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A General Rational Sum Identity

Aimin Xua

aInstitute of Mathematics, Zhejiang Wanli University, Ningbo 315100, China

Abstract. In this paper, by means of divided differences and an inverse pair formula we present a general
rational sum identity which generalizes some identities of Chu-Yan, Prodinger, Mansour-Shattuck-Song
and Ismail-Stanton.

1. Introduction

In the article [8], Dı́az-Barrero et al. obtained two identities involving rational sums:
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Eq. (1.1) includes Dı́az-Barrero’s result in [7] as a special case x = 0 which states that
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Recently, Prodinger [13] made use of partial fraction decomposition [4] and inverse pairs and presented
a more general formula:
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where sk,i =
∑k

j=1(x + j)−i. Almost at the same time, Chu and Yan [3] employed binomial inversions to gave
a more general identities of (1.3) with multiple l-fold sum:
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1
x + ji
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. (5)

A direct proof of (1.5) was also given by Chu [2]. For other generalizations of Dı́az-Barrero’s result by using
integral method, one is referred to [15]. More recently, Mansour et al. [12] provided a q-analog for the
rational sum identity (1.4):
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where sk,i(q) =
∑k

j=1 qi j[x+ j]−i
q . In particular, they gave a very nice bijective proof for the case l = 1. For more

generalizations of (1.1)-(1.3), one is referred to [18, 19]. By means of the technique of summations theorems
for hypergeometric series [10, 14, 16, 17], Eqs. (1.1)-(1.3) were derived systematically.

Motivated by these interesting work, this paper will be devoted to a more general rational sum identity
that includes all of the identities presented above as a special case. Our main tools are divided differences
and inverse pairs.

Throughout this paper , we will use the standard notation

[n]q = 1 + q + · · · + qn−1 =
1 − qn

1 − q
, [n]q! = [1]q[2]q · · · [n]q,[

n
k

]
q

=
[n]q!

[k]q![n − k]q!
, (x; q)n =

n−1∏
i=0

(1 − xqi),

and by convention empty products take the value 1 and empty sums take the value 0.

2. Main Results

In this section, let us first recall that divided differences as the coefficients of the Newton interpolating
polynomial have played an important role in numerical analysis, especially in interpolation and approxi-
mation by polynomials and in spline theory, see [6] for a recent survey. They also have many applications
in combinatorics [1, 21–23].

Let ∆(a0, a1, . . . , an) f (·) denote the n-th divided difference of a function f (x) at the points a0, a1, . . . , an. It
is well known that for the distinct points a0, a1, . . . , an, the divided differences of the function f are defined
recursively by the following formula:

∆(a0) f (·) = f (a0),

∆(a0, a1, . . . , an) f (·) =
∆(a0, a1, . . . , an−1) f (·) − ∆(a1, a2, . . . , an) f (·)

a0 − an
, n = 1, 2, . . . . (7)

From (2.1) the divided differences can be expressed by the explicit formula

∆(a0, a1, . . . , an) f (·) =

n∑
i=0

f (ai)∏n
j=0,,i(ai − a j)

, (8)

which can be shown by induction. From the above expression one sees that the divided differences are
symmetric functions of their arguments. If f (x) = x j for 0 ≤ j ≤ n, then

∆(a0, a1, . . . , an)(·) j = δn, j,
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where δp,q is defined as

δp,q =

{
1, p = q,
0, p , q.

Let h(x) = f (x)1(x). If f and 1 are sufficiently smooth functions, then for arbitrary points a0, a1, . . . , an,
we have

∆(a0, a1, . . . , an)h(·) =

n∑
i=0

∆(a0, a1, . . . , ai) f (·)∆(ai, ai+1, . . . , an)1(·). (9)

This is called the Steffensen formula [20] (see also [22]). Furthermore, considering the multiplication of the
m functions ϕ1, ϕ2, . . . , ϕm, the Steffensen formula can be generalized. If ϕi (i = 1, 2, . . . ,m) are sufficiently
smooth functions, then for arbitrary points a0, a1, . . . , an, we have

∆(a0, a1, . . . , an)h(·) =
∑

0=i0≤i1≤···≤im=n

m−1∏
k=0

∆(aik , aik+1 . . . , aik+1 )ϕk+1(·), (10)

where h(x) =
∏m

i=1 ϕi(x).
Now, let us consider the following lemma.

Lemma 2.1. If the sequence {ak}k≥0 are distinct, then for n ≥ 0 there holds
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1k
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. (11)

Proof. First we will prove an equivalent form of (2.5) as follows
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Substituting the second equality into the right hand side of the first equality yields
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k= j
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The last equality holds because
n∑

k= j

1∏n
i= j,,k(ak − ai)

= ∆(a j, a j+1, . . . , an)e(·) = δn, j,

where the function e(x) ≡ 1.
On the other hand, substituting the first equality into the right hand side of the second equality yields
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Write
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= · · ·

=
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i=0,, j
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Thus, this implies that

n∑
k= j

∏k−1
i=0 (an − ai)∏k

i=0,, j(a j − ai)
= δn, j.

Replacing fn by fn∏n−1
i=0 (an−ai)

we arrive at (2.5).

Remark 2.2. For n ≥ 1, this inverse pair formula can be written alternatively as

fn =

n∑
k=1

1k

∏n−2
i=0 (an−1 − ai)∏n

i=0,,k−1(ak−1 − ai)
⇔ 1n =

n∑
k=1

fk
k−2∏
i=0

an−1 − ai

ak−1 − ai
.

Making use of Lemma 2.1, we can obtain the following theorem.

Theorem 2.3. If the sequence {ak}k≥0 are distinct, then for l ≥ 1 there holds

1
(x + an)l+1

=

n∑
k=0

∏k−1
i=0 (ai − an)∏k
i=0(x + ai)

∑
0≤i1≤···≤il≤k

l∏
j=1

1
x + ai j

. (13)

Proof. Let 1k = 1
(x+ak)l+1 in Lemma 2.1. There holds

fn =

n∑
k=0

1
(x + ak)l+1

∏n−1
i=0 (an − ai)∏n

i=0,,k(ak − ai)
=

n−1∏
i=0

(an − ai)∆(a0, a1, . . . , an)
( 1

x + ·

)l+1

.

By the recurrence of divided differences, it is easy to obtain

∆(a0, a1, . . . , ak)
( 1

x + ·

)
=

(−1)k∏k
i=0(x + ai)

.
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Applying (2.4), we have

∆(a0, a1, . . . , an)
( 1

x + ·

)l+1

=
(−1)n∏n

i=0(x + ai)

∑
0≤i1≤···≤il≤n

l∏
j=1

1
x + ai j

,

which leads to

fn =

∏n−1
i=0 (ai − an)∏n
i=0(x + ai)

∑
0≤i1≤···≤il≤n

l∏
j=1

1
x + ai j

.

In view of Lemma 2.1, the desired result is obtained.

Remark 2.4. Eq. (2.7) is expressed with multiple l-fold sum. Let ui = (x + ai)−1, i = 0, 1, . . . , k. It is not hard to
verify

k∏
i=0

1
1 − uit

=

k∏
i=0

∑
j≥0

(uit) j =
∑
l≥0

tl
∑

0≤i1≤···≤il≤k

l∏
j=1

ui j . (14)

Considering the l-th derivative of
∏k

i=0
1

1−uit
at t = 0, we have

dl

dtl

k∏
i=0

1
1 − uit

∣∣∣∣∣
t=0

=
dl

dtl
e−

∑k
i=0 log(1−uit)

∣∣∣∣∣
t=0
.

Applying Faà di Bruno’s formula [5] yields

dl

dtl

k∏
i=0

1
1 − uit

∣∣∣∣∣
t=0

= Yl(Uk,1(a),Uk,2(a), . . .), (15)

where the exponential complete Bell polynomials are defined as

Yn(x1, x2, . . .) =
∑

l1+2l2+···=n

n!
l1!l2! · · ·

(x1

1!

)l1 (x2

2!

)l2
· · · ,

and

Uk,i(a) = (i − 1)!
k∑

j=0

ui
j, i = 1, 2, . . . l.

Comparing (2.8) with (2.9), there holds∑
0≤i1≤···≤il≤k

l∏
j=1

ui j =
∑

l1+2l2+···=l

1
l1!l2! · · ·

(
sk,1(a)

1

)l1 ( sk,2(a)
2

)l2

· · · , (16)

where

sk,i(a) =

k∑
j=0

ui
j, i = 1, 2, . . . l.

Therefore, Eq. (2.7) can be rewritten as an alternative formula:

1
(x + an)l+1

=

n∑
k=0

∏k−1
i=0 (ai − an)∏k
i=0(x + ai)

∑
l1+2l2+···=l

∏
i≥1

sk,i(a)li

li!ili
. (17)
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Remark 2.5. Eq. (2.7) contains Chu-Yan’s result, i.e., Eq. (1.5). If we take ak = k for k = 0, 1, . . . ,n, we can arrive
at (1.5) by simple calculations. Actually, Eq. (2.7) also contains Prondinger’s identity as a special case because (1.4)
and (1.5) are equivalent with each other. In Eq. (1.5), if we replace n by n − 1 and x by x + 1, then we can retrieve
(1.4).

Let ai = q−i for i = 0, 1, . . . ,n in Eq. (2.7). By direct calculating we obtain a q-analog of Chu-Yan’s identity.

Corollary 2.6. For l ≥ 1, there holds

qn(l+1)

(1 + xqn)l+1
=

n∑
k=0

(−1)kq(k+1
2 )−kn

[
n
k

]
q

(q; q)k

(−x; q)k+1

∑
0≤i1≤···≤il≤k

l∏
j=1

qi j

1 + xqi j
. (18)

If we replace x by −qx, we can obtain an alternative formula of (2.12) as follows.

Corollary 2.7. For l ≥ 1, there holds

qn(l+1)[x]q

[x + n]l+1
q

=

n∑
k=0

(−1)kq(k+1
2 )−kn

[
n
k

]
q

[
x + k

k

]−1

q

∑
0≤i1≤···≤il≤k

l∏
j=1

qi j

[x + i j]q
. (19)

Remark 2.8. In fact, Eq. (2.13) is equivalent to Eq. (1.6). If we replace n by n − 1 and x by x + 1 and use the
relationship (2.10), we immediately arrive at (1.6).

If we replace x by −qx and n by n − 1 in (2.12), then we find an identity which is equivalent to Ismail-
Stanton’s identity (see Theorem 2.2 in [11]).

Corollary 2.9. For l ≥ 1, there holds

qnl

(1 − xqn)l+1
=

n∑
k=1

(−1)k−1q(k
2)−k(n−1)

[
n − 1
k − 1

]
q

(q; q)k−1

(xq; q)k

∑
1≤i1≤···≤il≤k

l∏
j=1

qi j

1 − xqi j
. (20)

Remark 2.10. In [11], Ismail and Stanton use the theory of basic hypergeometric functions and generalize many
identities. One of those important identities is stated as follows.

n∑
k=1

[
n
k

]
q
(−1)k−1q(k

2)+kl 1 − qk

(1 − xqk)l+1

=
(q; q)n

(xq; q)n

∑
j1+ j2+···+ jn=l

n∏
i=1

qi ji

(1 − xqi) ji
. (21)

This identity reduces to the well-known Dilcher identity [9] when x = 1. (2.14) and (2.15) are equivalent because
there hold

fn =

n∑
k=1

(−1)kq(k
2)
[
n − 1
k − 1

]
q
1k ⇔ 1n =

n∑
k=1

(−1)kq(k
2)−k(n−1)

[
n − 1
k − 1

]
q

fk

and

∑
1≤i1≤···≤il≤n

l∏
j=1

qi j

1 − xqi j
=

∑
j1+ j2+···+ jn=l

n∏
i=1

qi ji

(1 − xqi) ji
.
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