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Abstract. In this paper, we establish an improved Chen inequality between the pseudo-Ricci curvature
and the square of pseudo mean curvature with respect to the Tanaka-Webster connection in Sasakian space
forms, and also we study an improved Chen inequality for anti-invariant submanifolds. The equality case
is considered.

1. Introduction

One of the basic interests in the submanifold theory is to establish simple relationship between intrinsic
invariants and extrinsic invariants of a submanifold. Gauss-Bonnet theorem, isoperimetric inequality and
Chern-Lashof theorem are those such kind of study.

B.-Y. Chen ([2]) established a nice basic inequality related the Ricci curvature and the squared mean cur-
vature ||H||2 of submanifolds in a real space form. The inequality drew attention of several authors and they
established similar inequalities for different kind of submanifolds in ambient manifolds possesing different
kind of structures. The submanifolds included mainly invariant, anti-invariant and slant submanifolds.
In 2005, T. Oprea [6] proved Chen inequality by using optimization techniques applied in the setup of
Riemannian geometry. He also improved Chen inequality in terms of the Ricci curvature and the squared
mean curvature for Lagranian submanifolds of complex space formes. On the other hand, for the above
mentioned content, S. Deng [4] proved the improved Chen inequality for Lagrangian submanifolds of
complex space forms just by using some crucial algebraic inequalities and also discussed the equality case,
which is not discussed in Oprea’s paper. Furthermore, M. M. Tripathi [9] proved Chen inequality and
improved Chen inequality for curvature like tensors. He also applied these inequalities to Lagrangian and
Kaehlerian slant submanifolds of complex space forms, and C-totally real submanifolds of Sasakian space
forms.
Recently, D. H. Jin and the second author [5] investigated a basic inequality in Sasakian space forms with
the Tanaka-Webster connection.

In this paper, we define a pesudo-Ricci curvature for the Tanaka-Webster connection in a Sasakian space
form. After then, we study the relationship of inequalities for submanifolds of a Sasakian space form in
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terms of constant pseudo-sectional curvature and a pseudo-Ricci curvature. We also investigate the equality
case of the inequality.

2. Half Lightlike Submanifolds

Let M̃ be an odd-dimensional Riemannian manifold with a Riemannian metric 1̃ satisfying

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ, η(X) = 1̃(X, ξ)

1̃(ϕX, ϕY) = 1̃(X,Y) − η(X)η(Y). (2.1)

Then (ϕ, ξ, η, 1̃) is called the almost contact metric structure on M̃. Let Φ denote the fundamental 2-form in
M̃ given by Φ(X,Y) = 1̃(X, ϕY) for all X, Y ∈ TM̃. If Φ = dη, then M̃ is said to be a contact metric manifold.
Moreover, if ξ is a Killing vector field with respect to 1̃, the contact metric structure is called a K -contact
structure. Recall that a contact metric manifold isK -contact if and only if

∇̃Xξ = −ϕX (2.2)

for any X ∈ TM̃, where ∇̃ is the Levi-Civita connection of M̃. The structure of M̃ is said to be normal if
[ϕ,ϕ] + 2dη ⊗ ξ = 0, where [ϕ,ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is a normal contact
metric manifold. In fact, an almost contact metric structure is Sasakian if and only if

(∇̃Xϕ)Y = 1̄(X,Y)ξ − η(Y)X (2.3)

for all vector fields X and Y. Every Sasakian manifold is aK -contact manifold.
Given a Sasakian manifold M̃, a plane section π in TpM̃ is called a ϕ-section if it is spanned by X and

ϕX, where X is a unit tangent vector field orthogonal to ξ. The sectional curvature K̃(π) of a ϕ-section π is
called ϕ-sectional curvature. If a Sasakian manifold M̃ has constant ϕ-sectional curvature c, M̃ is called a
Sasakian space-form, denoted by M̃(c) (For more details, see [1]).

Now let M be a submanifold immersed in (M̃, ϕ, ξ, η, 1̃). We denote by 1 the induced metric on M.
Let TM be the Lie algebra of vector fields in M and T⊥M. We denote by h the second fundamental form
of M and by Av the Weingarten endomorphism associated with any v ∈ T⊥M. We put hr

i j = 1̃(h(ei, e j), er)
for any orthonormal vector ei, e j ∈ TM and er ∈ T⊥M. The mean curvature vector field H is defined by
H = 1

dimM trace(h). M is said to be totally geodesic if the second fundamental form vanishes identically.
From now on, we assume that the dimension of M is n + 1 and that of the ambient manifold M̃ is

2n + 1(n ≥ 2). We also assume that the structure vector field ξ is tangent to M. Hence, if we denote
by D the orthogonal distribution to ξ in TM, we have the orthogonal direct decomposition of TM by
TM = D ⊕ span{ξ}. For any X ∈ TM, we write ϕX = TX + NX, where TX ( NX, resp.) is the tangential (
normal, resp.) component of ϕX. If M is aK -contact manifold, (2.2) gives

h(X, ξ) = −NX, (2.4)

for any X in TM. The submanifold M is said to be invariant if N is identically zero, that is, ϕX ∈ TM for
any X ∈ TM. On the other hand, M is said to be an anti-invariant submanifold if T is identically zero, that
is, ϕX ∈ T⊥M for any X ∈ TM.

3. The Tanaka-Webster Connection for Sasakian Space Form

The Tanaka-Webster connection [7, 10] is the canonical affine connection defined on a non-degenerate
pseudo-Hermitian CR-manifold. Tanno [8] defined the Tanaka-Webster connection for contact metric man-
ifolds by the canonical connection which coincides with the Tanaka-Webester connection if the associated
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CR-structure is integrable. We define the Tanaka-Webster connection for submanifolds of Sasakian mani-
folds by the naturally extended affine connection of Tanno’s Tanaka-Webster connection. Now we recall
the Tanaka-Webster connection ∇̂ for contact metric manifolds:

∇̂XY = ∇̃XY + η(X)ϕY + (∇̃Xη)(Y)ξ − η(Y)∇̃Xξ,

for all vector fields X, Y ∈ TM̃ [3]. Together with (2.1), ∇̂ is written by

∇̂XY = ∇̃XY + η(X)ϕY + η(Y)ϕX + 1̃(X, ϕ(Y))ξ. (3.1)

Also, by using (2.1)∼(2.3), we can see that

∇̂η = 0, ∇̂ξ = 0, ∇̂ϕ = 0, ∇̂1̃ = 0. (3.2)

We define the Tanaka-Webster curvature tensor of R̃ (in terms of ∇̃) by

R̂(X,Y)Z = ∇̂X∇̂YZ − ∇̂Y∇̂YZ − ∇̂[X,Y]Z,

for all vector fields X, Y, Z in TM̃.
Let M̃(c) be a Sasakian space form of constant sectional curvature c. Then we have the following Gauss’

equation:

R̂(X,Y)Z =
c + 3

4
[{1(Y,Z) − η(Y)η(Z)}X − {1(X,Z) − η(X)η(Z)}Y

+{1(X,Z)η(Y) − 1(Y,Z)η(X)} + 1(ϕY,Z)ϕXξ (3.3)
−1(ϕX,Z)ϕY − 21(ϕX,Y)ϕZ]

for any tangent vector fields X, Y, Z tangent to M̃(c).
Let (M, 1) be a submanifold of M̃(c) with the induced metric 1 and define the connection ∇̊ on M induced

from the Tanaka-Webster connection ∇̂ on M̃ given by

∇̂XY = ∇̊XY + ĥ(X,Y), ∇̂XV = −ÅVX + D̂XV (3.4)

for any X, Y ∈ Γ(TM), where ĥ is called the lightlike second fundamental form of M with respect to the
induced connection ∇̊ and D̂ is the normal connection. Then the lightlike second fundamental form ĥ is
related to ÅV by

1̃(ĥ(X,Y),V) = 1̃(ÅVX,Y).

The pseudo-mean curvature vector field Ĥ is defined by

Ĥ =
1

dimM
trace(ĥ).

M is said to be totally pseudo-geodesic if the second fundamental form ĥ vanishes identically. In the view
of (3.1) and (3.4),

∇̊XY + ĥ(X,Y) = ∇XY + h(X,Y) + η(X)ϕY + η(Y)ϕX − 1̄(Y, ϕX)ξ. (3.5)

From (3.5), we obtain

∇̊XY = ∇XY + η(X)TY + η(Y)TX − 1̄(Y, ϕX)ξ, (3.6)

ĥ(X,Y) = h(X,Y) + η(X)NY + η(Y)NX, (3.7)
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where ϕX = TX + NX.
From (3.2), (3.6) and (3.7), it is easy to verify the following:

∇̊η = 0, ∇̊ξ = 0, ∇̊ϕ = 0, ∇̊1 = 0. (3.8)

From the definition of R̂, together with (3.3), we have

1(R̊(X,Y)Z,W) =
c + 3

4
[{1(Y,Z) − η(Y)η(Z)}1(X,W)

−{1(X,Z) − η(X)η(Z)}1(Y,W)
+{1(X,Z)η(Y) − 1(Y,Z)η(X)}η(W) (3.9)
+1(ϕY,Z)1(ϕX,W) − 1(ϕX,Z)1(ϕY,W)
−21(ϕX,Y)1(ϕZ,W)]

+1̄(̂h(X,W), ĥ(Y,Z)) − 1̄(̂h(X,Z), ĥ(Y,W)),

for any X, Y, Z, W ∈ TM.
Let Mn+1 be an anti-invariant subemanifold of a (2n+1)-dimensioinal manifold M̃(c) whose characteristic

vector field ξ is tangent to M. We choose a local orthonormal frame field in M̃(c):

{e1, · · · , en, en+1 = ξ;φe1, · · · , φen},

where e1, · · · , en, en+1 = ξ are tangent to M. Then for any r we have

ĥr
i j = ĥi

r j, i, j ∈ {1, · · · ,n}, (3.10)

ĥr
in+1 = 0, i ∈ {1, · · · ,n + 1}, (3.11)

where ĥr
i j is the φer component of the vector ĥ(ei, e j).

Let Mn+1 be a Riemannian (n + 1)-manifold and X be a unit vector. We choose an orthonormal frame
{e1, · · · , en+1} in TxM such that e1 = X. We denote the pseudo-Ricci curvature at X by

R̊ic(X) = K̊12 + · · · + K̊1n+1,

where K̊i j denotes the pseudo-sectional curvature of the 2-plane section spanned by ei, e j.
We re-format the following lemmas from [4].

Lemma 3.1. Let (x1, · · · , xn) be a point in Rn. If x1 + · · · + xn = (n + 1)a, we have

x2
1 + · · · + x2

n ≥
(n + 1)2

n
a2.

The equality sign holds if and only if x1 = · · · = xn = n+1
n a.

Proof. Rn. If x1 + · · · + xn = (n + 1)a is a plane tangent to the sphere x2
1 + · · · + x2

n =
(n+1)2

n a2 at the point
n+1

n (a, a, · · · , a). The proof is complete from the face that the distance between any point in the plane
and the origin is bigger than or equal to the radius of the sphere and the minimum occurs at the point
n+1

n (a, a, · · · , a).

Lemma 3.2. Let f1(x1, · · · , xn) be a function in Rn defined by

f1(x1, · · · , xn) = x1

n∑
j=2

x j −

n∑
j=2

x2
j .



C.W. Lee, J. W. Lee, D. W. Yoon / Filomat 29:7 (2015), 1525–1533 1529

If x1 + x2 + · · · + xn = 2(n + 1)a, we have

f1(x1, · · · , xn) ≤
n − 1

4n

 n∑
j=1

x j


2

.

The equality holds if and only if 1
n+1 x1 = x2 = · · · = xn = n+1

n a.

Proof. From x1 + x2 + · · · + xn = 2(n + 1)a, we have

[x1 − (n + 1)a] + x2 + · · · + xn = (n + 1)a.

From Lemma 3.1, we have

[x1 − (n + 1)a]2 + x2
2 + · · · + x2

n ≥
(n + 1)2

n
a2,

with the equality holds if and only if 1
n+1 x1 = x2 = · · · = xn = n+1

n a. Therefore, we have

(n + 1)2a2
−

(n + 1)2

n
a2
≥ x1 [2(n + 1)a − x1] −

n∑
j=2

x j.

In other words,

x1

n∑
j=2

x j −

n∑
j=2

x j ≤
(n − 1)(n + 1)2

n
a2 =

n − 1
4n

 n∑
j=1

x j


2

.

Lemma 3.3. Let f2(x1, · · · , xn) be a function in Rn defined by

f2(x1, · · · , xn) = x1

n∑
j=2

x j − x2
1.

If x1 + x2 + · · · + xn = 4a, we obtain

f2(x1, · · · , xn) ≤
1
8

 n∑
j=1

x j


2

.

The equality holds if and only if x1 = a, x2 = · · · = xn = 3a.

Proof. Let u = x1 and v = x2 + · · · + xn − 2a. We get

u + v = x1 + x2 + · · · + xn − 2a = 2a = 3
(2

3
a
)
.

By Lemma 3.1., we have

u2 + v2 = x2
1 + (x2 + x3 + · · · + xn − 2a)2

≥
9
2

(2
3

a
)2

= 2a2,

where the equality holds if and only if x1 = ( 3
2 )( 2

3 a) = a, x2 + · · · + xn = 3a. Therefore we obtain

(x2 + · · · + xn)2
− 4a (x2 + · · · + xn) + 4a2

≥ 2a2
− x2

1,
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i.e.,

(x2 + · · · + xn) [(x2 + · · · + xn) − 4a] + 2a2
≥ −x2

1.

Since x1 = 4a − (x2 + · · · + xn), we finally have

x1 (x2 + · · · + xn) − x2
1 ≤ 2a2 =

1
8

(x1 + x2 + · · · + xn)2 .

4. An Improved inequality for Pseudo-Ricci Curvature with Respect to the Tanaka-Webster Connection

Theorem 4.1. Let M be an (n + 1)-dimensional anti-invariant submanifold of a Sasakian space form M̃2n+1(c).
Assume that the characteristic vector field ξ is tangent to M. Let x be a point in M and X a unit tangent vector field
in TxM. The we have

R̊ic(X) ≤
(n − 1)(n + 1)2

4n
||Ĥ||2 +

(n − 1)(c + 3)
4

. (4.1)

where Ĥ is the pseudo mean curvature of M in M̃(c) for a Tanaka-Webster connection and R̊ic(X) is the pseudo-Ricci
curvature of M at x in terms of the Tanaka-Webster connection. The equality holds for any unit tangent vector at x if
and only if either
(i) x is a totally pseudo-geodesic point or
(ii) n = 2 and

ĥ(e1, e1) = 3µφe1, ĥ(e2, e2) = µφe1, ĥ(e1, e2) = µφe2,

for some function µ with respect to some orthonormal local frame field.

Proof. Fixed the point x in M, let X be any unit tangent vector at x. We choose an orthonormal frame
{e1, · · · , en, en+1} in TxM such that e1 = X, en+1 = ξ and {φe1, · · · , φen} an orthonormal frame in T⊥x M. From
(3.9), we have

R̊(e1, e j, e j, e1) =
c + 3

4

[
1 −

(
δn+1

r

)2
]

+

n∑
r=1

[
ĥr

11ĥr
j j −

(
ĥr

1 j

)2
]
.

Hence, from (3.11), we have

R̊ic(X) −
(n − 1)(c + 3)

4
=

n+1∑
j=2

n∑
r=1

[
ĥr

11ĥr
j j −

(
ĥr

1 j

)2
]

=

n∑
j=2

n∑
r=1

[
ĥr

11ĥr
j j −

(
ĥr

1 j

)2
]

(4.2)

≤

n∑
j=2

n∑
r=1

ĥr
11ĥr

j j −

n∑
j=2

(
ĥ1

1 j

)2
−

n∑
j=2

(
ĥ j

1 j

)2
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Using (3.10), we have

R̊ic(X) −
(n − 1)(c + 3)

4
≤

n∑
j=2

n∑
r=1

ĥr
11ĥr

j j −

n∑
j=2

(
ĥ1

1 j

)2
−

n∑
j=2

(
ĥ j

1 j

)2

=

n∑
r=1

n∑
j=2

ĥr
11ĥr

j j −

n∑
j=2

(
ĥ1

1 j

)2
−

n∑
j=2

(
ĥ1

j j

)2

= ĥ1
11

n∑
j=2

ĥ1
j j −

n∑
j=2

(
ĥ1

j j

)2
(4.3)

+

n∑
r=2

ĥr
11

n∑
j=2

ĥr
j j −

(
ĥr

11

)2

 .
Now, we assume that

f1(ĥ1
11, ĥ

1
22, · · · , ĥ

1
nn) = ĥ1

11

n∑
j=2

ĥ1
j j −

n∑
j=2

(
ĥ1

j j

)2
,

fr(ĥr
11, ĥ

r
22, · · · , ĥ

r
nn) = ĥr

11

n∑
j=2

ĥr
j j −

(
ĥr

11

)2
, r ∈ {2, · · · ,n}

Since (n + 1)Ĥ1 = ĥ1
11 + ĥ1

22 + · · · + ĥ1
nn, by Lemma 3.2, we have

f1(ĥ1
11, ĥ

1
22, · · · , ĥ

1
nn) ≤

n − 1
4n

(
(n + 1)Ĥ1

)2
(4.4)

=
(n − 1)(n + 1)2

4n

(
Ĥ1

)2
.

Similarly, by Lemma 2.3, we have for 2 ≤ r ≤ n,

fr(ĥr
11, ĥ

r
22, · · · , ĥ

r
nn) ≤

1
8

(
(n + 1)Ĥr

)2

=
(n + 1)2

8

(
Ĥr

)2
(4.5)

≤
(n − 1)(n + 1)2

4n

(
Ĥr

)2
.

From (4.3), (4.4) and (4.5), we have

R̊ic(X) −
(n − 1)(c + 3)

4
≤

(n − 1)(n + 1)2

4n

r∑
r=1

(
Ĥr

)2
=

(n − 1)(n + 1)2

4n
||Ĥ||2.

Now we assume that n ≥ 3 and the equality of (4.1) holds for any unit tangent vector X at x. By (4.5), we
have Ĥr = 0 for r ≥ 2 (or simply choose φe1 parallel to Ĥ). Combining this and Lemma 2.3, we have

ĥ1
1 j = ĥ j

11 =
(n + 1)

4
Ĥ j = 0, ∀ j ≥ 2.

From (4.2), we have ĥ1
jk = 0, ∀i, k ≥ 2, j , k. From the equality and Lemma 3.2, (ĥ1

i j) must be diagonal with

ĥ1
11 =

(n+1)2

2n Ĥ1 and ĥ1
j j = n+1

2n Ĥ1, ∀ j ≥ 2. Now if we compute R̊ic(e2) as we do for R̊ic(X) = R̊ic(e1) in (4.2),

from the equality, we get ĥr
2 j = ĥ2

jr = 0, ∀r , 2, j , 2, r , j. From the equality and Lemma 2.2, we get

ĥ2
11

n + 1
= ĥ2

22 = · · · = ĥ2
nn =

n + 1
2n

Ĥ2 = 0.
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Since the equality holds for all unit tangent vector, the argument is also true for matrices (ĥr
i j). Now

finally ĥ2
2 j = ĥ j

22 = n+1
2n Ĥ2 = 0, ∀ j ≥ 3. Therefore, matrix (ĥ2

jk) has only two possible nonzero entries (i.e.,

ĥ2
12 = ĥ2

21 = ĥ1
22 = n+1

2n Ĥ1). Similarly, matrix (ĥr
jk) has only two possible nonzero entries

ĥr
1r = ĥr

r1 = ĥ1
rr =

n + 1
2n

Ĥ1, ∀r ≥ 3.

Now, we compute R̊ic(e2) as follows:
For j = n + 1, using (3.11),

R̊(e2, en+1, en+1, e2) = 0. (4.6)

For all j such that 3 ≤ j ≤ n,

R̊(e2, e j, e j, e2) =
c + 3

4
+

n∑
r=1

[
ĥr

22ĥr
j j −

(
ĥr

2 j

)2
]

=
c + 3

4
+

(
ĥ1

22

)2
(4.7)

=
c + 3

4
+

(n + 1
2n

Ĥ1
)2

, ∀3 ≤ j ≤ n.

For the case of j = 1,

R̊ic(e2, e1, e1, e2) =
c + 3

4
+

n∑
r=1

[
ĥr

22ĥr
11 −

(
ĥr

21

)2
]

=
c + 3

4
+ ĥ1

22ĥ1
11 −

(
ĥ2

21

)2
(4.8)

=
c + 3

4
+

(n + 1
2n

Ĥ1
) ( (n + 1)2

2n
Ĥ1

)
−

(n + 1
2n

Ĥ1
)2

.

By combining (4.6) ∼ (4.8), we get

R̊ic(e2) −
(n − 1)(c + 3)

4

=
(n + 1)3

4n2

(
Ĥ1

)2
−

(n + 1)2

4n2

(
Ĥ1

)2
+

(n − 1)(n + 1)2

4n2

(
Ĥ1

)2

=
(2n − 1)(n + 1)2

4n2

(
Ĥ1

)2
.

On the other hand, from the assumption for the equality on the equation (4.1), we have

R̊ic(X) +
(n − 1)(c + 3)

4
=

(n − 1)(n + 1)2

4n
||Ĥ||2 =

(n − 1)(n + 1)2

4n

(
Ĥ1

)2
.

Therefore, we have

(2n − 1)(n + 1)2

4n2

(
Ĥ1

)2
=

(n − 1)(n + 1)2

4n

(
Ĥ1

)2
.

Then we have Ĥ1 = 0, and hence
(
ĥr

i j

)
are all zero and x is a totally pseudo-geodesic point.

For the case of n = 2, we have

ĥ1
11 =

9
4

Ĥ1, ĥ1
22 =

3
4

Ĥ1, ĥ2
11 = ĥ2

22 = 0.
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Moreover, the lightlike second fundamental form takes the following form:

ĥ(e1, e1) =
9
4

Ĥ1φe1, ĥ(e2, e2) =
3
4

Ĥ1φe1, ĥ(e1, e2) =
3
4

Ĥ1φe2.

The converse can be proved by simple computation.

Corollary 4.2. Let M be an (n + 1)-dimensional anti-invariant submanifold of a Sasakian space form M̃2n+1(c).
Assume that the characteristic vector field ξ is tangent to M. Let x be a point in M and X a unit tangent vector field
in TxM. If

R̊ic(X) =
(n − 1)(n + 1)2

4n
||Ĥ||2 −

(n − 1)(c + 3)
4

.

X in TM, where Ĥ is the pseudo mean curvature of M in M̃(c) for a Tanaka-Webster connection and R̊ic(X) is the
pseudo Ricci curvature of M at x in terms of the Tanaka-Webster connection. Then either M is a totally pseudo-geodesic
submanifold or n = 2 and

ĥ(e1, e1) = 3µφe1, ĥ(e2, e2) = µφe1, ĥ(e1, e2) = µφe2,

for some function µ with respect to some orthonormal local frame field..
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