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On the Univalence of Two General Integral Operators
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Abstract. In this paper, we define two new general integral operators in the unit disc U. The main object
of this paper is to give sufficient conditions for these integral operators, which are defined here by means
of the normalized form of univalent functions and belongs to some special subclasses of its, to be univalent
in the open unit disk U.

1. Introduction and Preliminaries

LetA be the class of functions f (z) which are analytic in the open unit disk

U = {z : |z| < 1} and f (0) = f ′(0) − 1 = 0.

We show by S the subclass ofA consisting of functions f (z) ∈ A which are univalent in U and S(2) be the
class of all odd functions in S. A function f ∈ A is said to be starlike if and only if

<

{
z f ′(z)

f (z)

}
> 0, (z ∈ U) .

We denote by S∗, the class of all such functions. On the other hand, a function f ∈ A is said to be convex if
and only if

<

{
1 +

z f ′′(z)
f ′(z)

}
> 0, (z ∈ U) .

We denote by C, the class of all such functions.
Let α, β, γ, µ and λ be any complex numbers. Let us denote by Jα,β,γ and Iλ,µ the analytic functions in

U defined by the formula:

Jα,β,γ(z) =

γ
z∫

0

(1(t))γ−1( f ′(t))α(t−1h(t))βdt


1�γ

(z ∈ U), (1)
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Iλ,µ(z) =

µ
z∫

0

(1(t))µ−1
(
e f (t)

)λ
dt


1�µ

(z ∈ U) (2)

where f , 1 and h are functions of the class S or one of its subclasses. The problem of univalence of the
integral operators Jα,β,γ and Iλ,µ in U for special cases of parameters α, β, γ, µ and λ, and functions f , 1
and h were discussed by many authors. For example; Royster [31] for γ = 1, β = 0 showed thatJα,0,1 ∈ S if
|α| > 1

3 , α , 1.Duren, Shapiro and Shields [12] for γ = 1, β = 0 proved thatJα,0,1 ∈ S if |α| 6
√

5−2
3 = 0.078...�

Becker [1] showed that Jα,0,1 belongs to S if γ = 1, β = 0 and |α| 6 1
6 = 0.166...� Pfaltzgraff [30] in the

case γ = 1, β = 0 proved that Jα,0,1 ∈ S if |α| 6 1
4 = 0.25� He showed that the bound 1

4 is sharp. On the

other hand, Causey [2] for γ = 1, α = 0 showed that J0,β,1 ∈ S if 0 6 β 6
√

5−2
4 = 0.05... and J0,β,1 < S if

β > 1
2 (β , 1). Some authors improved the result of Causey [2]. Nunokawa [25] for γ = 1, α = 0 proved

that J0,β,1 ∈ S if 0 6 β 6
(√

1025 − 25
)
�100 = 0.07...� The result was again improved by Causey [3], who

showed that
∣∣∣β∣∣∣ 6 (√

2 − 1
)
�4 = 0.102...� Kim and Merkes [19] for γ = 1, α = 0 showed that J0,β,1 ∈ S if∣∣∣β∣∣∣ 6 1

4 = 0.25...�Godula [13] proved thatJα,β,1 ∈ S if γ = 1 and 4 |α|+4
∣∣∣β∣∣∣ 6 1. Also, Miazga and Wesolowski

[22] improved the result of Godula [13], they showed that Jα,β,1 ∈ S if 4 |α| + 3
∣∣∣β∣∣∣ 6 1. Moldoevanu and

Pascu [23] for α = β = 0 proved that J0,0,γ ∈ S if 4
∣∣∣γ − 1

∣∣∣ 6 1.
Besides, recently many mathematician have engaged in research of univalence criteria of the integral

operators which preserve the class S by aid of well-known lemmas already used in papers on univalence
criteria (see, for example, [4–8, 14–17, 27–29, 32, 33]). In terms of different methods, Kanas and Srivastava
[18], and Deniz and Orhan [9–11] studied univalence criteria for analytic functions defined inU by using the
Loewner chains method. Kiryakova, Saigo and Srivastava [20] obtained some univalence criteria for certain
generalized fractional integral and derivatives, ancompassing all the linear integro-differential operators.
Nunokawa et al [26] gave an interesting new condition for univalence of f ∈ A by using the same way in
proof of the Noshiro-Warshawski theorem (see [24],[34]).

In our paper, we are mainly interested in two integral operators of the types (1) and (2). More precisely,
we would like to show that by using some equalities for the functions belonging to the class S, S∗ and
C, the univalence of these integral operators which contains functions belongs to the class of univalent
functions and some special subclasses of its can be derived easily via a well-known univalence criterion. In
particular, we obtain simple sufficient conditions for some integral operators which involve special cases
of the functions f , 1 and h, and complex numbers α, β, γ, λ and µ.

In the proofs of our main results we need the following interesting univalence criterion given by Deniz
and Orhan [9].

Lemma 1.1. (see Deniz and Orhan [9]). Let γ and c be complex numbers such that∣∣∣γ − 1
∣∣∣ < 1 and |c| 6 1 (c , −1) .

If the functions f , 1 ∈ A satisfies the following inequality∣∣∣∣∣∣c |z|2 + (1 − |z|2)
[
(γ − 1)

z1′(z)
1(z)

+
z f ′′(z)
f ′(z)

]∣∣∣∣∣∣ 6 1 (z ∈ U)

then the function Fγ defined by

Fγ(z) =

γ
z∫

0

1γ−1(u) f ′(u)du


1�γ

is in the class S.
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Note that J1,0,γ(z) = Fγ(z).
The following lemmas are of fundamental importance in our investigation.

Lemma 1.2. (Miazga and Wesolowski [22]). For each function f ∈S and a fixed z, z ∈ U, the inequality∣∣∣∣∣ z
f (z)
− 1

∣∣∣∣∣ ≤ 2 |z| + |z|2

holds.

Lemma 1.3. (Libera ve Ziegler [21]) If φ ∈ S∗and z0 is a fixed point from the unit disk U, then the function φ∗,

φ∗(z) =
zz0φ

(
z+z0

1+zz̄0

)
φ(z0)(z + z0)(1 + zz̄0)

is a function of the class S∗.

Lemma 1.4. (Libera ve Ziegler [21]) If ϕ ∈ C and z0 is a fixed point from the unit disk U, then the function ψ∗,

ψ∗(z) =
ψ′

(
z+z0
1+zz̄0

)
ψ′(z0)(1 + zz̄0)2

is a function of the class C.

2. Univalence Conditions Associated with the Integral Operators (1) and (2)

Our first main result is a application of Lemma 1.1 and contains sufficient conditions for an general
integral operator Jα,β,γ of the type (1).

Theorem 2.1. Let α, β and γ any complex numbers. Also let f , 1 and h are functions of the class S. Moreover,
suppose that the following inequality

4
∣∣∣γ − 1

∣∣∣ + 4 |α| + 3
∣∣∣β∣∣∣ 6 1 (3)

is satisfied. Then, the function Jα,β,γ(z) defined by (1) is in the class S.

Proof. From (1) we begin by setting

Jα,β,1(z) =

z∫
0

( f ′(t))α(t−1h(t))βdt (4)

so that, obviously,

zJ ′′α,β,1(z)

J ′α,β,1(z)
= α

(
z f ′′(z)
f ′(z)

)
+ β

(
zh′(z)
h(z)

− 1
)
. (5)

From a well-known transformation of Bieberbach preserving the class of univalent functions f ∈ S

f (z) =
k
(

z+z0
1+zz̄0

)
− k(z0)

k′(z0)(1 − |z0|
2)
, z ∈ U, k ∈ S,
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z0−is a fixed point of the unit disk U, we obtain the value of the functional at the point z = −z0

−z0 f ′(−z0)
f (−z0)

=
z0

k(z0)(1 − |z0|
2)

and
−z0 f ′′(−z0)

f ′(−z0)
=

2 |z0|
2
− 2a2z0

1 − |z0|
2 (6)

where a2 is the second coefficient in Maclaurin expansion of the function k.
From (5) and (6) putting z0 = −z we have∣∣∣∣∣∣∣c |z|2 +

(
1 − |z|2

) (γ − 1)
z1′(z)
1(z)

+
zJ ′′α,β,1(z)

J ′α,β,1(z)


∣∣∣∣∣∣∣ (7)

=

∣∣∣∣∣∣(c + 2α + β) |z|2 + (γ − 1)
[

z
−l(−z)

]
+ 2αa2z + β

[
z

−q(−z)
− 1

]∣∣∣∣∣∣
where q, l ∈ S. Putting c = −2α − β and using Lemma 1.2 and the fact that f ∈ S from (7) we obtain∣∣∣∣∣∣∣c |z|2 +

(
1 − |z|2

) (γ − 1)
z1′(z)
1(z)

+
zJ ′′α,β,1(z)

J ′α,β,1(z)


∣∣∣∣∣∣∣

6
∣∣∣γ − 1

∣∣∣ ∣∣∣∣∣ z
−l(−z)

∣∣∣∣∣ + 2 |α| |a2| |z| +
∣∣∣β∣∣∣ ∣∣∣∣∣ z
−q(−z)

− 1
∣∣∣∣∣

6 4
∣∣∣γ − 1

∣∣∣ + 4 |α| + 3
∣∣∣β∣∣∣

Finally, by applying Lemma 1.1, we conclude that the functionJα,β,γ(z) defined by (1) is in the univalent
function class S. This evidently completes the proof of Theorem 2.1.

Using the method given in the proof of Theorem 2.1, we can prove the following results.

Theorem 2.2. Let α, β and γ any complex numbers. Also let f , 1 and h are functions of the class S. Moreover,
suppose that the following inequality∣∣∣γ − 1

∣∣∣ + 4 |α| + 3
∣∣∣β∣∣∣ 6 1

is satisfied. Then, the function defined by

J
∗

α,β,γ(z) =

γ
z∫

0

tγ−1( f ′(t))α(t−1h(t))βdt


1�γ

(z ∈ U) (8)

is in the class S.

Theorem 2.3. Let µ and λ any complex numbers. Also let 1 ∈ S and f ∈ A such that z f ′(z) ∈ S(2). Moreover,
suppose that the following inequality

4
∣∣∣µ − 1

∣∣∣ + |λ| 6 1

is satisfied. Then, the function Iλ,µ(z) defined by (2) is in the class S.

Theorem 2.4. Let µ, λ any complex numbers and f ∈ A such that z f ′(z) ∈ S(2). Moreover, suppose that the
following inequality∣∣∣µ − 1

∣∣∣ + |λ| 6 1

is satisfied. Then, the function defined by

I
∗

λ,µ(z) =

µ
z∫

0

tµ−1
(
e f (t)

)λ
dt


1�µ

(z ∈ U) (9)

is in the class S.
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Putting µ = 1 in Theorem 2.4, we immediately arrive at the following application of Theorem 2.4.

Corollary 2.5. Let λ ∈ C and let f ∈ A such that z f ′(z) ∈ S(2). If the inequality |λ| 6 1 is satisfy, then

I
∗

λ(z) =
z∫

0

(
e f (t)

)λ
dt ∈ S.

For example, since the function h(z) = z f ′(z) = sin z ∈ S(2), from Corollary 2.5 the integral operator

I
∗

1(z) =
z∫

0
e
∫ t

0
sin u

u dudt ∈ S.

Another example, F(z) =
z∫

0
et+ t2n+1

(2n+1)2 dt ∈ S for n = 1, 2, ...�

Theorem 2.6. Let α, β and γ any complex numbers. Also let 1, h ∈ S∗ and f ∈ C. Moreover, suppose that the
following inequality

3
∣∣∣γ − 1

∣∣∣ + 2 |α| + 2
∣∣∣β∣∣∣ 6 1

is satisfied. Then, the function Jα,β,γ(z) defined by (1) is in the class S.

Proof. In the proof of Theorem 2.1, we obtained the equalities (4) and (5) where 1, h ∈ S∗ and f ∈ C.
Also, in Lemma 1.3 for z0 = −z and φ∗(z) ∈ S∗ we obtain

zφ′(z)
φ(z)

=
1 + φ2z + |z|2

1 − |z|2
(10)

and from Lemma 1.4 for ψ∗(z) ∈ C

zψ′′(z)
ψ′(z)

=
2ψ2z + 2 |z|2

1 − |z|2
(11)

where φ2 and ψ2 are the second coefficients in Maclaurin expansion of the functions φ∗ and ψ∗, respectively.
In the equality (5) if we write (10) and (11) we have

zJ ′′α,β,1(z)

J ′α,β,1(z)
=

1

1 − |z|2
{
(2αb2 + βa2)z + (2α + 2β) |z|2

}
and ∣∣∣∣∣∣∣c |z|2 +

(
1 − |z|2

) (γ − 1)
z1′(z)
1(z)

+
zJ ′′α,β,1(z)

J ′α,β,1(z)


∣∣∣∣∣∣∣

=
∣∣∣(c + γ − 1 + 2α + 2β) |z|2 + (γ − 1) + ((γ − 1)c2 + 2αb2 + βa2)z

∣∣∣
where a2, b2 and c2 are the second coefficients in Maclaurin expansion of the functions h ∈ S∗, f ∈ C and
1 ∈ S∗, respectively. Putting c = 1 − γ − 2α − 2β and using Lemma 1.2 we obtain∣∣∣∣∣∣∣c |z|2 +

(
1 − |z|2

) (γ − 1)
z1′(z)
1(z)

+
zJ ′′α,β,1(z)

J ′α,β,1(z)


∣∣∣∣∣∣∣

6 3
∣∣∣γ − 1

∣∣∣ + 2 |α| + 2
∣∣∣β∣∣∣

Finally, by applying Lemma 1.1, we conclude that the functionJα,β,γ(z) defined by (1) is in the univalent
function class S. This evidently completes the proof of Theorem 2.6.

Corollary 2.7. Let α, β and γ any complex numbers. Also let 1, h ∈ S∗ and f ∈ C. Moreover, suppose that the
following inequality∣∣∣γ − 1

∣∣∣ + 2 |α| + 2
∣∣∣β∣∣∣ 6 1

is satisfied. Then, the function J ∗α,β,γ(z) defined by (8) is in the class S.
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