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Remarks and Comments on Some Recent Results

Vladimir Pavlovića
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Abstract. In this note we give shorter proofs of some recent results on star and left star orders on B(H)
and correct a proof of one that was incomplete.

1. Remarks and Corrections

On Cn×n many partial orders are defined. One such order is the rank subtractivity order (also known as
the minus order) which was introduced by Hartwig [5] in the following way:

A ≤− B⇔ r(A − B) = r(A) − r(B). (1)

In [7] Šemrl considered the question of generalizing this order to B(H) and succeeded in finding an
equivalent definition of the rank subtractivity partial order on Cn×n that makes sense for elements of B(H):

Definition 1.1. [7] Let A,B ∈ B(H). Then A ≤− B if and only if there exist projections P,Q ∈ B(H) such that

(i) R(P) = R(A),

(ii) N(Q) = N(A),

(iii) PA = PB,

(iv) AQ = BQ.

It was proved in [7] that the orders given by Definition 1.1 and by (1) coincide. This motivated Dolinar et al.
[3] and Dolinar et al. [4] to, using the same approach as in [7], define partial orders on B(H) by modifying
Definition 1.1.
More precisely, in [3] they introduced the following order

Definition 1.2. Let A,B ∈ B(H). Then A
∗

≤ B if and only if the following two conditions are satisfied:

(1) PB = A where P is the orthogonal projection onto R(A),
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(2) BQ = A where Q is the orthogonal projection onto R(A∗).

In the same paper they showed that this definition gives the usual star order onB(H) previously introduced
by Drazin [2] as

A ≤∗ B⇔ A∗A = A∗B and AA∗ = BA∗. (2)

Now, we will give a very short proof of this fact (Theorem 5 [3]) without using the polar decompositions of
operators, which is the case in Theorem 5 in [3].

Theorem 1.3. Let A,B ∈ B(H). Then A
∗

≤ B if and only if A∗A = A∗B and AA∗ = BA∗.

Proof. We have A∗(B−A) = 0⇔ R(B−A) ⊆ N(A∗) = R(A)⊥ ⇔ R(A) ⊥ R(B−A). Similarly (B−A)A∗ = 0⇔
R(B∗ − A∗) ⊆ N(A) = R(A∗)⊥ ⇔ R(A∗) ⊥ R(B∗ − A∗). By Lemma 3 from [3] theorem follows.�

In [4] Dolinar et al. further introduced the following order:

Definition 1.4. [7] For A,B ∈ B(H) we define A ∗ ≤ B if and only the following two conditions are satisfied:

(1) PB = A where P is the orthogonal projection onto R(A),

(2) BQ = A for some projection Q ∈ B(H) such thatN(Q) = N(A).

In the same paper, they note in Theorem 5 that the order given by Definition 1.4 is the same as the left star
order in the sense of Baksalary and Mitra. When showing that the conditions A∗A = A∗B and R(A) ⊆ R(B)
imply that A ∗ ≤ B, the authors observe that “the left-star partial order implies minus partial order”, meaning
that the left star partial order as given by Definition 1.4 implies the minus partial order, which is indeed a
trivial fact, but to prove that A ∗ ≤ B as defined in Definition 1.4 is the goal there, not an assumption. Here,
we will give a complete proof of this result:

Theorem 1.5. Let A,B ∈ B(H). Then A ∗ ≤ B if and only if A∗A = A∗B and R(A) ⊆ R(B).

Proof. (⇐) : Let

B =
[

B0 0
0 0

]
:
[
R(B∗)
N(B)

]
→

[
R(B)
N(B∗)

]
where B0 ∈ B

(
R(B∗),R(B)

)
is injective. Since R(A) ⊆ R(B) we have that

A =
[

A0 A00
0 0

]
:
[
R(B∗)
N(B)

]
→

[
R(B)
N(B∗)

]
for some A0 ∈ B

(
R(B∗),R(B)

)
. From A∗A = A∗B it follows that A00 = 0 and A ∗0A0 = A ∗0B0. If A1 ∈

B

(
R(A ∗0),R(A0)

)
is (the injective operator) such that

A0 =

[
A1 0
0 0

]
:
[
R(A ∗0)
N(A0)

]
→

[
R(A0)
N(A ∗0)

]
,

then A∗0A0 = B∗0A0 implies that

B∗0 =
[

A∗1 B1
0 B2

]
:
[
R(A0)
N(A ∗0)

]
→

[
R(A ∗0)
N(A0)

]
for some B1 ∈ B

(
N(A ∗0),R(A ∗0)

)
, B2 ∈ B

(
N(A ∗0),N(A0)

)
. The inclusion R(A0) = R(A) ⊆ R(B) = R(B0) means

that for every x ∈ R(A ∗0) there are x′ ∈ R(A ∗0) and y ∈ N(A0) such that[
A1x

0

]
=

[
A1x′

B∗1x′ + B∗2y

]
.
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The operator A1 being injective, this further implies R(B∗1) ⊆ R(B∗2), which gives us an operator S ∈
B

(
N(A0),R(A ∗0)

)
such that B1 = SB2.

We will show that R(B∗) = R(A∗) ⊕ R(B∗ − A∗). Note that R(B∗) = R(B∗0), R(A∗) = R(A∗0) = R(A∗1) and

R(B∗ − A∗) = R(B∗0 − A∗0) = R(
[

B1
B2

]
).

Suppose that
[

A∗1xn + B1yn
B2yn

]
→

[
u
v

]
for some xn ∈ R(A0), yn ∈ N(A ∗0) for n ∈N. Then B1yn = SB2yn →

Sv so A∗1xn → u − Sv ∈ R(A∗1). Hence
[

B1yn
B2yn

]
→

[
Sv
v

]
so

[
u
v

]
=

[
u − Sv

0

]
+

[
Sv
v

]

finally implies
[

u
v

]
∈ R(A∗) + R(B∗ − A∗).

To see that the sum is direct let u ∈ R(A ∗0), v ∈ N(A0) be such that
[

A∗1xn
0

]
→

[
u
v

]
,
[

B1yn
B2yn

]
→

[
u
v

]
for some xn ∈ R(A0), yn ∈ N(A ∗0) for n ∈ N. From v = 0 it follows B1yn = SB2yn → Sv = 0. Thus u = 0 and
we are done.

From A∗(B − A) = 0 we have R(B − A) ⊆ N(A∗) = R(A)⊥ so R(A) ⊥ R(B − A). By Lemma 2 from [4] we
conclude that A ∗ ≤ B.

(⇒) : Suppose that A ∗ ≤ B. From Lemma 2 [4] it immediately follows that R(A) ⊆ R(B), and also that
R(A) ⊥ R(B − A). Now, for every x ∈ H we have that 〈(B − A)x,Ax〉 = 0, implying that A∗(B − A) = 0.�

We end the note by a remark about the proof of Theorem 15 [4] in which the authors presented a very
interesting result in which they characterized all the bijective additive maps on B(H) which preserve the
left (right) star order in both directions. Taking into account that φ is additive and using the fact that a
bijective map φ : P(H) → P(H), where P(H) is the set of all orthogonal projections, preserves the usual
order P ≤ Q ⇔ PQ = QP = P in both directions and satisfies φ(I − P) = I − φ(P), if and only if there is an
operator U : H → H either unitary or antiunitary, such that φ(P) = UPU∗ for all P ∈ P(H) (see [6], page
13), we can eliminate the items 10 and 11 of the proof and skip directly to the conclusion reached in item 12.
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