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Exactness, Invertibility and the Love Knot

Robin Hartea

aTrinity College, Dublin, Ireland

Abstract. The “Love Knot” is a little brooch made out of three interlocking circular arcs; an image is
incorporated in the familiar Venn diagram of three circular discs in the plane. The Love Knot offers a
thread upon which to hang a little minuet between invertibility of the factors of a product, and concepts of
“exactness”

1. Introduction

The traditional Venn diagram for three circular discs in the plane incorporates an image [10] of the
“Love Knot” brooch; when the three sets satisfy a certain condition, their Venn diagram reduces to the Love
Knot. Generally three circles divide the rest of the plane into eight connected components; one of them is
unbounded and is the complement of the union of the three discs, while another of them is the intersection.
It is an interesting exercise in elementary set theory to describe the remaining six. If however the three
sets satisfy the curious condition, that each is a subset of the union of the other two, then three of these six
components become empty: if

1.1 A ⊆ B ∪ C , B ⊆ C ∪ A , C ⊆ A ∪ B ,

we shall say that the sets A,B,C conform to the love knot. In the same situation we shall also say that the
propositions P,Q,R, where

1.2 P(x)⇐⇒ x < A , Q(x)⇐⇒ x < B , R(x)⇐⇒ x < C ,

form a democracy:

1.3 Q(x)&R(x) =⇒ P(x) ; R(x)&P(x) =⇒ Q(x) ; P(x)&Q(x) =⇒ R(x) ;

each of them is a consequence of the conjunction of the other two. Equivalently, if E,F,G are three pairwise
disjoint sets, a “democracy” can by realised as

1.4 P(x)⇐⇒ x ∈ F ∪ G ; Q(x)⇐⇒ x ∈ G ∪ E ; R(x)⇐⇒ x ∈ E ∪ F .

In terms of sets, with

1.5 A = {x : ∼ P(x)} ; B = {x : ∼ Q(x)} ; C = {x : ∼ R(x)} ,

2010 Mathematics Subject Classification. 47A53;15A09
Keywords. Love Knot, invertibility, exactness, Kato invertibility, Müller regularity, spectral permanence
Received: 09 January 2015; Accepted: 09 January 2015
Communicated by Dragana Cvetković-Ilić
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each is a subset of the union of the other two. Sufficient for the democratic condition (1.3) is of course
equivalence

1.6 P(x)⇐⇒ Q(x)&R(x) ;

for sets this means that one of the inclusions (1.1) is equality.
Democracy and the “Love Knot” are prevalent in elementary abstract algebra: two sided invertibility of

products and their factors in semigroups, different kinds of “exactness” for pairs of ring elements, and the
spectral theory of restrictions and quotients of a linear operator, all conform to the love knot. More exotic
examples include the “Kato spectrum” of a Banach space operator, “Müller regularity”, different kinds
of “spectral permanence” for ring homomorphisms, and even politics! It is not usually easy to illustrate
abstract mathematical ideas from the “real world”; but this is just (1.4): there are many countries whose
government is shared between three political parties.

2. Invertibility

The love knot occurs frequently in elementary algebra: if A is a semigroup-with-identity, or more
generally an abstract category then, writing

2.1 A−1 = A−1
le f t ∩ A−1

ri1ht ,

where

2.2 A−1
le f t = {x ∈ A : 1 ∈ Ax} , A−1

ri1ht = {x ∈ A : 1 ∈ xA} ,

for the invertible group in A and with

2.3 J(x)⇐⇒ x ∈ A−1 ,

then for arbitrary (a, b) ∈ A2, the propositions

2.4 J(a) ; J(b) ; J(ba)

conform to the democratic pattern (1.3). The argument, considering both left and right inverses, is extremely
simple:

2.5 {a, b} ⊆ A−1
le f t =⇒ ba ∈ A−1

le f t =⇒ a ∈ A−1
le f t ,

while

2.6
(
ba ∈ A−1

le f t & a ∈ A−1
ri1ht

)
=⇒ b ∈ A−1

le f t .

(2.4) does not however hold separately for left or for right inverses; the love knot conclusion (2.4) is liable
to fail if two-sided invertibility is replaced, in (2.3), by either left invertibility, right invertibility or relative
regularity:

2.7 A∩ = {x ∈ A : x ∈ xAx} .

Failure for left invertibility, and also for right invertibility, is clear if, for example ([3] (4.2.8)),

2.8 ba = 1 , ab ;

for relative regularity Caradus has ([3] Example 4.5, Example 4.6) examples which show

2.9 a ∈ A∩ 6=⇒ a2
∈ A∩ 6=⇒ a ∈ A∩ .
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3. Exactness

While perhaps not so familiar as two-sided invertibility, “exactness” is also a very simple concept. If A
is in particular a ring, or more generally an additive category, we shall [3],[5],[9] describe the pair (b, a) ∈ A2

as splitting exact if, whether or not the chain condition

3.1 ba = 0

is satisfied,

3.2 1 ∈ Ab + aA ,

weakly exact if, for arbitrary (u, v) ∈ A2, there is implication

3.3 va = 0 = bu =⇒ vu = 0 ,

and regular if

3.4 {a, b} ⊆ A∩ .

When A is an additive category then it is understood that (b, a) is compatible in the sense that the product
is defined:

3.5 ∃ ba ∈ A ,

and the implication (3.3) is subject to the existence of products vu,va,bu. Now we claim ([3] Theorem 1.6;
[5],[6],[9],[12]) that, for chains (b, a) ∈ A2, the conditions

3.6 splitting exact, weakly exact, regular

satisfy the democratic condition (1.3), and indeed (1.6); the argument is again straightforward: for example
if there is weak exactness (3.3) then

(a = aa∧a & b = bb∧b) =⇒ (1 − aa∧)(1 − b∧b) = 0 .

The chain condition cannot be omitted here: for example

b ∈ A−1
le f t ⇐⇒ ANDa∈A (b, a) splitting exact .

While relative regularity does not in general conform to the love knot, for splitting exact pairs we get
the “regular” analogue of (2.4), and indeed more; if (b, a) ∈ A2 satisfies the splitting exact condition (3.2),
then [5],[9],[12] we have (1.6) equivalence

3.7 {a, b} ⊆ A∩ ⇐⇒ ba ∈ A∩ :

if ba = bacba and b′b + aa′ = 1 then

(1 − aa′)a(1 − cba) = 0 = (1 − bac)b(1 − b′b) .

Conversely if a = aa∧a and b = bb∧b then exactness gives

baa∧b∧ba = b(aa∧ + b∧b − 1)a = ba .

The same is true [9] for left invertibility, right invertibility, “monomorphism” and “epimorphism”; here
b ∈ A is a monomorphism if (b, 0) is weakly exact, while a ∈ A is an epimorphism if (0, a) is weakly exact.
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For left invertibility, right invertibility, monomorphism and epimorphism (but (2.9) not regularity), we can
replace splitting exactness (3.2) by commutivity

3.8 ba = ab .

In the categories A = L of linear mappings between vector spaces, or A = BL of bounded operators
between Banach spaces, we say that (b, a) : Z← Y← X is linearly exact if there is inclusion

3.9 b−1(0) ⊆ a(X) ;

for bounded linear operators there is also normed exactness, which means for (b, a) that there are k > 0 and
h > 0 for which, for arbitrary compatible u, v,

3.10 ‖vu‖ ≤ k‖v‖ ‖bu‖ + h‖va‖ ‖u‖ .

Evidently each of linear and normed exactness are intermediate between splitting and weak exactness.

4. Skew exactness

One sided invertibility can be expressed in terms of exactness: necessary and sufficient for b ∈ A−1
le f t is

that

4.1 (b, 0) is splitting exact .

More generally it is necessary and sufficient for the left invertibility of b ∈ A that there is a ∈ A for which
(b, a) is splitting exact and also left skew exact, in the sense ([7];[2] §10.9) that

4.2 a ∈ Aba :

indeed ([2] Theorem 10.9.4) if b′b + aa′ = 1 and

4.3 a = cba

then

4.4 (1 − cb)(1 − b′b) = 0 .

Similarly right invertibility for a ∈ A is equivalent to splitting exactness together with right skew exactness

4.5 b ∈ baA ;

if b′b + aa′ = 1 and b = bad then

4.6 (1 − aa′)(1 − ad) = 0 .

In the category of linear mappings between vector spaces, or bounded operators between Banach spaces,
with linear exactness (3.9), left skew exactness takes the form

4.7 b−1(0) ∩ a(X) = {0} ,

equivalently ([2] Theorem 10.9.1)

4.8 (ba)−1(0) ⊆ a−1(0) .

Right skew exactness takes the form

4.9 b−1(0) + a(X) = Y ;

equivalently

4.10 b(Y) ⊆ (ba)(X) .

The normed linear analogue of left skew exactness takes the form

4.11 ‖aw‖ ≤ k‖baw‖ .
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5. Invariant subspaces

“Invariant subspaces” for linear operators are also simple and fundamental. If A = L(X) is the semigroup
of homomorphisms a : X → X on an abelian group X then an invariant subgroup for a ∈ A is Y ⊆ X for
which there is inclusion

5.1 a(Y) ⊆ Y ;

then we may write

5.2 aY : Y→ Y

for the restriction map, and

5.3 a/Y : X/Y→ X/Y

for the induced quotient map x + Y 7→ ax + Y. Now the conditions, on a ∈ A,

5.4 a ∈ L(X)−1 ; aY ∈ L(Y)−1 ; a/Y ∈ L(X/Y)−1

conform [1];[2] §3.11 to the democratic condition (1.3). Again the argument is very simple, involving the
one-one and onto conditions; again the conclusion does not hold separately for one-one and for onto.
Similar argument [13] shows that if a2 = 0 then the exactness of

(a, a) ; (aY, aY) ; (a/Y, a/Y)

conforms to the love knot. While we have been unable to find a common ancestor for the product and
the invariant subspace love knots, they do seem to have a child together. When in particular the invariant
subgroup Y ⊆ X is complemented then a ∈ L(X) can be represented as a triangular matrix: generally if A
and B are rings (more generally, additive categories) and M and N bimodules over A and B, and if

5.5 T =

(
a m
n b

)
∈ G =

(
A M
N B

)
,

then, provided
n = 0 ∈ N ,

the conditions

5.6 a ∈ A−1 ; b ∈ B−1 ; T ∈ G−1

conform [4],[11] to the democratic condition (1.3).
The triangular matrix love knot (5.6) is also essentially a consequence of the product love knot (2.4):

5.7
(
a m
0 b

)
=

(
1 0
0 b

) (
1 m
0 1

) (
a 0
0 1

)
.

6. Kato non singularity

The work of Tosio Kato on Banach space operators is not usually encountered in an elementary context,
although some of the discussion is simple enough. We shall say [5] that a ring element a ∈ A is Kato
invertible if it is relatively regular and satisfies the Saphar “hyper-exactness” condition that, for arbitrary
n ∈N,

6.1 (a, an) , equivalently (an, a) , is splitting exact ;
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since, for splitting exact pairs (b, a) ∈ A2, relative regularity conforms to the love knot, and more particularly
(1.6), it follows that [5],[9],[12]

Kato invertibility is a Müller regularity .

If in particular A = L(X) is the linear operators on a vector space, or A = B(X) the bounded operators
on a Banach space, we can replace splitting exactness in (6.1) by linear exactness (3.8). More generally we
shall [6] declare a ∈ A = B(X) to be Kato non singular if we replace relative regularity by closed range.
The closed range condition, in conjunction with hyper-exactness, conforms to the love knot, and indeed
(1.6): generally, for bounded linear operators a : X → Y and b : Y → Z, there is [6] by the Open Mapping
Theorem, implication

6.2 b(Y), b−1(0) + a(X) closed =⇒ ba(X) closed =⇒ b−1(0) + a(X) closed .

The implication (3.2) =⇒ (3.7) says [9],[10] that

6.3 A∩ ⊆ A is a non commutative Müller regularity ;

the left and the right invertibles and the mono- and epi-morphisms have the same status. In B(X), by (6.2),
the same is true of the closed range operators; it follows [6],[9],[12] that

Kato non singularity is a Müller regularity .

Here we are describing as a “non commutative Müller regularity” a subclass H ⊆ A with the property that,
whenever (b, a) ∈ A2 is splitting exact, there is two-way implication

6.4 {a, b} ⊆ H⇐⇒ ba ∈ H .

This is evidently a more primitive version of the concept of regularity upon which Vladimir Müller bases
his abstract spectral theory [12].

7. Spectral permanence

“Spectral permanence” is also not usually discussed in an elementary context; again the basic idea is
extremely simple. If T : A → B is a semigroup homomorphism, or more generally a functor between
categories, then there is inclusion

7.1 T(A−1) ⊆ B−1 ,

equivalently

7.2 A−1
⊆ T−1B−1 .

If there is equality in (7.2), so that

7.3 T−1B−1
⊆ A−1 ,

we shall [8],[14] say that T : A → B has spectral permanence. If in (7.3) we can replace invertibility by
relative regularity we shall [8],[14] say that T has generalized permanence. Generally, in a semigroup A we
shall say that a ∈ A is simply polar, equivalently “group invertible”, written

7.4 a ∈ SP(A) ,

provided it has a commuting generalized inverse, c ∈ A for which

7.5 a = aca , ca = ac .
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Generally there is inclusion

7.6 T SP(A) ⊆ SP(B) ;

we shall say that T has simple permanence when there is equality

7.7 T−1SP(B) ⊆ SP(A) .

For Banach algebra homomorphisms T : A→ B, although not homomorphisms between general rings, the
conditions

spectral permanence, simple permanence, one-one

conform [8] to the love knot. There are possibly more love knots here: if S : A → B and T : B → D
are ring homomorphisms with spectral permanence then the product ST : A → D will also have spectral
permanence, which in turn will confer spectral permanence on T : A → B. Conversely if the pair (S,T) is
exact then maybe the spectral permanence of ST will also imply the spectral permanence of S.
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