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Abstract. Membrane structures are very lightweight and highly optimized structures. Due to the constant
stress state, strength of materials is used optimally. In order to prevent the occurrence of large deformations
even for small external loads, membrane structures are designed as a double curved surfaces and are
stabilized by applying prestress. Minimal surfaces has zero mean curvature and the basic advantage is
that the stress at all points and directions is equal and there are no extreme stresses anywhere on the
surface. Also have minimal area for the given contour, so the weight and amount of material is reduced to
minimum, which make them suitable for application in architecture. Practical realization involve process of
cutting pattern generation, which divide surfaces in parts that are developable surfaces. When patterns are
assembled and prestressed they provide three-dimensional surface. Ideally, the cutting lines should follow
the geodesics lines. We use geodesics as the shortest path between two points on a surface. In the article we
give method for finding shortest paths on polygonal representations of surfaces follows continual Dijkstra
paradigm which, on some conditions, can give improved accuracy on a computer despite the restriction of
available memory and execution time.

1. Introduction

Membrane structures are very lightweight and highly optimized structures. Due to the constant stress
state, strength of materials is used optimally. In the last decade, the use of membranes in the civil engineering
is in expansion. With the development of new materials, a range of membrane structures has become wider.
They are used as roofs of large spans, and as the elements for the cladding of buildings. Membrane structures
are very special type of construction because of the properties of membranes. Membranes have no or very
low bending stiffness. Therefore, their load carrying capacity is based on the tension stress tangential to
the surface. Based on their properties, membrane structures can be identified as tensile structures, see
[19]. In the case of tangential compression stresses, the membrane loses its stiffness and begins to wrinkle.
External no tangential load on the surface of the membrane causes relatively large strains. The sensitivity
of membrane structures on the external load is determined by their stiffness, which is mainly due to two
factors: geometry and prestressing. In order to prevent the occurrence of large deformations even for
small external loads, membrane structures are designed as a double-curved surfaces and are stabilized by
applying prestress. These double-curved surfaces can be classified as sinclastic or anticlastic, depending
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on the sign of Gaussian curvature.There are various synthetic materials with different properties available
for the realization of the membrane structures and can be divided into two groups: fabrics and foil.

Minimal surface is surface with a zero mean curvature. It can be defined as the surface which for a
given contour has the minimal area, and therefore is suitable for application in civil engineering. Benefits
of minimal surfaces as a form of prestressed membranes are great. The basic advantage is that the stress at
all points and directions is equal and there are no extreme stresses anywhere on the surface, so there are no
critical points which can cause loosening of the membrane. This indicates that the load carrying capacity of
the membrane is equally used everywhere. Another reason for application is that the weight and amount
of material is reduced to a minimum.

The three main processes involved in the design of the membrane structures are: form-finding, static
load analysis and cutting pattern generation as it is presented in [7]. Form-finding represents the problem
of determining a structural form, in most cases a surface, which is in equilibrium and satisfies the additional
restriction. Static load analysis is performed to check whether a certain form of surfaces satisfies the final
and temporary restrictions. Finally, finding a form of surfaces must be converted into a set of flat strips
to produce, it is called cutting pattern generation. That process deals with the problem of defining the
division of large surfaces, and ensures that these new surfaces are developmental. Cutting patterns are
two-dimensional shapes that when assembled together and prestressed provide three-dimensional surface.
The main problem in cutting pattern generation is how to partition structure on the strips. That procedure
is also known as cutting line definition. Seam lines prediction, i.e. cutting line definition is very specific
and difficult job. In ideal circumstances, if we neglect available width and length of the panels, material
properties and some other characteristics, seam lines should coincide with geodesics that is proposed by
[8]. Geodesic lines are lines which connect two points on the surface by the shortest possible route through
surfaces. Using geodesics to define the seam line has the advantage of providing minimizing of the width
of the fabric. In order to save material and be precise, and to avoid wrinkles on surface, the cutting line
should follow the geodesic lines on surfaces.

2. Geodesics lines

Intuitively, a geodesic is the shortest arc between two points on a surface. A geodesic C on a surface
S has the properties that at each point of C the principal normal coincides with the normal to S and the
geodesic curvature vanishes identically.
Beltrami’s formula for geodesic curvature. Given a curve C : u = u(s), v = v(s) on a surface S: where s is
arc length. Beltrami’s formula for the geodesic curvature at point P of the curve is:
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where the Γi
jk are the Christoffel’s symbols of the second kind, and E,F,G are coefficients of the first

fundamental form of the surface S.

Definition 2.1. A curve on a surface is a geodesic if and only if it’s geodesic curvature is zero everywhere.

Definition 2.2. An orthogonal trajectory is a curve which cuts all the members of a given family of curves (or
surfaces) at right angles.

Theorem 2.1. [9] If there exists on a surface an orthogonal system of geodesics, the surface is a developable or a plane.

Definition 2.3. Let S be a simple surface element defined by the equation

r(u, v) = (x(u, v), y(u, v), z(u, v)),
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Then a directed curve C on S represented parametrically in terms of arc length s by u = u(s), v = v(s) is a geodesic if
and only if u(s) and v(s) satisfy the following differential equations:
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Definition 2.4. The orthogonal trajectories of a family of curves in the plane have the property that the segments cut
from the curves by any two of them are all equal.

Conversely, if any two orthogonal trajectories of a family of curves on a surface cut equal segments from the curves
of the family, the curves of the family are geodesics on the surface.

The orthogonal trajectories of a family of geodesic are known as geodesic parallels.
By Theorem 2.1, a family of geodesic parallels can consist of geodesics only if the surface is a developable

or a plane.

Fig. 1: Geodesic parallels of Sherk’s surface

2.1. Geodesic mappings of surfaces

A geodesic mapping of surface S onto surface S is a diffeomorphism f : S→ S under which the geodesics
of the surface S corresponds to the geodesics of the surface S. Let 1i j and 1i j be the metrics of these surface,
respectively. E. Beltrami was the first who considered and established problem of geodesic mapping of two
surfaces f : S→ E2, where E2 is Euclidean two-plane. (see [2]). At the corresponding points M and M we
can put

Γi
jk = Γi

jk + Pi
jk, (i, j, k = 1, 2), (2.3)

where Pi
jk is the deformation tensor of the connection Γi

jk of S according to the mapping f : S→ S.

A necessary and sufficient condition for the mapping f to be geodesic [9] is that the deformation tensor
Pi

jk from (2.3) has the form
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From previous equation it is easy to see that ψ j is a gradient vector.

U. Dini solved more general problem, existence of geodesic mapping between two surfaces.

Theorem 2.2. (U. Dini, [6]) There is a geodesic mapping between two nonisometric surfaces S and S if and only if
their metrics have Lioville form:

ds2 = (U − V)(du2 + dv2) and ds2
=

( 1
U
−

1
V

)(du2

U
+

dv2

V

)
, (2.6)

where U(u) and V(v) are positive functions.

Example 2.1. Let us consider geodesic mapping f : S→ S, where

S : r(u, v) = {u, v,uv}, S : r(u, v) = {x1 + a1u + b1v, x2 + a2u + b2v, x3 + a3u + b3v}.

How Γ
i
jk = 0, from equation (2.5) we get

ψ1 = −
u

3(1 + u2 + v2)
, ψ2 = −

v
3(1 + u2 + v2)

.

In this way we determined geodesic mapping of hyperbolic paraboloid onto plane.

Geodesic mappings of Riemannian spaces (surface is two-dimensional Riemannian space) were inves-
tigated by many authors, for example J. Mikeš, V. Kiosak and A. Vanžurová [12] and many others. The
theory of geodesic mappings of two non-symmetric affine connection spaces were developed by S. Minčić,
M. Stanković and Lj. Velimirović in the papers [13, 14, 20–22].

Definition 2.5. A polyhedral surface P is a two-dimensional manifold consisting of finite or countable set F of
topological triangles and intrinsic metric 1 such that:

• Any point p ∈ P lies in at least one triangle f ∈ F;

• Each point p ∈ P has a neighborhood that intersects only finitely many triangles f ∈ F;

• The intersection of any of two non-identical triangles f , 1 ∈ F is either empty, or consists of a common vertex,
or of a simple arc that is an edge of each of the two triangles;

• The intrinsic metric 1 is flat on each triangle, i. e. each triangle is isometric to a triangle in R2.

Definition 2.6. Let P be a polyhedral surface and C ⊂ P a curve. Then C is a straightest geodesic on P if for each
point p ∈ C the left and right curve angles are equal.

Definition 2.7. Let C be a curve on a polyhedral surface P. Let θ be the total vertex angle and ϕ one of two curve
angles of C at p. Then the discrete geodesic curvature of C at p is given by

κ1 =
2π
θ

(θ
2
− ϕ

)
(2.7)

If we choose the other curve angle, geodesic curvature κ1 will change the sign.

For more details about straightest geodesics one can see [15, 16].
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3. Shortest paths calculation

We present an optimal-time algorithm for computing an explicit representation of the shortest-path
between two fixed points on the surface in R3, source S and target T. It is supposed that surface has
triangulated representation and the algorithm can work on both convex and non-convex surfaces. It is
known that there are algorithms and methods for triangulating polygons, so we are able to transform
surfaces from general polytopes representation to triangulated meshes. There is optimal time algorithm,
see Amato et al. [1], which run in O(n). This significantly simplifies problem. It is known that there
exist optimal time algorithm for shortest paths on general polytopes, see Kapoor [11] improvement with
O(n log2 n) time over Chen and Han [4] O(n2) time. In article Kaneva and O’Rourke [10] is pointed out
that Kapoor algorithm, which uses wave propagation, despite the advances is complex and that Chan
and Han algorithm is feasible method for computing shortest paths on a polyhedral surface. Y. Schreiber
gives O(n log n) algorithms in his PhD thesis [18] for convex and in [17] for general include nonconvex
polyhedral surfaces.

If source or target point is not placed in vertices of the mesh, an additional two triangles subdivision is
needed to fix points in a vertexes of the triangles.

On triangulated mesh we put the undirected graph such that in every node of the mesh we added a
graph vertex, further vertexes are connected if respecting nodes of the mesh are connected. Added graph
edge has weight equal to the Euclidian distance of nodes. Also we keep information of neighbouring: for
every triangle on the mesh we know that the respecting vertexes in the graph are connected and forming
a triangle and vice versa for every vertex we know to which triangles it belongs. This information are
important for the algorithm steps where we need to update distances when we pop a vertex from the heap.
Also for two neighboring vertexes which are edge-connected we can find one triangle (if it is placed on a
border of a surface) or two triangles which share that edge. It is important in algorithm expansion phase
when we are looking for shortest path length, also when we are reconstructing the shortest path.

3.1. Shortest paths algorithm

Dijkstra’s algorithm [5] uses heap to store vertex weights, ie. paths to expand. In order to improve
efficiency of heap operations we masked vertexes in an array named heapind with -1 if they are not reached
yet and not pushed into heap. When we reached them we push into heap with at that moment founded
path length. When removed from heap it obtain value 2 ∗ N, where N is the number of vertices, which
means that it is processed. So -1 and 2 ∗N has special meaning. We keep track of the index in heap for every
vertex in heap, so it also improve update operation for heap. Such heap operations demand nonstandard
binary heap implementation. We keep count of processed nodes for every mesh triangle.

Shortest path for a node v other than starting node goes over some triangle in its part closest to the v.
There are two possibilities for the last part of the shortest path: it is the edge of the triangle or it goes over
opposite edge of the node v and intersects it. For the sake of simplicity of shortest path reconstruction,
we maintain the indexes of previous nodes in two additional arrays prevFirst and prevSecond. If a node
v has only one previous node in the prevFirst[v] we remember its index and in the prevSecond[v] we have
-1. This is the obvious case with the neighbouring nodes of the start node, and also can appear for other
nodes, especially for nonconvex meshes. If a node v has shortest path which goes over a triangle to whom
it belongs and intersects triangle edge we remember indexes of the nodes on the ends of the edge.

Dijkstra’s algorithm looking for shortest paths which goes over nodes and edges exclusively. Unlike the
Dijkstra’s algorithm, shortest path for polytopes, or meshes, can goes over polygons, or triangles not only
over nodes and edges. Fast marching algorithm is very similar to the Dijkstra’s algorithm, but it takes into
account that path can goes over triangles which are parts of meshes, see Bronstein et al. [3]. Our algorithm
is very similar to Fast marching algorithm. It differs in the update step and has an explicit and easy way for
reconstructing shortest path. Here Fast marching algorithm needs to solve problem with obtuse triangles
and it is recommended to add virtual connections to non-adjacent vertices, see [3]. We carefully examine all
kind of triangles and contexts in expanding steps so we do not need special treatment for obtuse triangles.
Therefore we can think of our algorithm as a modification of Fast marching algorithm.
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The our shortest path algorithm, S (index s) and T (index t) are starting and ending node:

mark d[s] = 0, all other nodes with d[v] = ∞;
mark heapind[s] = 0, all other nodes with heapind[v] = −1;
initialize heap and push s into heap;
set counter[T ] = 0, for all mesh triangles T
do

v = pop from heap;
mark heapind[v] = 2 ∗N;
if v == t then

return; // reconstruct the shortest path;
else

for each triangle T containing v;
increment counter[T ]
for each vertex u belonging to T which is not processed

update or push(u);

The update or push operation is aimed to calculate for node u shortest path length according to infor-
mation available at that moment. From heap it is just popped node v and node u is another node belonging
to triangle T . There are three cases according to the number of processed nodes of the triangle:

Case 1. One processed node: Node v is the first processed node, therefore we can update shortest path
for another two nodes u according to

d[u] = min(d[u], d[v] + distance(v,u)). (3.8)

If the distance d[u] is updated v is the only one preceding node, so prevFirst[u] = v and prevSecond[u] = −1.

Case 2. Two processed nodes: Node v is the second processed node, we previously processed first
node. Now we should find and update shortest path length for the remaining third unprocessed node of
the triangle T . Let denote first processed node as A, second node with index v, as B and third node as C.
According to the processing order, after removing from the top of the heap, we know that distance for A
and B satisfy dA ≤ dB. Now we have one virtual triangle which can be obtained with unfolding and rotating
some mesh triangles to form shortest paths from starting node S to nodes A and B. This triangle 4SAB and
triangle T = 4ABC, share the same edge AB.

Now we should examine all cases which can arose with mentioned two triangles. We have to take into
account that quadrangle formed by them can be convex or nonconvex. There are 2 nonconvex and 6 convex
cases for calculation:
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Fig. 2: First and second nonconvex; first and second convex examples.
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Fig. 3: Third, fourth, fifth and sixth convex examples.

For the first and second nonconvex example shortest path form node S to C can not cross the triangle
T = 4ABC. So shortest path for that cases goes over triangle edge AC for first, or over BC for second and is
basically calculated as (3.8). Note that node u has one preceding node v. Here are shown cases where exist
triangle 4SAB, but if d[A] + distance(AB) = d[B] three points S, A and B are collinear. That case can appear
but it is not shown on figures.

For the all six convex cases shortest path crosses the edge AB and path length can be calculated based
on geometry of triangles 4SAB and T = 4ABC. For convexity examination and further shortest path
length calculation we used cosine theorem, because we know the length of all edges in triangles 4SAB
and T = 4ABC. After that calculation of possibly new distance value newdist we should do update for
node C, d[u] according to d[u] = min(d[u],newdist). Also if the distance d[u] is updated, we should update
prevFirst[u] and prevSecond[u].

Case 3. For that case all triangle nodes are already processed.
From the above mentioned activities on nodes, heap insertion, update and removing, we can conclude

that performance of the proposed algorithm is O(n log n).

3.2. Shortest paths reconstruction
Let us remind that we have calculated shortest paths length from starting node S to target node T, also

calculating shortest paths length for all processed nodes which have removed from the heap and have
d[u] ≤ d[t]. We also have for every processed node in arrays prevFirst and prevSecond indexes of triangle
nodes which contains last part of respecting shortest path.

The our shortest path reconstruction procedure where S (index s) and T (index t) are starting and ending
node:

mark prevNode = T;
mark prevIsNode=true;
mark prevTrian1le = triangle consisting of t, and prevFirst[t], and prevSecond[t];
initialize empty pathCollection;
do

if prevTrian1le contains S then
add segment [prevNode,S] to pathCollection;
return pathCollection;

else
if prevIsNode then

calculate intersection point D; // see figures Fig. 2. and Fig. 3.
add segment [prevNode,D] to pathCollection;
update prevNode = D;
update prevTrian1le = find triangle contains nodes A and B and not contains C;
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update prevIsNode=false;
else

find intersection point E on prevTrian1le edges; // see figures for path reconstruction
add segment [prevNode,E] to pathCollection;
update prevNode = E;
if E is not mesh node then

update prevTrian1le = find triangle contains edge with E other than prevTrian1le;
else

update prevIsNode=true;
update prevTrian1le = triangle consisting of prevNode, and prevFirst[t], and prevSecond[t];

S

A B

C

E

D

S

A B

C

E

D

Fig. 4: Shortest path reconstruction.

In the path reconstruction procedure step calculate intersection point D is responsible for the backward
calculation for convex examples. It also reconstructs the backward step for nonconvex examples, where D
is point A or B.

4. Experimental results

We implemented our algorithm in C++. All calculations are done with double precision. We have tested
it on several examples and did not find accuracy errors. Here are presented results for parametric surfaces:
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Fig. 5: Shortest path examples: Eneper, Eneper, Sherk and Sphere.

We tested accuracy of computation by calculating shortest path on a sphere with radius 5. For given two
points the shortest path is 2.5 ∗ π. The first sphere calculation is done with initial dividing on 20 segments
for parameter values, see figure Fig. 5. After that we are doing refinement of surface representation,
by selecting triangles which contains shortest path. Then we are forming new surface by dividing every
triangle on four new triangles using median value for both parameter values. Applying parametric sphere
definition we obtain three new points for edge middle values. Connecting them with existing points we
obtain four new triangles, which are closer to the sphere. After that we again calculate new shortest path,
but only on newly obtained triangles. This procedure we repeat several times and the obtained shortest
path length are shown in the table:

Refinement step Number of Segments Shortest path length
1 10 7.8195187101063
2 20 7.8453416023752
3 40 7.8518201061036
4 80 7.8534411570078
5 160 7.8538465088130
6 320 7.8539478523321
7 640 7.8539731885602
8 1280 7.8539795226405
9 2560 7.8539811061718
10 5120 7.8539815021035
11 10240 7.8539816014195
12 20480 7.8539816262986
13 40960 7.8539816335481

Expected value 7.8539816339745

Table 1: Shortest paths length for refined surface.

The expected value rounded on 13 digits is 7.8539816339745 and we can see that applying refinement
improves accuracy. We can conclude that accuracy of calculations is satisfiable. Also we need less memory
resources to obtain result with the same accuracy. Without using refinement we need graph with 2 ×
40960 × 2 × 40960 ≈ 6.7 × 109 nodes, instead of beginning 800 nodes and refinement adds ≈ 105 nodes per
one shortest path calculation.
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5. Conclusion

In the refinement phase of our algorithm for shortest path calculation we obtain more finer and ac-
cordingly more precise polygonal representation of surface which enable more precise shortest path length
calculation. We doing this calculations using computer resources like memory and processing time more
economically, so we can obtain results with higher precision under the resource constraint.
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