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Abstract. In this paper, we study the convergence of the generalized weak Presic type k-step iterative
method for a class of operators f : Xk

→ X satisfying Presic type contractive conditions. We also obtain the
global attractivity results for a class of matrix difference equations.

1. Introduction and Preliminaries

Over the last 50 years or so the theory of fixed points has been revealed as a very powerful and important
tool in the study of nonlinear phenomena. In particular, the applications of fixed point theorems are very
important in diverse disciplines of mathematics, economics, statistics and engineering in dealing with
problems arising in: mathematical economics, game theory, approximation theory, potential theory, etc.
Banach contraction principle [2] is simple and powerful result with a wide range of applications, including
iterative methods for solving linear, nonlinear, differential, integral, and difference equations. There are
several generalizations and extensions of the Banach contraction principle in the existing literature. Banach
contraction principle reads as follows:
Theorem 1.1. [2] Let (X, d) be a complete metric space and mapping f : X→ X satisfies

d( f x, f y) ≤ α d(x, y), for all x, y ∈ X,

where α ∈ [0, 1) is a constant. Then there exists a unique x ∈ X such that x = f x. Moreover, for any x0 ∈ X,
the iterative sequence xn+1 = f (xn) converges to x.
Definition 1.2. A mapping f : X→ X is said to be a weakly contractive if

d( f x, f y) ≤ d(x, y) − ϕ(d(x, y)), for all x, y ∈ X,

where ϕ : [0,∞) →: [0,∞) is a continuous and non-decreasing function such that it is positive in (0,∞),
ϕ(0) = 0 and lim

t→∞
ϕ(t) = ∞.
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In 1997, Alber and Guerre-Delabriere [1] proved that weakly contractive mapping defined on a Hilbert
space is a Picard operator. Rhoades [19] proved that the corresponding result is also valid when Hilbert
space is replaced by a complete metric space. Dutta et al. [10] generalized the weak contractive condition
and proved a fixed point theorem for a selfmap, which in turn generalizes Theorem 1 in [19] and the
corresponding result in [1].

Let f : Xk
→ X, where k ≥ 1 is a positive integer. A point x∗ ∈ X is called a fixed point of f if

f (x∗, . . . , x∗) = x∗. Consider the k-th order nonlinear difference equation

xn+k = f (xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . (1.1)

with the initial values x1, . . . , xk ∈ X.
Equation (1.1) can be studied by means of fixed point theory in view of the fact that x in X is a solution of
(1.1) if and only if x is a fixed point of the self-mapping F : X→ X given by

F(x) = f (x, . . . , x), for all x ∈ X.

Prešić [18] obtained the following result in this direction.
Theorem 1.3. [18] Let (X, d) be a complete metric space, k a positive integer and f : Xk

→ X be a mapping
satisfying the following contractive type condition

d( f (x1, x2, . . . , xk), f (x2, . . . , xk, xk+1)) ≤ a1d(x1, x2) + a2d(x2, x3) + . . . + akd(xk, xk+1),

for every x1, . . . , xk+1 ∈ X, where a1, a2, . . . , ak ≥ 0 with q1 + q2 + . . . + qk < 1. Then there exists a unique
point x∗ ∈ X such that f (x∗, . . . , x∗) = x∗. Moreover, for any arbitrary points x1, . . . , xk ∈ X, the sequence (1.1)
converges to x∗.

If we take k = 1, then Theorem 1.2 reduces to the Banach contraction principle.
Ćirić and Prešić [8] generalized the above theorem as follows.

Theorem 1.4. [8] Let (X, d) be a complete metric space, k a positive integer and f : Xk
→ X be a mapping

satisfying the following contractive type condition

d( f (x1, x2, . . . , xk), f (x2, . . . , xk, xk+1)) ≤ h max{d(x1, x2), d(x2, x3), . . . , d(xk, xk+1)},

for every x1, . . . , xk+1 ∈ X, where 0 < h < 1 is a constant. Then there exists x∗ ∈ X such that f (x∗, . . . , x∗) = x∗.
Moreover, for any arbitrary points x1, . . . , xk ∈ X, the sequence (1.1) is convergent and

lim
n→∞

xn = f ( lim
n→∞

xn, . . . , lim
n→∞

xn).

Furthermore, we suppose that

d(T(u, . . . ,u),T(v, . . . , v)) < d(u, v)

holds for all u, v ∈ X, with u , v, then x∗ is the unique point in X with f (x∗, . . . , x∗) = x∗.
The applicability of the above result to the study of global asymptotic stability of the equilibrium for

the nonlinear difference equation (1.1) is revealed, for example, see [6].

In [17], Pǎcurar obtained the following convergence result for Prešić-Kannan operators.
Theorem 1.5. [17] Let (X, d) be a complete metric space, k a positive integer and f : Xk

→ X be a given
mapping. Suppose that there exists a constant a ∈ R with 0 < ak(k + 1) < 1 such that

d( f (x1, . . . , xk), f (x2, . . . , xk+1)) ≤ a
k+1∑
i=1

d(xi, f (xi, . . . , xi)),

for all (x1, . . . , xk+1) ∈ Xk+1. Then,
(i) f has a unique fixed point x∗ ∈ X;
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(ii) for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn} defined by (1.1) converges to x∗.
For other results on Prešić operators, we refer to [3, 4, 6, 8, 13, 16, 17, 20–24].
In this paper, we study the convergence of the sequence {xn} defined by (1.1) for the mapping f : Xk

→ X
satisfies various contractive conditions of Prešić type. We also present an example and application of
obtained result.

We denote by R the set of all real numbers, R+ the set of all nonnegative real numbers andN the set of
all positive integers.

2. Main Results

We start with the following result.
Theorem 2.1. Let (X, d) be a complete metric space, k a positive integer and f : Xk

→ X be a given mapping.
Suppose that there exists φ : [0,∞) → [0,∞) a lower semi-continuous function with φ(t) = 0 if and only if
t = 0 such that

d( f (x1, . . . , xk), f (x2, . . . , xk+1)) ≤ max{d(xi, xi+1) : 1 ≤ i ≤ k} − φ(max{d(xi, xi+1) : 1 ≤ i ≤ k}), (2.1)

for all (x1, . . . , xk+1) ∈ Xk+1. Then, for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn} defined by (1.1)
converges to u ∈ X and u is a fixed point of f , that is, u = f (u, . . . ,u). Moreover, if

d( f (x, . . . , x), f (y, . . . , y)) ≤ d(x, y) − φ(d(x, y)), (2.2)

holds for all x, y ∈ X with x , y, then u is the unique fixed point of f .
Proof. Let x1, · · · , xk be arbitrary k elements in X. Define the sequence {xn} in X by

xn+k = f (xn, xn+1, ..., xn+k−1), n = 1, 2, . . ..

For n ≤ k, by using (2.1), we have the following inequalities:

d(xk+1, xk+2) = d( f (x1, . . . , xk), f (x2, . . . , xk+1))
≤ max {d(xi, xi+1) : 1 ≤ i ≤ k} − φ (max {d(xi, xi+1) : 1 ≤ i ≤ k})
< max {d(xi, xi+1) : 1 ≤ i ≤ k} ,

d(xk, xk+1) = d( f (x1, . . . , xk−1), f (x2, . . . , xk))
≤ max {d(xi, xi+1) : 1 ≤ i ≤ k − 1} − φ (max {d(xi, xi+1) : 1 ≤ i ≤ k − 1})
< max {d(xi, xi+1) : 1 ≤ i ≤ k − 1} ,

...

d(xk−n, xk−n+1) = d( f (x1, . . . , xk−n−1), f (x2, . . . , xk−n))
≤ max {d(xi, xi+1) : 1 ≤ i ≤ k − n − 1} − φ (max {d(xi, xi+1) : 1 ≤ i ≤ k − n − 1})
< max {d(xi, xi+1) : 1 ≤ i ≤ k − n − 1} .

We conclude that {d(xn+k−1, xn+k)} is monotone nonincreasing and bounded below. So there exists some c ≥ 0
such that

lim
n→∞

d(xn+k−1, xn+k) = lim
n→∞

max {d(xn+i, xn+i+1) : 1 ≤ i ≤ k − 1} = c.

We claim that c = 0. In fact, taking upper limits as n→∞ on either side of the following inequality:

d(xk+n, xk+n+1) = d( f (x1, . . . , xk+n−1), f (x2, . . . , xk+n))
≤ max {d(xi+n, xi+n+1) : 1 ≤ i ≤ k − 1} − φ (max{d(xi+n, xi+n+1) : 1 ≤ i ≤ k − 1}) ,
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we have

c ≤ c − φ (c) ,

that is, φ (c) ≤ 0. Thus φ (c) = 0 by the property of φ, and furthermore

lim
n→∞

d(xn+k−1, xn+k) = 0. (2.3)

Next we show that {xn} is Cauchy. For any n,m ∈Nwith m ≥ n, using (2.1) we have

d(xk+n, xk+m) = d( f (x1, . . . , xk+n−1), f (x2, . . . , xk+m−1))
≤ d( f (x1, . . . , xk+n−1), f (x2, . . . , xk+n)) + d( f (x2, . . . , xk+n), f (x3, . . . , xk+n+1))

+... + d( f (x2, . . . , xk+n), f (x3, . . . , xk+m−1))
≤ max {d(xi+n, xi+n+1) : 1 ≤ i ≤ k − 1} − φ (max{d(xi+n, xi+n+1) : 1 ≤ i ≤ k − 1})

+ max {d(xi+n, xi+n+1) : 1 ≤ i ≤ k} − φ (max{d(xi+n, xi+n+1) : 1 ≤ i ≤ k})
+... + max {d(xi+n, xi+n+1) : 1 ≤ i ≤ k + m − 1}
−φ (max{d(xi+n, xi+n+1) : 1 ≤ i ≤ k + m − 1}) .

On taking the upper limit as n,m→∞ implies that

lim
n→∞

d(xk+n, xk+m) = 0.

Hence {xn} is also a Cauchy sequence in (X, d). Since (X, d) is complete, there exists u in X such that

lim
n,m→∞

d(xn, xm) = lim
n→∞

d(xn,u). (2.4)

Now, for any n ∈N, we have

d(u, f (u,u, . . . ,u)) ≤ d(u, xn+k) + d(xn+k, f (u,u, . . . ,u))
≤ d(u, xn+k) + d( f (xn, xn+1, . . . , xn+k−1), f (u,u, . . . ,u))
≤ d(u, xn+k) + d( f (u,u, . . . ,u), f (u,u, . . . , xn))

+d( f (u,u, . . . , xn), f (u, . . . , xn, xn+1))
+ . . . + d( f (u, xn, xn+1, . . . , xn+k−2), f (xn, xn+1, . . . , xn+k−1))

≤ d(u, xn+k) + d(u, xn) − φ (d(u, xn))
+ max{d(u, xn), d(xn, xn+1)} − φ (max{d(u, xn), d(xn, xn+1)})
+ . . . + max{d(u, xn), d(xn, xn+1), . . . , d(xn+k−2, xn+k−1)}
−φ (max{d(u, xn), d(xn, xn+1), . . . , d(xn+k−2, xn+k−1)}) .

On taking upper limit as n→∞ in the above inequality and using (2.4), we obtain

d(u, f (u,u, . . . ,u)) ≤ 0,

which implies that u = f (u,u, . . . ,u), that is, u is a fixed point of f .
To prove the uniqueness of the fixed point, assume that there exists an element v ∈ X with v , u, such

that v = f (v, v, . . . , v). Then by (2.2), we have

d(u, v) = d( f (u,u, . . . ,u), f (v, v, . . . , v))
≤ d(u, v) − φ (d(u, v))
< d(u, v),

a contradiction. So, u is the unique point in X such that u = f (u,u, . . . ,u). �
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Example 2.2. Let X = [0, 2] and d be a usual metric of X. Let k be a positive integer and f : Xk
→ X be the

mapping defined by

f (x1, . . . , xk) =
x1 + . . . + xk

4k
for all x1, . . . , xk ∈ X.

Define φ : [0,∞)→ [0,∞) by

φ(t) =


t
5
, if t ∈ [0,

5
2

),

2n(2n+1t − 3)
22n+1 − 1

, if t ∈ [
22n + 1

2n ,
22(n+1) + 1

2n+1 ], n ∈N.

An easy computation shows that φ is lower semi-continuous on [0,∞) and φ(t) = 0 if and only if t = 0.
Now, for all x1, x2, . . . , xk+1 ∈ X, we have

d( f (x1, . . . , xk), f (x2, . . . , xk+1)) =
1
4k
|x1 − xk+1|

≤
1
4

max{|xi − xi+1| : 1 ≤ i ≤ k}

≤
4
5

max{d(xi, xi+1) : 1 ≤ i ≤ k}

= max{d(xi, xi+1) : 1 ≤ i ≤ k} − φ (max{d(xi, xi+1) : 1 ≤ i ≤ k}) .

Moreover, for all x, y ∈ X with x , y, the equation

d( f (x, . . . , x), f (y, . . . , y)) < d(x, y) − φ
(
d(x, y)

)
hold. Thus, all the required hypotheses of Theorem 2.1 are satisfied, we deduce that for any arbitrary points
x1, ..., xk ∈ X, the sequence {xn} defined by (1.1) converges to u = 0, which is the unique fixed point of f . �

By takingφ (t) = (1−λ)t for all t ∈ [0,∞) in Theorem 2.1, we obtain the following immediate consequence
of Theorem 2.1.
Corollary 2.3. Let (X, d) be a complete metric space, k a positive integer and f : Xk

→ X be a given mapping.
Suppose that there exists λ ∈ [0, 1) such that

d( f (x1, . . . , xk), f (x2, . . . , xk+1)) ≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k}, (2.5)

for all (x1, . . . , xk+1) ∈ Xk+1. Then, for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn} defined by (1.1)
converges to u and u is a fixed point of f , that is, u = f (u, . . . ,u). Moreover, if

d( f (x, . . . , x), f (y, . . . , y)) ≤ λd(x, y),

holds for all x, y ∈ X with x , y, then u is the unique fixed point of f .

Corollary 2.4. Let (X, d) be a complete metric space, k a positive integer and f : Xk
→ X be a given mapping.

Suppose that there exist λ1, . . . , λk non-negative constants with λ1 + λ2 + . . . + λk < 1 such that

d( f (x1, . . . , xk), f (x2, . . . , xk+1)) ≤ λ1d(x1, x2) + λ2d(x2, x3) + . . . + λkd(xk, xk+1), (2.6)

for all (x1, . . . , xk+1) ∈ Xk+1. Then, for any arbitrary points x1, ..., xk ∈ X, the sequence {xn} defined by (1.1)
converges to u, where u is the unique fixed point of f .
Proof. Clearly, condition (2.6) implies condition (2.5) with λ = λ1 + λ2 + . . . + λk. Now, let x, y ∈ X with
x , y. From (2.6), we have

d( f (x, x, . . . , x), f (y, y, . . . , y)) ≤ d( f (x, . . . , x), f (x, . . . , x, y)) + d( f (x, . . . , x, y), f (x, . . . , x, y, y))
+ . . . + d( f (x, y, . . . , y), f (y, y, . . . , y))

≤ (λk + λk−1 + . . . + λ1)d(x, y) = λd(x, y),
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where λ = λk + λk−1 + . . . + λ1 ∈ [0, 1). Finally, all the hypotheses of Corollary 2.3 are satisfied, then we
deduce the desired result. �

Theorem 2.5. Let (X, d) be a complete metric space, k a positive integer and f : Xk
→ X be a given mapping.

Suppose that there exists a constant a ∈ R with 0 ≤ ak < 1 such that

d( f (x1, . . . , xk), f (x2, . . . , xk+1)) ≤ a max{d(xi, f (xi, . . . , xi)) : 1 ≤ i ≤ k + 1}, (2.7)

for all (x1, . . . , xk+1) ∈ Xk+1. Then,
(i) f has a unique fixed point u ∈ X;
(ii) for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn} defined by (1.1) converges to u.
Proof. Define the mapping F : X→ X by

F(x) = f (x, x, . . . , x), for all x ∈ X.

For all x, y ∈ X, we have

d(F(x),F(y)) = d( f (x, x, . . . , x), f (y, y, . . . , y))
≤ d( f (x, x, . . . , x), f (x, . . . , x, y)) + d( f (x, . . . , x, y), f (x, . . . , x, y, y))

+ . . . + d( f (x, y, . . . , y), f (y, y, . . . , y)).

By (2.7), it follows that

d(F(x),F(y)) ≤ a max{d(x, f (x, . . . , x)), d(y, f (y, . . . , y))}
+a max{d(x, f (x, . . . , x)), d(y, f (y, . . . , y))}
+... + a max{d(x, f (x, . . . , x)), d(y, f (y, . . . , y))}

= ak max{d(x, f (x, . . . , x)), d(y, f (y, . . . , y))}
≤ ak[d(x,F(x)) + d(y,F(y))]

and we have

d(F(x),F(y)) ≤ λ [d(x,F(x)) + d(y,F(y))], (2.8)

where λ = ak ∈ [0,
1
2

). So F is a Kannan operator [12]. According to Theorem 1 of [12], there exists a unique
u ∈ X such that

u = Fu = f (u, . . . ,u).

Thus (i) is proved .
Now, for any arbitrary points x1, . . . , xk ∈ X, we shall prove the convergence of the sequence {xn} defined

by (1.1) to u, the unique fixed point of f . For all n ≥ k + 1, we have

xn = f (xn−k, . . . , xn−1).

As we already know that f has a unique fixed point u ∈ X, we may write

d(xn+1,u) = d( f (xn−k+1, xn−k+2, . . . , xn), f (u,u, . . . ,u))
≤ d( f (xn−k+1, . . . , xn), f (xn−k+2, . . . , xn,u))

+d( f (xn−k+2, . . . , xn,u), f (xn−k+3, . . . , xn,u,u))
+ . . . + d( f (xn,u, . . . ,u), f (u,u, . . . ,u)).

This implies from (2.7) that

d(xn+1,u) ≤ a max{d(xn−k+1,F(xn−k+1)), . . . , d(xn,F(xn)), d(u,Fu)}
+a max{d(xn−k+2,F(xn−k+2)), . . . , d(xn,F(xn)), d(u,Fu), d(u,Fu)}
+ . . . + a max{d(xn,F(xn)), d(u,F(u)), . . . , d(u,F(u))}.
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Since u = F(u), we obtain

d(xn+1,u) ≤ a max{d(xn−k+1,F(xn−k+1)), . . . , d(xn,F(xn))}
+a max{d(xn−k+2,F(xn−k+2)), . . . , d(xn,F(xn))}

+ . . . + ad(xn,F(xn)). (2.9)

On the other hand, for all j ∈N, we have

d(x j,F(x j)) ≤ d(x j,u) + d(u,F(x j)). (2.10)

By (2.8), we have

d(u,F(x j)) = d(F(u),F(x j))
≤ λ [d(u,F(u)) + d(x j,F(x j))]
= λ d(x j,F(x j)).

Thus (2.10) becomes

d(x j,F(x j)) ≤ d(x j,u) + λ d(x j,F(x j)),

which yields

d(x j,F(x j)) ≤
1

1 − λ
d(x j,u), for all j ∈N. (2.11)

Using (2.9) and (2.11), we obtain

d(xn+1,u) ≤
a

1 − λ
max{d(xn−k+1,u), . . . , d(xn,u)}

+
a

1 − λ
max{d(xn−k+2,u), . . . , d(xn,u)}

+ . . . +
a

1 − λ
d(xn,u))

≤
ak

1 − λ
max{d(xn−k+1,u), . . . , d(xn,u)} (2.12)

for all n ≥ k. Denoting

∆n = d(xn,u), for all n ∈N

and

α =
ak

1 − λ
,

we get

∆n+1 ≤ αmax{∆n−k+1,∆n−k+2, . . . ,∆n},

for all n ≥ k. Since, we have 0 ≤ α < 1, follows the similar arguments from Lemma 2 in [18] that there exist
L > 0 and θ ∈ (0, 1) such that ∆n ≤ Lθn for all n ∈N, namely such that

d(xn,u) ≤ Lθn, for all n ≥ 1.

On taking limit as n→∞ in the above inequality, we obtain lim
n→∞

d(xn,u) = 0, so the sequence {xn} converges

in (X, d) to the unique fixed point of f . Now the proof is complete. �
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Corollary 2.6. Let (X, d) be a complete metric space, k a positive integer and f : Xk
→ X a given mapping.

Suppose that there exists a constant a ∈ R with 0 < ak(k + 1) < 1 such that

d( f (x1, . . . , xk), f (x2, . . . , xk+1)) ≤ a
k+1∑
i=1

d(xi, f (xi, . . . , xi)), (2.13)

for all (x1, . . . , xk+1) ∈ Xk+1. Then,
(i) f has a unique fixed point u ∈ X;
(ii) for any arbitrary points x1, . . . , xk ∈ X, the sequence {xn} defined by (1.1) converges to u.

Remark 2.7.
1. Theorem 2.1 extends and generalizes Theorem 1.3 of Ćirić and Prešić [8], and Theorem 1.2 of Prešić [18].
2. If k = 1, Theorem 2.1 reduces to the fixed point theorem of Rhoades [19].
3. If k = 1, Corollary 2.3 reduces to Theorem 1 of Banach [2].
4. Theorem 2.5 extends the Theorem 1.4 of Pǎcurar [17].
5. If k = 1, Theorem 2.5 reduces to Theorem 1 of Kannan [12].

3. Global Attractivity Results

We investigate the global attractivity of the recursive sequence {Xn} ⊂ P(N) defined by

Xn+k = Q +
1
k

k−1∑
i=0

A∗ϕ(Xn+i)A, n = 1, 2, . . . , (3.1)

where P(N) is the set of N × N Hermitian positive definite matrices, k is a positive integer, Q is an N × N
Hermitian positive semidefinite matrix, A is an N ×N nonsingular matrix, A∗ is the conjugate transpose of
A and ϕ : P(N)→ P(N).

First we recall some definitions and preliminary results.
Definition 3.1. Let k be a positive integer, M a nonempty set and f : Mk

→M. For given x1, x2, . . . , xk ∈M,
consider the recursive sequence {xn} ⊂M defined by

xn+k = f (xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . , (3.2)

An equilibrium point x of the equation (3.2) is the point that satisfies the condition:

x = f (x, . . . , x).

Definition 3.2. Let (M, d) be a metric space and x an equilibrium point of Eq. (3.2). The equilibrium point
x is called a global attractor if for all x1, x2, . . . , xk ∈M, we have d(xn, x)→ 0 as n→∞.

We denote by P(N) (for N ≥ 2), the open convex cone of all N ×N Hermitian positive definite matrices.
We endow P(N) with the Thompson metric defined by

A,B ∈ P(N), d(A,B) = max{ln M(A/B), ln M(B/A)},

where M(A/B) = inf{θ > 0 : A ≤ θB} = θ+(B−1/2AB−1/2), the maximal eigenvalue of B−1/2AB−1/2. Here, X ≤ Y
means that Y−X is positive semidefinite and X < Y means that Y−X is positive definite. From Nussbaum
[15], P(N) is a complete metric space with respect to the Thompson metric d and d(A,B) = ‖ ln(A−1/2BA−1/2)‖,
where ‖ · ‖ stands for the spectral norm. The Thompson metric exists on any open normal convex cones of
real Banach spaces [15, 25]; in particular, the open convex cone of positive definite operators of a Hilbert
space. Now we shortly introduce the elegant properties of the Thompson metric. It is invariant under the
matrix inversion and congruence transformations, that is,

d(A,B) = d(A−1,B−1) = d(U∗AU,U∗BU), (3.3)
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for any nonsingular matrix U. The other useful result is the nonpositive curvature property of the Thompson
metric

d(Xr,Yr) ≤ rd(X,Y), r ∈ [0, 1]. (3.4)

According to (3.3) and (3.4), we have

d(U∗XrU,U∗YrU) ≤ |r|d(X,Y), r ∈ [−1, 1]. (3.5)

Lemma 3.3. For any A,B,C,D ∈ P(N),

d(A + B,C + D) ≤ max{d(A,C), d(B,D)}.

Furthermore, for all positive semidefinite A and B,C ∈ P(N),

d(A + B,A + C) ≤ d(B,C).

Definition 3.4. Let (M, d) be a metric space and ϕ : M→ M. We say that ϕ is α-contraction, if there exists
a constant α ∈ [0, 1) such that

d(ϕ(x), ϕ(y)) ≤ αd(x, y),

for all x, y ∈M.

Let ϕ : P(N) → P(N) be an α-contraction with respect to the Thompson metric d. Let Q be an N × N
Hermitian positive semidefinite matrix (Q ≥ 0) and A an N × N nonsingular matrix (A−1 exists). For a
positive integer k, for given X1,X2, . . . ,Xk ∈ P(N), consider the sequence {Xn} ⊂ P(N) defined by (3.1). Our
main result in this section is the following.
Theorem 3.5. Eq. (3.1) has a unique equilibrium point X ∈ P(N). Moreover, X is global attractor.
Proof. Define the mapping f : P(N)k

→ P(N) by

f (U1,U2, . . . ,Uk) = Q +
1
k

[A∗ϕ(U1)A + A∗ϕ(U2)A + . . . + A∗ϕ(Uk)A],

for all U1,U2, . . . ,Uk ∈ P(N).
Let U1,U2, . . . ,Uk+1 ∈ P(N). Using Lemma 3.3, we have

d( f (U1,U2, . . . ,Uk), f (U2,U3, . . . ,Uk+1) = d

Q +
1
k

k∑
i=1

A∗ϕ(Ui)A,Q +
1
k

k+1∑
j=2

A∗ϕ(U j)A


≤ d

1
k

k∑
i=1

A∗ϕ(Ui)A,
1
k

k+1∑
j=2

A∗ϕ(U j)A


= d

 k∑
i=1

(
1
√

k
A
)∗
ϕ(Ui)

(
1
√

k
A
)
,

k+1∑
j=2

(
1
√

k
A
)∗
ϕ(U j)

(
1
√

k
A
) .

Denote V =
1
√

k
A. Then, using again Lemma 3.3, we have

d( f (U1,U2, . . . ,Uk), f (U2,U3, . . . ,Uk+1)

≤ d

 k∑
i=1

V∗ϕ(Ui)V,
k+1∑
j=2

V∗ϕ(U j)V


= d

(
V∗ϕ(U1)V + V∗ϕ(U2)V + . . . + V∗ϕ(Uk)V,V∗ϕ(U2)V + V∗ϕ(U3)V + . . . + V∗ϕ(Uk+1)V

)
≤ max

{
d(V∗ϕ(U1)V,V∗ϕ(U2)V), d(V∗ϕ(U2)V,V∗ϕ(U3)V), . . . , d(V∗ϕ(Uk)V,V∗ϕ(Uk+1)V)

}
= max

{
d(V∗ϕ(Ui)V,V∗ϕ(Ui+1)V) : i = 1, 2, . . . , k

}
.
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Since A is nonsingular, the matrix V is also nonsingular. Using property (3.3), for all i = 1, 2, . . . , k, we have

d(V∗ϕ(Ui)V,V∗ϕ(Ui+1)V) = d(ϕ(Ui), ϕ(Ui+1)).

But ϕ is an α-contraction. Then, for all i = 1, 2, . . . , k, we have

d(V∗ϕ(Ui)V,V∗ϕ(Ui+1)V) ≤ αd(Ui,Ui+1).

Thus, we have

d( f (U1,U2, . . . ,Uk), f (U2,U3, . . . ,Uk+1) ≤ αmax {d(Ui,Ui+1) : i = 1, 2, . . . , k}

for all U1,U2, . . . ,Uk+1 ∈ P(N).
Now, Applying Corollary 2.3, we obtain the existence of a global attractor equilibrium point X ∈ P(N).
On the other hand, for U,W ∈ P(N) such that U ,W, we have

d( f (U,U, . . . ,U), f (W,W, . . . ,W)) = d(Q + A∗ϕ(U)A,Q + A∗ϕ(W)A)
≤ d(A∗ϕ(U)A,A∗ϕ(W)A)
= d(ϕ(U), ϕ(W))
≤ αd(U,W)
< d(U,W).

Again, applying Corollary 2.3, we obtain the uniqueness of the equilibrium point. �

Now, we present some examples and numerical experiments.
For a positive integer k, consider the sequence {Xn} ⊂ P(N) defined by

Xn+k = Q +
1
k

k−1∑
i=0

A∗Xδ
n+iA, n = 1, 2, . . . (3.6)

for given X1,X2, . . . ,Xk ∈ P(N), where |δ| ∈ [0, 1).
Corollary 3.6. Eq. (3.6) has a unique equilibrium point X ∈ P(N). Moreover, X is global attractor.
Proof. Using Properties (3.3) and (3.5), we show easily that ϕ : P(N)→ P(N) defined by

ϕ(X) = Xδ, for all X ∈ P(N)

is |δ|-contraction. Then, the result follows immediately from Theorem 3.5. �

Remark 3.7. The equilibrium point X ∈ P(N) of Eq. (3.6) is the unique positive definite solution to the
nonlinear matrix equation

X = Q + A∗X
δ
A. (3.7)

In the last few years there has been a constantly increasing interest in developing the theory and numerical
approaches for positive definite solutions to the nonlinear matrix equation of the form (3.7) (see, for example,
[5, 9, 14]).

As an example, we consider for given X1,X2 ∈ P(N), the recursive sequence {Xn} ⊂ P(N) given by

Xn+2 = Q +
1
2

(
A∗X1/2

n A + A∗X1/2
n+1A

)
, n = 1, 2, . . . (3.8)

From Corollary 3.6, Eq. (3.8) has a unique equilibrium point X ∈ P(N), that is, the unique positive definite
solution to

X = Q + A∗X
1/2

A.
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To check our global attractivity result, we give the following numerical experiments.

We take N = 3, Q and A are given by

Q =

 0.2 0.1 0.1
0.1 0.2 0.1
0.1 0.1 0.2

 , A =

 1 2 3
3 1 2
2 3 1

 .
For each iteration i, we consider the residual error E(i) given by

E(i) =
∥∥∥Xi − (Q + A∗X1/2

i A)
∥∥∥ ,

where ‖ · ‖ is the spectral norm. All programs are written in MATLAB version 7.1.
Let us take

X1 =

 2 1 0
1 3 1
0 1 4

 and X2 =

 5 5 1
5 11 7
1 7 17

 ,
then after 90 iterations of iterative method (3.8), we get the unique equilibrium point

X ≈ X90 =

 438.4 429.2 429.2
429.2 438.4 429.2
429.2 429.2 438.4

 , (3.9)

and its residual error E(90) = 1.0503e − 013.

For other initial points

X1 =

 120 7 7
7 120 7
7 7 120

 , X2 =

 1003 3 3
3 2003 3
3 3 3003

 ,
after 90 iterations, we get the unique equilibrium point X given by (3.9), and its residual error E(90) =
2.0196e − 013. �
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[24] S. Shukla, S. Radojević, Z. A. Veljković and S. Radenović, Some coincidence and common fixed point theorems for ordered Prešić
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