29] studied weakly symmetric structures on Einstein manifolds.

A non-flat semi-Riemannian manifold (M", g) (n > 2) is defined to be a quasi-Einstein manifold if its Ricci

tensor S of type (0, 2) is not identically zero and satisfies the condition (2).

It is to be noted that Chaki and Maity[6] also introduced the notoin of quasi-Einstein manifolds in a different
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way. They have taken 4, b as scalars and the vector field U metrically equivalent to the 1-form A as a unit
vector field. Such an n-dimensional manifold is denoted by (QE),. Quasi-Einstein manifolds have been
studied by several authors such as Bejan[2], De and Ghosh[11], De and De[12] and De, Ghosh and Binh[13]
and many others.

Quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations as well
as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces. For instance, the
Robertson-Walker spacetimes are quasi-Einstein manifolds. Also, quasi-Einstein manifolds can be taken
as a model of the perfect fluid spacetime in general relativity[10]. So quasi-Einstein manifolds have some
importance in the general theory of relativity.

Quasi-Einstein manifolds have been generalized by several authors in several ways such as generalized
quasi-Einstein manifolds([7],[14],[15],[16],[21],[24]), generalized Einstein manifolds[1], super quasi-Einstein
manifolds([8],[18],[23]), N(k)-quasi-Einstein manifolds([9],[22],[27],[28]) and many others.

In a paper De and Ghosh[14] introduced the notion of generalized quasi-Einstein manifolds in another way.
A non-flat Riemannian or semi-Riemannian manifold (M", g) (n > 2) is called a generalized quasi-Einstein
manifold if its Ricci tensor S of type (0,2) is non-zero and satisfies the condition

S5(X,Y) = ag(X,Y) + bA(X)A(Y) + cB(X)B(Y), (4)
where a, b, c € R and A, B are two non-zero 1-forms such that
9(A,B) =0, [lAll = IBIl = 1.
The unit vector fields U and V corresponding to the 1-forms A and B respectively, defined by
g(X, U) = A(X), g(X, V) = B(X),

for every vector field X are orthogonal, that is, g(U, V) = 0. Such a manifold is denoted by G(QE),.. If c =0,
then the manifold reduces to a quasi-Einstein manifold[6].

Gray[19] introduced two classes of Riemannian manifolds determined by the covariant differentiation
of Ricci tensor. The class A consisting of all Riemannian manifolds whose Ricci tensor S is a Codazzi type
tensor, i.e.,

(VxS)(Y, Z) = (VyS)(X, 2).
The class B consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, i.e.,
(VxS)(Y, Z) + (VYS)(Z, X) + (VzS)(X,Y) = 0.

A non-flat Riemannian or semi-Riemannian manifold (M", ) (n > 2) is called a generalized Ricci recurrent
manifold[17] if its Ricci tensor S of type (0,2) satisfies the condition

(VxS)(Y, Z) = y(X)S(Y, Z) + 6(X)g(Y, Z),

where y and 0 are non-zero 1-forms. If 6 = 0, then the manifold reduces to a Ricci recurrent manifold[25].
The present paper is organized as follows:

After introduction in Section 2, it is shown that if the generators U and V are Killing vector fields, then

the generalized quasi-Einstein manifold satisfies cyclic parallel Ricci tensor. Section 3 deals with G(QE),

satisfying Codazzi type of Ricci tensor. In the next two sections we consider G(QE),, with generators U

and V both as concurrent and recurrent vector fields. Finally, we give some examples of generalized

quasi-Einstein manifolds.

2. The generators U and V as Killing vector fields

In this section let us consider the generators U and V of the manifold are Killing vector fields. Then we
have

(Eug)(X,Y) =0 (5)
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and
(£V9)(X/ Y) = 0/

where £ denotes the Lie derivative.
From (5) and (6) it follows that

g(VxU,Y) + g(X, VyU) = 0

and
g(VxV, Y) + g(X, VyV) = 0.

Since g(VxU, Y) = (VxA)(Y) and g(VxV,Y) = (VxB)(Y), we obtain from (7) and (8) that
(VxA)Y) + (VyA)X) =0

and
(VxB)(Y) + (VyB)(X) =0,

forall X, Y.
Similarly, we have

(VxA)Z) + (VZA)(X) = 0,

(VzA)Y) + (VyA)(Z) = 0,
(VxB)(Z) + (VzB)(X) = 0,
(VzB)(Y) + (VyB)(Z) = 0,

forall X, Y, Z.
Now from (4) we have

(Vz5)(X,Y) = bl(VZA)X)A(Y) + AX)(VzA)(Y)]
+c[(VzB)(X)B(Y) + B(X)(VzB)(Y)].

Using (15) we obtain

(VxS)(Y, Z) + (VyS)(Z, X) + (Vz5)(X, ) = b[{(VxA)(Y)
+(VyA)XNAZ) +{(VxANZ) + (VZA)X)IA(Y)
H(VyA)(Z) + (VZA)YIAX)] + c[{(VxB)(Y)
+(VyB)(X)IB(Z) +{(VxB)(Z) + (VzB)(X)}B(Y)
+H(VyB)(Z) + (VzB)(Y)}B(X)].

By virtue of (9)—(14) we obtain from (16) that
(VxS)(Y, Z) + (VyS)(Z, X) + (V25)(X, Y) = 0.

Thus we can state the following theorem:

601

(10)

(11)

(12)
(13)
(14)

(15)

(16)

Theorem 2.1. If the generators of a G(QE), are Killing vector fields, then the manifold satisfies cyclic parallel Ricci

tensor.
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3. G(QE), satisfying Codazzi type of Ricci tensor

A Riemannian or semi-Riemannian manifold is said to satisfy Codazzi type of Ricci tensor if its Ricci
tensor satisfies the following condition

(VxS)(Y, Z) = (VyS)(X, Z), (17)

forall X, Y, Z.
Using (15) and (17), we obtain

b[(VxA)Y)A(Z) = (VY A)X)A(Z) + A(Y)(VxANZ) -
AX)(VyA)2)] + c[(VxB)(Y)B(Z) - (VyB)(X)B(Z)
+B(Y)(VxB)(Z) - BX)(VyB)(Z)] = 0. (18)

Putting Z = U in (18) and using (VxA)(U) = 0 we get
(VxA)(Y) - (VYA)X) =0, ie., dAX,Y)=0.

Similarly, putting Z = V in (18) and using (VxB)(V) = 0 yields dB(X, Y) = 0.
Thus we can state the following:

Theorem 3.1. If a G(QE), satisfies the Codazzi type of Ricci tensor, then the associated 1-forms A and B are closed.
Again putting X = Z = U in (18) we have
(VuA)(Y) =0, (19)

which means that g(X, ViyU) = 0 for all Y, that is, ViU = 0.
Similarly, putting X = Z = V in (18) we have

(VvB)(Y) =0, (20)
which yields ViV = 0. This leads to the following theorem:

Theorem 3.2. Ifa generalized quasi-Einstein manifold satisfies Codazzi type of Ricci tensor, then the integral curves
of the vector fields U and V are geodesic.

4. The generators U and V as concurrent vector fields
A vector field £ is said to be concurrent if[26]
Vxé = pX, (21)

where p is a non-zero constant. If p = 0, the vector field reduces to a parallel vector field.
In this section we consider the vector fields U and V corresponding to the associated 1-forms A and B
respectively are concurrent. Then

(VxA)Y) = ag(X,Y) (22)
and
(VxB)(Y) = Bg(X Y), (23)

where a and f are non-zero constants.
Using (22) and (23) in (15) we get

(VzS)(X, Y) = blag(X, Z)A(Y) + ag(¥, 2)A(X)]
+c[Bg(X, 2)B(Y) + Bg(Y, Z)B(X)]- (24)
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Contracting (24) over X and Y we obtain
dr(Z) = 2[baA(Z) + cBB(Z)], (25)

where 7 is the scalar curvature of the manifold.
Again from (4) we have

r=an+b+ec. (26)
Since, g, b, c € R, it follows that dr(X) = 0, for all X. Thus equation (25) yields
baA(Z) + cBB(Z) = 0. (27)
Since o and f§ are not zero, using (27) in (4), we finally get
b*a?
SXY)=a9X,Y)+ (b + Cﬁﬁ)A(X)A(Y).
Thus the manifold reduces to a quasi-Einstein manifold. Hence we can state the following theorem:

Theorem 4.1. If the associated vector fields of a G(QE), are concurrent vector fields, then the manifold reduces to a
quasi-Einstein manifold.

5. The generators U and V as recurrent vector fields
A vector fiels £ corresponding to the associated 1-form 7 is said to be recurrent if[26]

(Vxm(Y) = p(X)n(Y), (28)

where 1) is a non-zero 1-form.
In this section we suppose that the generators U and V corresponding to the associated 1-forms A and
B are recurrent. Then we have

(VxA)(Y) = MX)A(Y) (29)
and
(VxB)(Y) = w(X)B(Y), (30)

where A and u are non-zero 1-forms.
Now, using (29) and (30) in (15) we get

(VzS)(X,Y) = 2bA(Z)A(X)A(Y) + 2cu(Z)B(X)B(Y). (31)
We assume that the 1-forms A and p are equal, i.e.,

MZ) = u(2), (32)
for all Z. Then we obtain from (31) and (32) that

(VzS)(X,Y) = 2AZ)[PA(X)A(Y) + cB(X)B(Y)]. (33)

Using (4) and (33) we have

(Vz8)(X,Y) = a1(2)S(X, Y) + a2(2)9(X, Y),
where a1(Z) = 2A(Z) and ay(Z) = —2aA(Z).
Thus we can state the following:

Theorem 5.1. If the generators of a G(QE), corresponding to the associated 1-forms are recurrent with the same
vector of recurrence, then the manifold is a generalized Ricci recurrent manifold.
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6. Examples of G(QE),

In this section we prove the existence of generalized quasi-Einstein manifolds by constructing some
non-trivial concrete examples.

Example 6.1. Let us consider a semi-Riemannian metric g on R* by
ds? = gijdxidxj = X2[(dx")? + (dx?)? + (dx®)?] — (dx*)?, (34)

where i,j = 1,2,3,4. Then the only non-vanishing components of the Christoffel symbols, the curvature
tensors and the derivatives of the components of curvature tensors are

1
2 _ 2 _ > _ ol _ 73 _
F11 - 1ﬁ33 - _@r Fzz - FlZ - Iﬂ23 - ﬁ/
1
Riz1 = Rz = 5 Rizs = L Rixp =0,

and the components obtained by the symmetry properties. The non-vanishing components of the Ricci
tensor R;; are
1 1

iy 2T Ty

Ri1 =Rs3 = @R

It can be easily shown that the scalar curvature of the resulting manifold (R?, g) is —ﬁ # 0. We shall now
show that (IR?, g) is a generalized quasi-Einstein manifold.

Let us now consider the associated scalars as follows:

1 5 2
"=y P >

Again let us choose the associated 1-forms as follows:

w0 ={ 5 i

50 ={ 3" e @
at any point x € R*. To verify the relation (4), it is sufficient to check the following equations:

Ri1 = ag11 + bA1A1 + ¢B1By, (38)

Rpo = agyp + bArAs + ¢ByBy, (39)

R33 = agss + bA3As + cB3Bs, (40)

since for the other cases (4) holds trivially. By virtue of (35), (36), (37) and (38) we get

R.H.S. of (38) = agn + bA1A1 + cB1B;
S S SRR P
- (x2)3 ( 2(x2)3)2(x )+ O
1
= —— =R

= L.HS. of (38).
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By similar argument it can be shown that (39) and (40) are also true. We shall now show that the associated
vectors A; and B; are unit.
Here
g7AiA; =1, ¢'BiBj =1, g7A;B;=0.
Therefore the vectors A; and B; are unit and also they are orthogonal.
So, (R%, g) is a generalized quasi-Einstein manifold.

Example 6.2. We consider a Riemannian manifold (M*, g) endowed with the Riemannian metric g given

by
ds? = gydx'dx = (dx')? + (x")2(dx®)? + (A)*(dx) + (dx*)?, (41)

where i, j = 1,2, 3,4. The only non-vanishing components of Christoffel symbols, the curvature tensor and
the Ricci tensor are

2
L= 2 =_2% rz_l s _ 1
2= ImTThp et BT @
2
x
Rip=-—=, Spn=-—.
xl’ x1x2

It can be easily shown that the scalar curvature of the manifold is zero. We shall now show that (R?, g) is a
generalized quasi-Einstein manifold.
We take the associated scalars as follows:

Qe 1 _ 8 fe 2
a2 T 3()2a2” T 322
We choose the 1-forms as follows: . .
71§, for i=1
A =] T
L for i=3
0, for i=4
and . '
E,l for i=1
Bi(x) = _f_ﬁ’ for i=2
0, otherwise

at any point x € M. In our (M*, g), (4) reduces with these associated scalars and 1-forms to the following
equation:

Sy = agip + bAlAz + cB1B; (42)

It can be easily prove that the equation (42) is true.
We shall now show that the associated vectors A; and B; are unit and also they are orthogonal.
Here,

giinAj = 1, gijBiB]' = 1, giinBj =0.

So, the manifold under consideration is a generalized quasi-Einstein manifold.

Example 6.3. [16] A 2-quasi-umbilical hypersurface of a space of constant curvature is a G(QE),, which
is not a quasi-Einstein manifold.

Example 6.4. [16] A quasi-umbilical hypersurface of a Sasakian space form is a G(QE),, which is not a
quasi-Einstein manifold.
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Example 6.5. De and Mallick [16] considered a Riemannian metric g on R* by
ds? = gydx'dxl = (x*)3[(dx")? + (dx2)? + (dx*)?] + (dxh)>. (43)

Then they showed that (M*,g) is a generalized quasi-Einstein manifold, which is not a quasi-Einstein
manifold.

Example 6.6. Ozgiir and Sular [24] assumed an isometrically immersed surface M in E* with non-zero
distinct principal curvatures A and p. Then they considered the hypersurface M = M x E"~2 in E"*!, n > 4.
The principal curvatures of M are A, fi, 0,..., 0, where 0 occures (n-2)-times. Hence the manifold is a 2-quasi
umbilical hypersurface and so it is generalized quasi-Einstein.

k+2 k+2

Example 6.7. Ozgiir and Sular [24] assumed a sphere S? in EF*2 given by the immersion f : $> — E*2 and
BS? be the bundle of unit normal to S?. The hypersurface M defined by the map ¢; : BS*> — E¥*2, ¢,(x, &) =
F(x,t&) = f(x) + t& is called the tube of radius t over S%. It was proved in [5] that if (A, A) are the principal
curvature of S? then the principal curvatures of M are (%M, ﬁ, —%, e —%), where —% occures (k-1)-times.
So M is 2-quasi umbilical and hence it is generalized quasi-Einstein.

Example 6.8. The study of warped product manifold was initiated by Kruckovi¢ [20] in 1957. Again in
1969 Bishop and O’Neill [4] also obtained the same notion of the warped product manifolds while they were
constructing a large class of manifolds of negative curvature. Warped product are generalizations of the
Cartesian product of Riemannian manifolds. Let (M, ) and (M*, g*) be two Riemannian or semi-Riemannian
manifolds. Let M and M* be covered with coordinate charts (U;x', %%, ...,x") and (V;y"*!, y**2, ..., y")
respectively. Then the warped product M = M x; M* is the product manifold of dimension n furnished
with the metric

g=1(@@) + (f e)o’(g"), (44)

where 7 : M — M and ¢ : M — M are natural projections such that the warped product manifold M xy M*
is covered with the coordinate chart

U X V;xl, a2, ... 2P, xP* = y””,x”+2 = y’“z,....,x” =y").
Then the local components of the metric g with respect to this coordinate chart are given by

gij  fori=aandj=b,
i = fg:j fori=aand j=p, (45)
0 otherwise,

Herea,b,c,...€{1,2,..,pland a,B,y, ... € {p+1,p+2,...,n}and i, jk, ... € {1,2, ..., n}. Here M is called the base,
M is called the fiber and f is called warping function of the warped product M = M x; M*. We denote by
Fj.k, Rijii, Rij and r as the components of Levi-Civita connection V, the Riemann-Christoffel curvature tensor
R, Ricci tensor S and the scalar curvature of (M, g) respectively. Moreover we consider that, when Q is a
quantity formed with respect to g, we denote by Q and ()%, the similar quantities formed with respect to 7
and g* respectively. Then the non-zero local components of Levi-Civita connection V of (M, g) are given by

_ 1 1
a _ a O _ Ta a _ _ — =ab * a
Toe =Toer Ty =Ty Ty = =39 foblpr Tap = 35

P
where f, = d,f = a_;{a' The local components Ry = gthﬁjk = ghl(akrgj -9 + l"l?;,’l"in L~ b o = %, of the

Riemann-Christoffel curvature tensor R of (M, g) which may not vanish identically are the following:

S5, (46)

Rapea = Rabcd/ Ruabﬁ = _fTubg;‘g/ Raﬁyé = fR;ﬁ),é - sz;;ﬁyél (47)
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where Gijy = gigjx — gixgj and

Ty = —%(vb fi- % fof) t(T) = T,

1
p= Egabﬁsz/
Q= fln-p-1P-tr(T)}.

Again the non-zero local components of the Ricci tensor Rjx = g"R;j of (M, g) are given by
Rop = Rub + (Tl - p)Tab/ Raﬁ = R;ﬁ - Qg;ﬁ/ (48)

The scalar curvature r of (M, g) is given by

r=7+ r? —(m—p)ln—-p-1)P-2tr(T)]. (49)

Here we consider warped product manifold M = I X M*, diml =1, dimM* =n-1mn23), f = exp{g}. We
take the metric on I as (dt)?> and M* is a quasi-Einstein manifold.

Using the above consideration and (48) we get
Rtt = Rtt + (7’1 — 1)Ttt
which implies

(n-1)

Ry=-—
tt 16

[(7)* +49"], (50)

since Ry of I is zero.
Also
Raﬁ = Rzﬁ - Qg;ﬁ/

which implies

q
ei ’ 4 *
Rap = Ry = 1el@1-3)q ) +4(n = 1)q"1g5, (51)

where *’ " and * ” ” denote the 1st order and 2nd order partial derivatives respectively with respect to t.
Since M* is (QE),, we obtain

RY; = Mgty + HALAY, (52)

where A and y are certain non-zero scalars and A} is unit covariant vector such that g*“ﬁA;AE =1and

A, fora=1
Aalx) = { A}, otherwise. (53)
Using (52) in (51) we get
q
ei ’ 7
Rop = Aoy + HATAS = 1£12n=3)(q)* + 400 = 1)g"1g%, (54)

Again, using (45) and (53) in (54) we can write

Raﬁ =

1 A
=161 = 3)@)* + 400 = D"} + ~7gup + Ay (55)
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Now if we choose g3 = egBaBﬁ, where

B, otherwise,

Ba(x)z{ B, fora=1 (56)
then

Rap = 11—6{<2n = 3)(@)* +4(n = 1)7"}gap + ABaBy + pAsAg. (57)
Again from (50) we obtain

Ry = 11—6[(271 =3)(q') +4(n - 1)q" gy - 11—6[(2n =3)(q')* +4(n-1)q"]
(-1

N2 "
o @) +49] (58)
since gy =1 and gy = gy in L
Thus (58) can be written as
1 3n—4
Ry = E[(Z” - 3)(Q’)2 +4(n-1)q" 194 - T(Q’)z
2n-1) .
LDy (59)
4
Since dim I = 1, we can take
Ar=q (60)

and

Bi= 17, (61)

where g and q” are functions on M.
Then using (53), (56), (60) and (61), equation (59) can be written as follows:

1 , , 3n—4
Ri = 7121 = 3)(q)? + 40 = 1)q"1gs - z6lmm
-ﬁﬂiﬁaa. (62)

Thus from (57) and (62) we can conclude that M = I Xy M* is a generalized quasi-Einstein manifold if M" is
a quasi-Einstein manifold.
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