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Abstract. The main result of this paper is a fixed point theorem for Matkowski type mapping with
contractive iterate at a point in a class of G-metric spaces. Our result unifies, generalizes and complements
some well known results in metric and G-metric spaces.

1. Introduction and preliminaries

In 1975 Matkowski introduced the following class of mappings:

Definition 1.1. [9] Let T be a mapping on a metric space (X, d). Then T is called a weak contraction if there exists a
function γ from [0,∞) to itself satisfying the following:

i) γ is nondecreasing,

ii) lim
n
γn(t) = 0 for all t > 0,

iii) d(Tx,Ty) ≤ γ(d(x, y)) for all x, y ∈ X.

In the same paper he proved the existence and uniqueness of a fixed point for such type of mappings. This
result is significant because the concept of weak contraction of Matkowski type is independent of Meir-
Keeler contraction [12], and it was generalized in different directions [10], [11], [17]. Matkowski generalized
his own result proving a theorem of Segal- Guseman type [6].

Theorem 1.2. [10] Let (X, d) be a complete metric space, T : X→ X, α : [0,∞)5
→ [0,∞) and γ(t) = α(t, t, t, 2t, 2t)

for t ≥ 0. Suppose that

1. α is nondecreasing with respect to each variable,
2. limt→∞(t − γ(t)) = ∞,
3. limt→∞ γn(t) = 0, t ≥ 0,
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4. for every x ∈ X, there exists a positive integer n = n(x) such that for all y ∈ X

d(Tnx,Tny) ≤ α(d(x, y), d(x,Tn(x)), d(x,Tn(y)), d(Tn(x), y), d(Tn(y), y))

then T has a unique fixed point a ∈ X and for each x ∈ X, limk→∞ Tk(x) = a.

The aim of this paper is to show that this result is valid in a more general class of spaces.
On 1963. S. Gähler introduced 2-metric spaces, but other authors proved that there is no relation between

two distance functions and there is no easy relationship between results obtained in the two settings. B. C.
Dhage introduced a new concept of the measure of nearness between three or more objects. But topological
structure of so called D-metric spaces was incorrect. Finally, Z. Mustafa and B. Sims [13] introduced correct
definition of a generalized metric space as follows.

Definition 1.3. [13] Let X be a nonempty set, and let G : X × X × X → R+ be a function satisfying the following
properties

(G1) G(x, y, z) = 0 if x = y = z;

(G2) 0 < G(x, x, y), for all x, y ∈ X, with x , y;

(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X, with z , y;

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ..., (symmetry in all three variables);

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X.

Then function G is called a generalized metric, abbreviated G-metric on X, and the pair (X,G) is called a G-metric
space.

Clearly these properties are satisfied when G(x, y, z) is the perimeter of the triangle in with vertices x, y
and z. R2, moreover taking a in the interior of the triangle shows that (G5) is the best possible.

Example 1.1[13] Let (X, d) be an ordinary metric space, then (X, d) defines G-metrics on X by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z),

Gm(x, y, z) = max
{
d(x, y), d(y, z), d(x, z)

}
.

Example 1.2[13] Let X = {a, b}. Define G on X × X × X by

G(a, a, a) = G(b, b, b) = 0, G(a, a, b) = 1, G(a, b, b) = 2,

and extend G to X × X × X by using the symmetry in the variables. Then it is clear the (X,G) is a G-metric
space.

The following useful properties of a G-metric are readily derived from the axioms.

Proposition 1.4. [13] Let (X,G) be a G-metric space, then for any x, y, z and a from X it follows that:

1. if G(x, y, z) = 0, then x = y = z,
2. G(x, y, z) ≤ G(x, x, y) + G(x, x, z),
3. G(x, x, y) ≤ 2G(y, y, x),
4. G(x, y, z) ≤ G(x, a, z) + G(a, y, z),
5. G(x, y, z) ≤ 2

3 (G(x, y, a) + G(x, a, z) + G(a, y, z)),
6. G(x, y, z) ≤ G(x, a, a) + G(y, a, a) + G(z, a, a).
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Definition 1.5. [13] Let (X,G) be a G-metric space, and let {xn} be a sequence of points of X. A point x ∈ X is said
to be the limit of the sequence {xn} if lim

n,m→∞
G(x, xn, xm) = 0, and one says that the sequence {xn} is G-convergent to x.

Proposition 1.6. [13] Let (X,G) be a G-metric space, then for a sequence {xn} ⊆ X and a point x ∈ X the following
are equivalent:

1. {xn} is G-convergent to x,
2. G(xn, xn, x)→ 0 as n→∞,
3. G(xn, x, x)→ 0 as n→∞.

Definition 1.7. [13] Let (X,G) be a G-metric space, a sequence {xn} is called G-Cauchy if for every ε > 0, there is
N ∈N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N, that is, if G(xn, xm, xl)→ 0 as n,m, l→∞.

Proposition 1.8. [13] In a G-metric space (X,G), the following are equivalent:

1. the sequence {xn} is G-Cauchy,
2. for every ε > 0, there exists an n0 ∈N such that G(xn, xm, xm) < ε, for all n,m ≥ n0.

A G-metric space (X,G) is G-complete (or G is a complete G-metric), if every G-Cauchy sequence in
(X,G) is G-convergent in (X,G).

Proposition 1.9. [13] Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly continuous in all three of
its variables.

Recently, Samet at all [15] and Jleli,Samet [7] observed that some fixed point theorems in context of G-
metric space can be proved (by simple transformation) using related existing results in the setting of metric
space. Namely, if the contraction condition of the fixed point theorem on G-metric space can be reduced
to two variables, then one can construct an equivalent fixed point theorem in setting of usual metric space.
This idea is not completely new, but it was not successfully used before (see [14]). Very recently, Karapinar
and Agarwal suggest new contraction conditions in G-metric space in a way that the techniques in [15], [7]
are not applicable. In this approach ([8]), contraction conditions can not be expressed in two variables. So,
in some cases, as it is noticed even in Jleli-Samet paper [7], when the contraction condition is of nonlinear
type, this strategy cannot be always successfully used. This is exactly the case in our paper.

For more fixed point results for mappings defined in G-metric spaces, we refer the reader to [1], [2], [3],
[4] [5], [14] .

Definition 1.10. Let X be a nonempty set and a function δ : X × X→ [0,∞) satisfies the following properties:

1. δ(x, y) = 0 if and only if x = y,

2. δ(x, y) ≤ δ(x, z) + δ(z, y) for any points x, y, z ∈ X,

Then the pair (X, δ) is called a quasi -metric space. The sequence {xn} ⊂ X converges to x ∈ X, iff limn δ(xn, x) =
limn δ(x, xn) = 0.

2. Main result

Let α : [0,∞)5
→ [0,∞) be a nondecreasing function with respect to each variable and let γ(t) =

α(t, t, 2t, 3t, 3t) for t ≥ 0. Following Matkowski [10], let Γ be the set of all functions γ : [0,∞) → [0,∞) such
that

1◦ limγn(t) = 0, t > 0;

2◦ lim
t→∞

(
t − γ(t)

)
= ∞.
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Simple examples of the function γ ∈ Γ are: γ(t) = q · t, q ∈ (0, 1), γ(t) = t
1+t , γ(t) = ln(1 + t), t ∈ [0,∞).

Remark 2.1. It is obvious that γ is nondecreasing function and that consequences of the condition limt→∞ γn(t) =
0, t ≥ 0, are:

(a) γ(t) < t, t > 0;

(b) γ(0) = 0.

Definition 2.2. If (X,G) be a G-metric space, T : X→ X, and for every x ∈ X, there exists a positive integer n = n(x)
such that for all y ∈ X

G(Tn(x)x,Tn(x)x,Tn(x)y) ≤ α(G(x, x, y),G(x, x,Tn(x)y),G(x,Tn(x)x,Tn(x)x),

G(y,Tn(x)x,Tn(x)x),G(y, y,Tn(x)y), (2.1)

then we say that T is a weak contraction in X.

Lemma 2.3. If (X,G) is a G-metric space and T : X→ X is a weak contraction in X, then for every x ∈ X, the orbit
{Tkx}k is bounded.

Proof. For any x ∈ X and any integer s, 0 ≤ s < n(x) we define the sequence

uk(x, s) = uk = G
(
x, x,Txkn(x)+s

)
, k = 0, 1, 2, ...

and the number
h(x, s) = h = max

{
G(x, x,Tn(x)x), G(x,Tn(x)x,Tn(x)x),G(x, x,Tsx)

}
.

The property 2◦ of the function γ, implies that there exists a c, c > h, such that t−γ(t) > h, t > c. It is easy
to see that u0 < c.

Next, we show that u j < c for all j = 0, 1, 2, . . . . The assumption that there exists a positive integer j such
that u j ≥ c, but ui < c for i < j will lead to contradiction.

Under the last assumption,

G
(
Tn(x)x,Tn(x)x,T( j−1)n(x)+sx

)
≤ h + u j−1 < 2u j,

G
(
T( j−1)n(x)+sx, T( j−1)n(x)+sx, T jn(x)+sx

)
≤ 2u j−1 + u j < 3u j.

Now, since α is nondecreasing with respect to each variable and the mapping T is a weak contraction,
we get

u j = G
(
x, x,T jn(x)+sx

)
≤ G

(
x, x,Tn(x)x

)
+ G

(
Tn(x)x, Tn(x)x, T jn(x)+sx

)
≤ h + α(u j,u j,u j, 2u j, 3u j) ≤ h + γ(u j).

The inequality u j − γ(u j) ≤ h contradicts to the choice of c. Hence, u j < c for all j = 0, 1, . . . . It completes the
proof that for any fixed x ∈ X, supk G(x, x,Tkx) = M < ∞ , meaning that the orbit {Tkx}k is bounded.

Lemma 2.4. If (X,G) is a G-metric space and T : X → X is a weak contraction in X, then for every x0 ∈ X, the
sequence xk+1 = Tn(xk)xk, k = 0, 1, . . . , is a Cauchy sequence.
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Proof. It is easy to see that
xk+ j = Tn(xk+ j−1)+...+n(xk)xk,

for all k, j ∈N. Using the notation s0 = n(xk+ j−1) + ... + n(xk), we get

G
(
xk, xk, xk+ j

)
= G (xk, xk,Ts0 xk)

= G
(
Tn(xk−1)xk−1,Tn(xk−1)xk−1,Tn(xk−1)Ts0 xk−1

)
.

Putting
ts1 = max

{
G(xk−1, xk−1,Tixk−1) : i ∈ {s0,n(xk−1), s0 + n(xk−1)}

}
,

we obtain
G

(
Tn(xk−1)xk−1,Tn(xk−1)xk−1,Ts0 xk−1

)
≤ 2ts1 + ts1 = 3ts1

and
G

(
Tn(xk−1)+s0 xk−1,Ts0 xk−1,Ts0 xk−1

)
≤ ts1 + 2ts1 = 3ts1 .

The property that the mapping T is a weak contraction with respect to nondecreasing function α implies

G (xk, xk,Ts0 xk) ≤ α(ts1 , ts1 , 2ts1 , 3ts1 , 3ts1 ) = γ(ts1 ).

Repeating this procedure, one concludes that there exists an s j ∈N, j = 1, 2, . . . , k − 1 such that

G
(
xk− j, xk− j,Ts j xk− j

)
≤ γ

(
G(xk− j−1, xk− j−1,Ts j+1 xk− j−1)

)
.

The mapping γ is nondecreasing which yields

G
(
xk, xk, xk+ j

)
≤ γk (G (x0, x0,Tsk x0)) ≤ γk(M).

Since γ ∈ Γ, we see that limγn(M) = 0. This is precisely the assertion of the lemma, that is, {xk}k is a Cauchy
sequence.

Theorem 2.5. If (X,G) is a complete G-metric space and T : X→ X is a weak contraction in X, then T has a unique
fixed point a ∈ X, for every x ∈ X, limk Tkx = a and Tn(a) is continuous at a.

Proof. By completeness of X, the (Cauchy) sequence {xk}k defined in the above lemma is convergent, i.e.
limk xk = a ∈ X.

The proof falls naturally into six consecutive parts in which we prove that:

1. Tn(a)a = a,

2. a is a unique fixed point of Tn(a),

3. Ta = a,

4. a is a unique fixed point of T,

5. for every x ∈ X, limk Tkx = a,

6. Tn(a) is continuous at a

1. Applying the same reasoning as in the last lemma, we can show that limk G(xk, xk,Tn(a)xk) = 0. It
means that for every ε > 0 there exists a k1(ε) ∈N such that for k ≥ k1(ε),

G(xk, xk,Tn(a)xk) <
1
8

(ε − γ(ε)).



Lj. Gajić, M. Stojaković / Filomat 29:10 (2015), 2301–2309 2306

Since limk G(xk, xk, a) = 0, for every ε > 0 there exists a k2(ε) ∈N such that for k ≥ k2(ε),

G(a, xk, xk) <
1
8

((ε − γ(ε))

Next, we claim that Tn(a)a = a. Indeed, if we suppose the opposite, i.e. if we suppose that there exists an
ε > 0 such that G(Tn(a)a,Tn(a)a, a) = ε, then for k ≥ max{k1(ε), k2(ε)}

ε = G(Tn(a)a,Tn(a)a, a) ≤ G(Tn(a)a,Tn(a)a,Tn(a)xk)
+G(Tn(a)xk,Tn(a)xk, xk) + G(xk, xk, a)

≤ α
(
G(a, a, xk),G(a, a,Tn(a)xk),

G(a,Tn(a)a,Tn(a)a),G(xk,Tn(a)a,Tn(a)a),

G(xk, xk,Tn(a)xk)
)

+
1
2

(ε − γ(ε)).

The next two relations

G(a, a,Tn(a)xk) ≤ G(a, a, xk) + G(xk, xk,Tn(a)xk) <
1
4

(ε − γ(ε)),

G(xk,Tn(a)a,Tn(a)a) ≤ G(xk, a, a) + G(a,Tn(a)a,Tn(a)a) < 2ε,

imply

ε ≤ α(ε, ε, ε, 2ε, ε) +
1
2

(ε − γ(ε)) <
1
2

(ε + γ(ε)) < ε,

which is a contradiction, meaning that the assumption that Tn(a)a , a is not correct.
2. The proof that a is the only fixed point of the mapping Tn(a) is once again by contradiction. If b ∈ X

would be another fixed point of Tn(a), then

G(a, a, b) = G(Tn(a)a,Tn(a)a,Tn(a)b)
≤ α(G(a, a, b),G(a, a, b), 0,G(b, a, a), 0)
≤ γ(G(a, a, b)) < G(a, a, b),

which establishes our claim that a = b.
3. The equality

T a = T Tn(a)a = Tn(a)T a

implies that T a = a.
4. From 2. and 3. we conclude that a is the only point from X such that T a = a.
5. Next we prove that limk Tkx = a, for each x ∈ X. For each x ∈ X and each s ∈ N, 0 ≤ s < n(a), define

the sequence
ak = G(a, a,Tkn(a)+sx), k = 0, 1, 2, · · · .

If for some k ∈N, ak > ak−1, then

ak = G(Tn(a)a,Tn(a)a,Tn(a)T(k−1)n(a)+sx)

≤ α
(
G

(
a, a,T(k−1)n(a)+sx

)
,G

(
a, a,Tkn(a)+sx

)
,

G
(
a,Tn(a)a,Tn(a)a

)
,G

(
Tkn(a)+sx,Tn(a)a,Tn(a)a

)
,

G
(
T(k−1)n(a)+sx,T(k−1)n(a)+sx,Tkn(a)+sx

) )
≤ α(ak−1, ak, 0, ak−1, ak + 2ak−1) ≤ γ(ak) < ak.

By the last contradiction, we deduce that ak ≤ ak−1 for all k ∈N. Hence,

ak ≤ α(ak−1, ak−1, ak−1, ak−1, 3ak−1) ≤ γ(ak−1) ≤ · · · ≤ γk(a0).
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Letting k→∞ in the last relation, limk ak = limk γk(a0) = 0, and consequently limk Tkx = a.
6. Finally, we finish the proof by showing the continuity of Tn(a) at a.
We consider a sequence {ym}m ⊂ X converging to a. For any m ∈N

G
(
a, a,Tn(a)ym

)
= G(Tn(a)a,Tn(a)a,Tn(a)ym)

≤ α
(
G

(
a, a, ym

)
,G

(
a, a,Tn(a)ym

)
,

G
(
a,Tn(a)a,Tn(a)a

)
,G

(
ym,Tn(a)a,Tn(a)a

)
,

G
(
ym, ym,Tn(a)ym

) )
= α

(
G

(
a, a, ym

)
,G

(
a, a,Tn(a)ym

)
,

G (a, a, a) ,G
(
ym, a, a

)
,G

(
ym, ym,Tn(a)ym

) )
≤ α

(
G

(
a, a, ym

)
,G

(
a, a,Tn(a)ym

)
, 0,

G
(
ym, a, a

)
,G

(
ym, ym, a

)
+ G

(
a, a,Tn(a)ym

) )
.

If limm G
(
a, a,Tn(a)ym

)
, 0, then there exists ε > 0 such that for some m1 ∈ N, G

(
a, a,Tn(a)ym

)
> ε for all

m > m1. On the other hand, since limk ym = a, for given ε there exist m2 ∈N and m3 ∈N such that

m > m2 ⇒ G
(
a, a, ym

)
< ε < G

(
a, a,Tn(a)ym

)
,

and
m > m3 ⇒ G

(
ym, ym, a

)
< ε < G

(
a, a,Tn(a)ym

)
.

Putting m0 = max{m1,m2,m3}, for all m > m0, we get

G
(
a, a,Tn(a)ym

)
≤ α

(
G

(
a, a,Tn(a)ym

)
,G

(
a, a,Tn(a)ym

)
, 0,

G
(
a, a,Tn(a)ym

)
, 2G

(
a, a,Tn(a)ym

) )
≤ γ

(
G

(
a, a,Tn(a)ym

) )
< G

(
a, a,Tn(a)ym

)
.

Obviously, the assumption limm G
(
a, a,Tn(a)ym

)
, 0 induces the contradiction in the last relation. Hence,

Tn(a) is continuous at a.

Remark 2.6. In a symmetric G-metric space, one can put γ(t) = α(t, t, t, 2t, 2t) (as it is done in Matkovski paper
[10]), but Jleli-Samet technique can not be applied.

In [7] it was shown that if (X,G) is a G-metric space, putting δ(x, y) = G(x, y, y), (X, δ) is a quasi metric
space (δ is not symmetric). Simple replacement G with δ in (2.1), defines the weak contraction T in (X, δ)

δ(Tn(x)x,Tn(x)y) ≤ α(δ(x, y), δ(x,Tn(x)y), δ(Tn(x)x, x),

δ(Tn(x)x, y), δ(y,Tn(x)y)).

The following result is an immediate consequence of above definitions and relations.

Theorem 2.7. If (X, δ) is a complete quasi-metric space such that δ(x, y) ≤ 2δ(y, x) for all x, y ∈ X and T : X→ X is
a weak contraction in X, then T has a unique fixed point a ∈ X, for every x ∈ X, limk Tkx = a and Tn(a) is continuous
at a.

Proof. It is obvious that (X, δ) has the same topological structure as any G-metric space (X,G) where G
satisfies equality δ(x, y) = G(x, y, y). Now, repeating the proof of Theorem 2.5, we conclude that the
assertion of theorem is true.
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The next few corollaries are also a consequence of Theorem 2.5.

Corollary 2.8. [5] Let (X,G) be a complete G-metric space, T : X → X, γ ∈ Γ and for each x ∈ X there exists a
positive integer n = n(x) such that

G
(
Tn(x)x,Tn(x)x,Tn(x)y

)
≤ γ

(
G(x, x, y)

)
, (2.2)

for all y ∈ X. Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, lim
k

Tkx = a and Tn(a) is continuous
at a.

Corollary 2.9. [3] Let (X,G) be a complete G-metric space, T : X → X and for each x ∈ X there exists a positive
integer n = n(x) such that

G
(
Tn(x)x,Tn(x)x,Tn(x)y

)
≤ q G(x, x, y)

for all y ∈ X and some q ∈ (0, 1). Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, lim
k

Tkx = a and

Tn(a) is continuous at a.

Proof. Function γ(t) = q t, t ∈ [0,∞), belongs to Γ, so corollary is a consequence of Theorem 2.5.

Remark 2.10. Taking γ(t) = q · t, 0 < q < 1, we obtain the fixed point result from [2] or [3], so Theorem 2.5. is also
a generalization of Guseman fixed point result from [6].

Corollary 2.11. Let (X,G) be a complete G-metric space, T : X → X, and for each x ∈ X there exists a positive
integer n = n(x) such that

G
(
Tn(x)x,Tn(x)x,Tn(x)y

)
≤

G(x, x, y)
1 + G(x, x, y)

,

for all y ∈ X. Then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, lim
k

Tkx = a and Tn(a) is continuous
at a.

Proof. Since the function γ = t
1+t , t ∈ [0,∞), belongs to the family Γ, we can apply Theorem 2.5.

If n(x) = 1 (n(x) = m ∈ N), for each x ∈ X, we are going to prove that condition 3◦ can be omitted so, in
that case we will have an improvement and another proof of Theorem 3.1 (Corollary 3.2) from [16].

Proposition 2.12. Let (X,G) be a complete G-metric space, γ : [0,∞) → [0,∞) be a nondecreasing function with
lim
k→∞

γk(t) = 0 for t > 0. If T : X→ X satisfies

G
(
Tx,Tx,Ty

)
≤ γ(G(x, x, y)), (2.3)

for all x, y ∈ X, then T has a unique fixed point a ∈ X. Moreover, for each x ∈ X, lim
k

Tkx = a and Tn(a) is continuous
at a.

Proof. We prove, by induction, that for any x0 = x, x ∈ X, the orbit {Tkx0}k is bounded. By the properties of
the function γ, lim

k
γk(G(x0, x0, x1)) = 0 and γ(t) < t, t > 0, we get that there exists k0 ∈ N such that for all

k ≥ k0
γk(G(x0, x0, x1)) < 1 − γ(1).

Hence

G (Txk,Txk,Txk+1) < 1 − γ(1), k ≥ k0. (2.4)

For j > k0, j ∈N, we claim that

G
(
xk0 , xk0 , x j

)
≤ 1. (2.5)
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Indeed, for j = k0 + 1, the last relation is true by (2.4). Assuming inequality (2.5) holds for j = i, i > k0, we
will prove it holds for j = i + 1. Really, letting j = i + 1, we get

G
(
xk0 , xk0 , xi+1

)
≤ G

(
xk0 , xk0 , xk0+1

)
+ G

(
xk0+1, xk0+1, xi+1

)
≤

≤ G
(
xk0 , xk0 , xk0+1

)
+ γ

(
G

(
xk0 , xk0 , xi

))
≤

≤ 1 − γ(1) + γ(1) = 1.

Finally, for any k ∈N
G

(
x0, x0,Tkx0

)
≤ G

(
x0, x0, xk0

)
+ G

(
xk0 , xk0 , xk

)
≤

G
(
x0, x0, xk0

)
+ max{1,G

(
xk0 , xk0 , x1

)
, · · · ,G

(
xk0 , xk0 , xk0−1

)
= M < ∞.

Now, the rest of the proof runs as in Theorem 2.1.
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[4] LJ. Gajić, M. Stojaković, On Ćirić generalization of mappings with a contractive iterate at a point in G-metric space, Applied
Mathematics and Computation, 2019 (2012) 435-441.
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