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The Zero Divisor Graphs of Finite Rings of Cubefree Order
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Abstract. The aim of this paper is to classify the zero divisor graph of finite rings of cubefree order. It is
proved that all zero divisor graphs can be interpreted as the extended join over well-known graphs.

1. Introduction

The notion of a zero divisor graph was introduced by Beck in [3] when he studied the coloring problem
of a commutative ring. In order to define this graph, we assume that R is a ring and G(R) is a simple
graph such that V(G(R)) = R and two distinct vertices x and y are adjacent provided that xy = 0. It is
easy to prove that G(R) is a connected graph of diameter at most 2. Anderson and Livingston [1], for
simplification of the concept of Beck’s zero divisor graph considered the set of all non-zero zero divisors
as the vertex set. The edges can be defined in a similar way as Beck’s seminal paper. This studied the
interplay between the ring and graph theoretical properties of this structure. Throughout this paper we use
the Anderson−Livingston’s definition of zero devisor graph and so all rings considered here is not integral.
We encourage to the interested readers to consult [5] for more information on this topic.

In [2, 6], a classification of finite rings of order p2 and p3 are presented. It is not so difficult to continue
the lines of [6] for a classification of finite ring of square free orders. The aim of this paper is determining
the zero divisor graphs of finite rings of order p2, p is prime, and the zero divisor graphs of finite rings of
cubefree orders.

We denote by Kn and φn the complete and empty graphs on n vertices, respectively. The join G + H
of graphs G and H with disjoint vertex sets V(G) and V(H) and edge sets E(G) and E(H) is the graph
union G ∪ H together with all the edges joining V(G) and V(H). The complete bipartite and complete
tripartite graphs Km,n and Km,n,k are defined by Km,n = φm +φn and Km,n,k = Km,n +φk. Suppose G1,G2, · · · ,Gk
are graphs with disjoint vertices. The sequential join G1 + G2 + · · · + Gk is defined as the graph union
(G1 + G2) ∪ (G2 + G3) ∪ · · · ∪ (Gn−1 + Gn).

The ring of integers modulo n is denoted by Zn and Cn(0) is another ring with the same elements and
addition operation, but with the trivial multiplication. The opposite of a ring (R,+, ·) is the ring (R,+, ∗),
whose multiplication “ ∗ ” is defined by a ∗ b = ba. If Γ is a graph and Π = {P1,P2, · · · ,Pr} is a partition of
V(Γ) then the quotient graph Γ

Π is defined as follows:
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V( Γ
Π ) = Π and E( Γ

Π ) = {PiP j | ∃v ∈ Pi ∃v? ∈ P j s.t. vv? ∈ E(Γ)}.

Suppose G is a labeled graph with V(G) = {x1, ..., xn} and Γ1, · · · ,Γn are arbitrary graphs with disjoint vertex
sets. An extended join of Γ1, · · · ,Γn by G is defined as follows: n⊎

i=1

Γi


G

=
⋃

xrxs∈E(G)

Γr + Γs.

It is clear that when G = K2 the extended joint of graphs Γ1 and Γ2 by G is the ordinary join of graphs.
If we use the (n + 1)−vertex path Pn as G then the extended join of graphs Γ1, · · · ,Γn+1 by Pn is called the
sequential join of these graphs. The corona product of two graphs G and H is the disjoint union of one copy
of G and |V(G)| copies of H in such a way that each vertex of the copy of G is connected to all vertices of its
corresponding copy of H [7]. Finally, for a subset A of a ring R, A? denotes the set of nonzero elements of
A. For concepts and notations not presented here, we refer to [8, 10].

2. Main Results

The aim of this section is to present a complete classification of graphs, which can be represented as
zero divisor graphs of finite rings of cubefree order. For the sake of completeness, we mention here [6,
Theorem 2], [6, Corollary 3] and a characterization theorem on finite rings [9] which are crucial throughout
this paper.

Theorem 1. (See [6, Theorem 2]) For any prime p there are, up to isomorphism, exactly 11 rings of order p2

with the following presentations:

1. A = 〈a | p2a = 0, a2 = a〉,
2. B = 〈a | p2a = 0, a2 = pa〉,
3. C = 〈a | p2a = 0, a2 = 0〉,
4. D = 〈a, b | pa = pb = 0, a2 = a, b2 = b, ab = ba = 0〉,
5. E = 〈a, b | pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b〉,
6. F = 〈a, b | pa = pb = 0, a2 = a, b2 = b, ab = b, ba = a〉,
7. G = 〈a, b | pa = pb = 0, a2 = 0, b2 = b, ab = a, ba = a〉,
8. H = 〈a, b | pa = pb = 0, a2 = 0, b2 = b, ab = ba = 0〉,
9. I = 〈a, b | pa = pb = 0, a2 = b, ab = 0〉,

10. J = 〈a, b | pa = pb = 0, a2 = b2 = 0〉,
11. K = GF(p2) = The finite field of order p2.

Theorem 2. (See [6, Corollary 3]) If n = p1 · · · pk is a square−free positive integer then up to isomorphism,
there are exactly 2k rings of order n. These are product rings in the form R1 × R2 × · · · × Rk such that Ri is a
ring of order pi, its additive group is isomorphic to Zpi and its multiplication is either trivial or isomorphic
to the integers modulo pi.

Theorem 3. (See [9, Hilfssatz 1]) Every finite ring is isomorphic to a Cartesian product of rings of prime
power order.

In the following theorem Z(R) denotes the set of all zero devisors of R.

Theorem 4. Suppose R is a finite ring of order p2. Then Γ(R) is isomorphic to Kp−1, Kp−1 + φp2−p, Kp2−1 or
Kp−1,p−1.

Proof. Suppose R is a ring of order p2. By Theorem 1, R � A,B,C,D,E,F,G,H, I or J. Our main proof
proceeds case by case as follows:
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Case 1. R � A or G. If R � A then Z(R) = {0, p, 2p, · · · , (p − 1)p} and so Γ(R) � Kp−1, as desired. Suppose

R � G. Then by choosing a = x + 〈x2
〉 and b = 1 + 〈x2

〉 in the ring Zp[x]
〈x2〉

, one can see that

Zp[x]
〈x2〉

= 〈a, b | pa = pb = 0, a2 = 0, b2 = b, ab = a, ba = a〉.

This shows that G �
Zp[x]
〈x2〉

. On the other hand, if I = 〈x2
〉 then

Z
(

Zp[x]
I

)
= {I, x + I, 2x + I, · · · , (p − 1)x + I}.

Since Z
(Zp[x]

I

)
is a commutative set with respect to multiplication, G � Kp−1.

Case 2. R � B, E, F, H or I. We first assume that R � B. It is clear that B � 〈p〉 / Zp3 . Notice that “/ ” is a
notation which denotes the ideals. Set B1 = {p2, 2p2, · · · , (p − 1)p2

} and B2 = 〈p〉 \ B1. Suppose x and y are
arbitrary elements of Z(R)? = B1 ∪B2. If x, y ∈ B1 or x ∈ B1 and y ∈ B2 then xy = 0. Otherwise, xy , 0. Thus,
Γ(R) � Kp−1 + φp2−p.

We now assume that R � F. Define:

S =

{[
x y
x y

] ∣∣∣ x, y ∈ Zp

}
, a =

[
1 0
1 0

]
, b =

[
0 1
0 1

]
,F1 =

{[
k −k
k −k

]
| k ∈ Z?p

}
.

One can prove that F = 〈a, b | pa = pb = 0, a2 = a, b2 = b, ab = b, ba = a〉 and for each element a, b ∈ F, ab = 0 if
and only if a, b ∈ F1 or a ∈ F1 and b ∈ F2 = F \ F1, This shows that Γ(R) � Kp−1 + φp2−p. On the other hand,
E � Fop and so Γ(E) � Γ(F) � Kp−1 + φp2−p.

Next we assume that R � H. Notice that H � Zp × Cp(0). Set H1 = {(0, b) | b ∈ Cp(0), b , 0} and
H2 = {(a, b) | a ∈ Z?p , b ∈ Cp(0)}. Again, one can see that ab = 0 if and only if a, b ∈ H1 or a ∈ H1 and b ∈ H2.

Therefore, Γ(R) � Kp−1+φp2−p, as desired. Finally, suppose that R � I. Since L = {cx+dx2+〈x3
〉 | c, d ∈ Zp}E

Zp[x]
〈x3〉

,
by choosing a = x + 〈x3

〉 and b = x2 + 〈x3
〉, we can see that I � L. Set L1 = {kx2 + 〈x3

〉 | k ∈ Z?p } and L2 = L \ L1.
Again, it is not so difficult to prove Γ(I) � Kp−1 + φp2−p.

Case 3. R � C or J. Suppose R � C. Then one can easily see that R � Cp2 (0) and all distinct elements
of R are adjacent in its zero divisor graph. Therefore, Γ(R) � Kp2−1. If R � J then R � Cp(0) × Cp(0) and by
definition Γ(R) � Kp2−1.

Case 4. R � D. Suppose R � D � Zp × Zp. Define D1 = {(r, 0) | r ∈ Z?p } and D2 = {(0, s) | s ∈ Z?p }. Then for
each element x, y ∈ D, xy = 0 if and only if x ∈ D1 and y ∈ D2. Therefore, Γ(R) � Kp−1,p−1.

This completes the proof.

Suppose R is a cubefree finite ring. Then by Theorem 3, R is isomorphic to a Cartesian product of rings
of prime power order. Among rings of order p2, Zp × Zp, Zp × Cp(0) and Cp(0) × Cp(0) are the only rings
which are product of rings of order p. So, we can write R �

∏n
i=1 Ri, where for each i, 1 ≤ i ≤ n, Ri is not

isomorphic to three mentioned rings. Define:

N1 = {1, 2, . . . ,n},
N2 = {i ∈ N1 | Ri � Zp,Cp(0)},
N3 = {i ∈ N1 | Ri � C},
N4 = {i ∈ N1 | Ri is not a field},
N5 = {i ∈ N2 | Ri � B or C or E or F or I}.

The eccentricity of a vertex v, ε(v), is the greatest distance between v and any other vertex and the
minimum eccentricity among vertices of the graph is called its radius. A central vertex in a graph of radius
r is one whose eccentricity is r. The center of the graph is defined as the set of all central vertices. We denote
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the center of a graph G, by C(G). For each i, 1 ≤ i ≤ n, we define three subsets Ti, T?i and Si from Ri, as
follows:

T?i =


Ω Ri � GF(p2) or C
Z(Ri)? Ri � A or G
C(Γ(Ri)) Ri � B or E or F or I
R?i Ri � Zp or Cp(0).

,

where Ω is a fixed subset of R?i of cardinality pi − 1, Ti = T?i ∪ {0Ri } and Si = Ri \ Ti. Here we can easily
prove that C(Γ(Ri)) = Nil(Ri)? in which Nil(Ri) is the nil radical of Ri [8, p. 379]. On the other hand, for each
x = (x1, . . . , xn) ∈ R, µx = {i ∈ N2 | xi ∈ Si}. Define x ∼ y if and only if µx = µy, where x, y ∈ R. It is easy to see
that ∼ is an equivalence relation. Moreover, we assume that [x] denotes the equivalence class of x under ∼
and X is a set of representatives of the equivalence relation ∼.

Suppose that x ∈ X and ∅ , ν ⊆ N1. Set

[x]ν = {y = (y1, . . . , yn) | µx = µy & yi = 0 if and only if i < ν}.

The induced subgraph of Γ(R) generated by [x]ν is denoted by Γ([x]ν). For each x1, x2 ∈ X, x1 , x2, and for
each ν1, ν2 such that ν1, ν2 ⊆ N1, ν1 , ν2 and ν1, ν2 , ∅, we say {(x1, ν1), (x2, ν2)} satisfies condition (P) if and
only if

i) µx1 ∩ µx2 ⊆ N3;

ii) (ν1 \ µx1 ) ∩ (ν2 \ µx2 ) ⊆ N4;

iii) µx1 ∩ (ν2 \ µx2 ), µx2 ∩ (ν1 \ µx1 ) ⊆ N5.

Finally, for each x ∈ X and ∅ , ν ⊆ N1, we say that the pair (x, ν) satisfies Qx,ν (or (x, ν) ∈ Ex,ν) if and only if
[ν ⊂ N1 and µx ⊆ ν] or [ν = N1 and (µx ∩N5) ∪ ((ν \ µx) ∩N4) , ∅]. For simplicity of our argument,

Lemma 5. V(Γ(R)) =
⋃

x∈X, ∅,ν⊆N1, (x,ν)∈Ex,ν
V(Γ([x]ν)).

Proof. To simplify our argument, we define W =
⋃

x∈X, ∅,ν⊆N1, (x,ν)∈Ex,ν
V(Γ([x]ν)). Suppose a ∈ V(Γ(R)). Then

there are x ∈ X and ∅ , ν ⊆ N1 such that a ∈ [x]ν. If ν , N1 then (x, ν) satisfies Qx,ν and so a ∈ W. Assume
that ν = N1. Since a = (a1, . . . , an), for each i, i ∈ ν = N1, ai , 0. On the other hand, a ∈ V(Γ(R)) implies that
there exists j ∈ N1 such that a j is not unit. We claim that j ∈ (µx ∩N5)∪ ((ν \µx)∩N4). Suppose j < µx. Since
a j is not unit, j ∈ N4 and so j ∈ (ν \ µx)∩N4, as desired. If j ∈ µx and j < µx ∩N5 then a j ∈ S j. Since j < N5, a j
is unit which is impossible.

Conversely, we assume that a ∈ W. Then there are x ∈ X and ∅ , ν ⊆ N1 such that a ∈ V(Γ([x]ν)). If
ν , N1 then (0, . . . , 0, t, 0, . . . , 0) is a non-zero zero divisor for a, where j ∈ N1 \ ν and 0 , t ∈ R j. This shows
that a ∈ V(Γ(R)). Next we assume that ν = N1. Since (x, ν) satisfies Qx,ν, j ∈ (µx ∩N5) ∪ ((ν \ µx) ∩N4) exists.
Since for each i, i ∈ N5, the elements of Si and Ti are zero divisors of each other, j ∈ µx ∩ N5 implies that
(0, . . . , 0, t, 0, . . . , 0) is a non-zero zero divisor for a, where 0 , t ∈ T j. Since for i ∈ N4, the elements of Ti are
zero divisors of each other, j ∈ (ν \ µx) ∩N4 implies that (0, . . . , 0, t, 0, . . . , 0) is a non-zero zero divisor for a,
where t ∈ T j. This completes the proof.

Lemma 6. There is a partition P such that Γ(R)
P

is isomorphic to a graph Λ such that

V(Λ) = {(x, ν) | x ∈ X, ∅ , ν ⊂ N1, µx ⊆ ν} ∪ {(x,N1) | x ∈ X, (µx ∩N5) ∪ ((N1 \ µx) ∩N4) , ∅},
E(Λ) = {(x1, ν1)(x2, ν2) | (x1, ν1), (x2, ν2) ∈ V(G),P is satis f ied},
P = {[x]ν | x ∈ X, ∅ , ν ⊆ N1,Qx,ν is satis f ied}.

Proof. By Lemma 5, the mapping f : Γ(R)
P
−→ Λ which sends [x]ν to (x, ν) is an isomorphism. So, Λ � Γ(R)

P

which proves the theorem.
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Lemma 7. For each x ∈ X and ∅ , ν ⊆ N1 which satisfy the condition Qx,ν, we have:

Γ([x]ν) =


K(∏i∈µx pi×

∏
i∈ν(pi−1)) ∅ , µx ⊆ N3 and ν ⊆ N4

K∏
i∈ν(pi−1) µx = ∅ and ν ⊆ N4

φ(∏i∈µx pi×
∏

i∈ν(pi−1)) µx , ∅ and [µx * N3 or ν * N4]
φ∏

i∈ν(pi−1) Otherwise.

Proof. Consider two arbitrary elements y = (y1, . . . , yn), y′ = (y′1, . . . , y
′
n) ∈ [x]ν. Obviously, µy = µy′ = µx.

Suppose that µx ⊆ N3, ν ⊆ N4. Thus, for every i ∈ µx, yi, y′i ∈ C and so yiy′i = 0. If i ∈ ν \ µx then yi, y′i ∈ Ti
and Γ(T?) is an induced subgraph of Γ(Ri) isomorphic to Kpi−1. So, again yiy′i = 0. Finally, if i ∈ N1 \ ν then
yi = y′i = 0 and so yiy′i = 0. Therefore, yiy′i = 0 and Γ([x]ν) is a complete graph. If µx , ∅ then and we have:

|[x]ν| =
∏
i∈µx

|Si| ×
∏

i∈ν\µx

|T?i |

=
∏
i∈µx

(p2
i − pi) ×

∏
i∈ν\µx

(pi − 1)

=
∏
i∈µx

pi ×
∏
i∈µx

(pi − 1) ×
∏

i∈ν\µx

(pi − 1)

=
∏
i∈µx

pi ×
∏
i∈ν

(pi − 1).

If µx = ∅ then |[x]ν| =
∏

i∈ν(pi − 1). If µx * N3 then there exists i ∈ µx such that i < N3. Hence there are
yi, y′i ∈ Si such that yi, y′i < C and so yiy′i , 0. This shows that yy′ , 0. If ν * N4 then there exists i ∈ ν such
that i < N4. By our notation, Ri is a field and yi, y′i ∈ Ri. So, i ∈ ν implies that yiy′i , 0. Again yy′ , 0 and
Γ([x]ν) = φ|[x]ν |, which completes the proof.

Theorem 8. Suppose R is a cubefree order ring. Then,

Γ(R) =
⊎

x,x′∈X, ∅,ν,ν′⊆N1 , (x,ν)(x′ ,ν′ )∈E(Λ),

Qx,ν,Qx′ ,ν′ and (P) are satis f ied

(
Γ([x]ν) + Γ([x′]ν′ )

)
Λ
. (1)

Proof. Suppose L denotes the right hand side graph of the Equation 1. We first prove that V(L) = V(Γ(R)).
Clearly, V(L) ⊆ V(Γ(R)) and so it is enough to show that V(Γ(R)) ⊆ V(L). Suppose y = (y1, . . . , yn) ∈ V(Γ(R)).
Then there exists ∅ , ν ⊆ N1 such that yi , 0 if and only if i ∈ ν. We can also find a subset µ of N2 such that
yi ∈ Si if and only if i ∈ µ. Therefore, there exists x ∈ X such that µx = µy = µ, as desired.

We now prove that E(Γ(R)) = E(L). Suppose yy′ ∈ E(Γ(R)), y = (y1, . . . , yn) and y′ = (y′1 . . . , y
′
n). By

definition of E(Γ(R)), for each i ∈ N1, yiy′i = 0. Since y, y′ ∈ V(Γ(R)), there are ∅ , ν, ν′ ⊆ N1 such that i ∈ ν if
and only if yi , 0, and j ∈ ν′ if and only if y′j , 0. We first assume that ν , ν′. By definition of V(Γ(R)), there
are x, x′ ∈ X such that µy = µx and µy′ = µx′ . This shows that y ∈ [x]ν and y′ ∈ [x′]ν′ . Since for each i ∈ N1,
yiy′i = 0, µx ∩ µx′ ⊆ N3. If (ν \ µx) ∩ (ν′ \ µx′ ) * N4 then there exists j ∈ ν \ µx such that j < N4. Therefore,
by definition of N4, R j is a field. Now y jy′j = 0 implies that y j = 0 or y′j = 0, which is impossible. Thus
(ν \ µx) ∩ (ν′ \ µx′ ) ⊆ N4. Next we prove that µx ∩ (ν′ \ µx′ ) ⊆ N5. Suppose i ∈ µx ∩ (ν′ \ µx′ ). Hence y′i ∈ Ti.
Again from the equation yiy′i = 0 we deduce that i ∈ N5. In a similar way, µx′ ∩ (ν \ µx) ⊆ N5. Therefore,
yy′ ∈ E(L). If ν = ν′ and x , x′ then a similar argument as above shows that yy′ ∈ E(L). Assume that
y, y′ ∈ [x]ν, for some x ∈ X and ∅ , ν ⊆ N1. Since yiy′i = 0, i ∈ N1, we have µx ⊆ N3 and ν ⊆ N4. By Lemma
7, Γ([x]ν) is a complete graph and so yy′ ∈ E(L). Conversely, we assume that ab ∈ E(L). Put a = (a1, . . . , an)
and b = (b1, . . . , bn). Then there are x, x′ ∈ X and ∅ , ν, ν′ ⊆ N1, such that a ∈ V(Γ([x]ν)) and b ∈ V(Γ([x′]ν′ )).
Our main proof will consider four cases as follows:

a. x = x′ and ν = ν′. Suppose a, b ∈ V(Γ([x]ν)). Then Γ([x]ν) is a complete graph and so µx ⊆ N3, ν ⊆ N4.
Since µx ⊆ N3, aibi = 0, for each i ∈ µx. If i ∈ ν \ µx then ai, bi ∈ Ti. But Ti is not a subset of any field,
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so aibi = 0, for each i ∈ ν \ µx. On the other hand, for any i ∈ N1 \ ν, we have ai = bi = 0 which implies
that aibi = 0. Hence ab ∈ E(Γ(R)), as desired.

b. x , x′ and ν = ν′. If i ∈ µx \µx′ then the inclusion µx′ ∩ (ν \µx) ⊆ N5 shows that ai ∈ Ti and bi ∈ Si. Since
the elements of Si and Ti are zero divisors of each other, aibi = 0. We now assume that i ∈ µx ∩ µx′ .
Then µx ∩ µx′ ⊆ N3 and so ai, bi ∈ C. Hence aibi = 0. If i ∈ ν \ µx then we have two cases that i ∈ µx′ or
i < µx′ . In the first case, the inclusion µx′ ∩ (ν \ µx) ⊆ N5 proves that ai ∈ Ti and bi ∈ Si. Thus aibi = 0.
In the later, the inclusion (ν \ µx) ∩ (ν \ µx′ ) ⊆ N4 proving that aibi = 0. Finally, if i < ν then ai = bi = 0
and hence aibi = 0 which completes this part.

c. x = x′ and ν , ν′. We consider four subcases that i ∈ µx, i ∈ (ν \ µx) ∩ (N1 \ ν′), i ∈ (ν \ µx) ∩ ν′ or i < ν.
In the first subcase, µx = µx′ ⊆ N3 and so ai, bi ∈ C which implies that aibi = 0. In the second and forth
subcases, bi = 0 and ai = 0, respectively, and so aibi = 0. Finally, in the third subcase, the inclusion
(ν \ µx) ∩ (ν′ \ µx) ⊆ N4 deduces aibi = 0, which completes this part.

d. x , x′ and ν , ν′. By a similar argument as Cases a-c, we can conclude this part.
This completes our argument.

We end this paper by determining the zero divisor graph of all finite rings of order p2q, where p and q
are distinct primes.

Corollary 9. Suppose R is a finite ring of order p2q, where p and q are distinct primes. Then Γ(R) is
isomorphic to one of the following graphs:

1. Kp2q−1,
2. Kp2−1,q−1,
3. Kpq−1 + φpq(p−1),
4. Kq−1 + φq(p2−1),
5. Kp2−1 + φp2(q−1),
6. Kq(p−1) + Kq−1 + φpq(p−1),
7. Kq(p−1),q(p−1) + Kq−1 + φq(p−1)2 ,
8. Kp(p−1),p(q−1) + Kp−1 + φp(p−1)(q−1),
9. φ(p−1)(q−1) + Kp−1 + φq−1 + φp(p−1),

10.
(
φ(p−1)(q−1) ] φp−1 ] φq−1 ] φ(p−1)2 ] φp−1 ] φ(p−1)(q−1)

)
G1

, where G1 is the corona product of a triangle by

K1 in such a way that two copies of φ(p−1)(q−1) and a copy of φ(p−1)2 are corresponding to vertices of
three copies of K1. Moreover, two copies of φ(p−1)(q−1) are adjacent to φp−1.

Proof. Apply Theorems 1, 3 and 8.
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[9] K. Shoda, Über die Galoissche Theorie der halbeinfachen hyperkomplexen Systeme, Mathematische Annalen 107 (1933) 252–258.

[10] D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.


