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Fixed Points of Integral Type Contractions in Uniform Spaces
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Abstract. In this paper, we discuss the existence of fixed points for integral type contractions in uniform
spaces endowed with both a graph and an E-distance. We also give two sufficient conditions under which
the fixed point is unique. Our main results generalize some recent metric fixed point theorems.

1. Introduction and preliminaries

In [9], Branciari discussed the existence and uniqueness of fixed points for mappings from a complete
metric space (X, d) into itself satisfying a general contractive condition of integral type. The result thereinis a

generalization of the Banach contraction principle in metric spaces. In fact, Branciari considered mappings
T : (X, d) — (X, d) satistying

d(Tx,Ty) ()
f pt)dt < a fd p)dt (x,y € X),
0 0

where o € (0,1) and ¢ : [0, +o0) — [0, +0) is a Lebesgue-integrable function on [0, +o0) whose Lebesgue-
integral is finite on each compact subset of [0, +0), and satisfies fog @(#)dt > 0 for all € > 0. Recently, an
integral version of Ciri¢’s contraction was given in [14].

In 2008, Jachymski [12] generalized the Banach contraction principle in metric spaces endowed with a
graph. This idea was followed by the authors in uniform and modular spaces (see [3, 5-7]). In [1], the
concept of an E-distance was introduced in uniform spaces as a generalization of a metric and a w-distance
and then many different nonlinear contractions were generalized from metric to uniform spaces (see, e.g.,
[2, 4,13]).

The aim of this paper is to study the existence and uniqueness of a fixed point for integral type
contractions in uniform spaces endowed with both a graph and an E-distance. Our results generalize
Theorem 2.1 in [9] as well as Corollary 3.1 in [12] by replacing metric spaces with uniform spaces endowed
with a graph and by considering a weaker contractive condition. We also prove an integral version of [12,
Theorems 3.2 and 3.3].

We begin with notions in uniform spaces that are needed in this paper. For more detailed discussion,
the reader is referred to, e.g., [15].
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By a uniform space (X, U), shortly denoted here by X, it is meant a nonempty set X together with a
uniformity U. For instance, if d is a metric on a nonempty set X, then it induces a uniformity, called the
uniformity induced by the metric d, in which the members of U are all the supersets of the sets

[ y) e Xx X d(x,y) < &,

where ¢ > 0.

It is well-known that a uniformity U on a nonempty set X is separating if the intersection of all members
of U is equal to the diagonal of the Cartesian product X X X, that is, the set {(x, x) : x € X} which is often
denoted by A(X). If U is a separating uniformity on a nonempty set X, then the uniform space X is said to
be separated.

We next recall the definition of an E-distance on a uniform space X as well as the notions of convergence,
Cauchyness and completeness with E-distances.

Definition 1.1 ([1]). Let X be a uniform space. A function p : X X X — [0, +00) is called an E-distance on X if

i) for each member V of U, there exists a 6 > 0 such that p(z,x) < 6 and p(z,y) < 6 imply (x,y) € V for all
x,Yyz€X;

ii) the triangular inequality holds for p, that is,
px,y) <plx,z)+pizy) (v yzeX).

Let p be an E-distance on a uniform space X. A sequence {x,} in X is said to be p-convergent to a point

x € X, denoted by x, LN x, if it satisfies the usual metric condition, that is, p(x,,x) — 0 as n — oo, and
similarly, p-Cauchy if it satisfies p(x,,, x,) — 0 as m,n — co. The uniform space X is called p-complete if
every p-Cauchy sequence in X is p-convergent to some point of X.

In the next lemma, an important property of E-distances in separated uniform spaces is formulated.

Lemma 1.2 ([11). Let p be an E-distance on a separated uniform space X and {x,} and {y,} be two arbitrary sequences
in X. If x, L xand x, 5 y, then x = y. In particular, if x,y € X and p(z,x) = p(z,y) = 0 for some z € X, then
x=y.

Finally, we recall some concepts about graphs. For more details on graph theory, see, e.g., [8].

Let X be a uniform space and consider a directed graph G without any parallel edges such that the set
V(G) of its vertices is X, thatis, V(G) = X and the set E(G) of its edges contains all loops, that is, E(G) 2 A(X).

So the graph G can be simply denoted by G = (V(G), E(G)). By G, it is meant the undirected graph obtained
from G by ignoring the direction of the edges of G, that is,

V(G =X and E(G)={(x,y) € Xx X : either (v,y) or (y,x) belongs to E(G)}.

A subgraph H of G is itself a directed graph such that V(H) and E(H) are contained in V(G) and E(G),
respectively, and (x, y) € E(H) implies x,y € V(H) for all x, y € X.

We need also a few notions about connectivity of graphs. Suppose that x and y are two vertices in V(G).
A finite sequence (x;)Y,, consisting of N + 1 vertices of G is a path in G from x to y if xo = x, xy = y and
(xi-1,x;) € E(G) fori =1,...,N. The graph G is weakly connected if there exists a path in G between each
two vertices of G.

2. Main results

In this section, we consider the Euclidean metric on [0, +c0) and denote by A the Lebesgue measure

on the Borel o-algebra of [0, +o0). For a Borel set E = [, b], we will use the notation L ! @(t)dt to show the
Lebesgue integral of a function ¢ on E. We employ a class ® consisting of all functions ¢ : [0, +00) — [0, +00)
satisfying the following properties:
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(P1) @ is Lebesgue-integrable on [0, +o0);
(®2) The value of the Lebesgue integral fog @(t)dt is positive and finite for all € > 0.

The next lemma embodies some important properties of functions of the class ® which we need in the
sequel.

Lemma 2.1. Let ¢ : [0,+00) — [0, +00) be a function in the class © and {a,} be a sequence of nonnegative real
numbers. Then the following statements hold:

An

1. If J;” ¢(t)dt — 0as n — oo, then a, — 0 as n — co.
2. If {a,} is monotone and converges to some a > 0, then foﬂ" p®)dt — fou @(t)dt asn — oo.

Proof. 1. Let Oﬂ” @(t)dt — 0 and suppose first on the contrary that limsup,_,  a, = co. Then {a,} contains a
subsequence {a,,} which diverges to co. By passing to a subsequence if necessary, one may assume without

loss of generality that {a,,} is a nondecreasing subsequence of {a,}. Because the sequence { foa"" @(t)dt} of
nonnegative numbers increases to zero, so a,, = 0 for all k > 1. This is a contradiction and therefore the
sequence {a,} is bounded.

Next, if limsup,_,  a, = € > 0, then there exists a strictly increasing sequence {1} of positive integers
such thata,, — . Pick an integer ko > 0 so that the strict inequality a,, > 5 holds for all k > ko. Therefore,

0< f " p(t)dt < f " p(t)dt — 0,
0 0

which is again a contradiction. So limsup,,_, 4, = 0, and consequently,

0 <liminfa, < limsupa, =0,

n—oo 00

thatis, a, — 0.
2. Let {a,} be nondecreasing. If for sufficiently large indices #n we have a, = g, then there is nothing to prove.
Otherwise, put E,, = [0,a,] for all n > 1. Then each E,, is a Borel subset of [0, +o0) and we have E; CE; C - --

and ;4 E, = [0,4]. Because the function E N fE @dA is a Borel measure on [0, +00), using the continuity
of u from below we get

Hdt = E,) = lim u(E,) = lim | @)t
f:cpo y(anjl ) = lim p(E,) nggfw()

A similar argument is true if {a,} is nonincreasing since each E, defined above is of finite y-measure by
(®2). O

Let T be a mapping from a uniform space X endowed with a graph G into itself. We denote as usual the
set of all fixed points for T by Fix(T), and by Cr, we mean the set of all x € X such that (T"x, T™x) is an edge

of G for all m, n > 0. Clearly, Fix(T) € Cr.

Definition 2.2. Let p be an E-distance on a uniform space X endowed with a graph G. We say that a mapping
T : X — X is an integral type p-G-contraction if

IC 1) T preserves the egdes of G, that is, (x, y) € E(G) implies (Tx, Ty) € E(G) forall x,y € X;

IC 2) there exists a ¢ € O and a constant o € (0, 1) such that the contractive condition

p(Tx,Ty) p(x,y)
f p®)dt < af p(t)dt
0 0

holds for all x, y € X with (x,y) € E(G).
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Now, we give some examples of integral type p-G-contractions.

Example 2.3. Let p be an E-distance on a uniform space X endowed with a graph G and x, be a point in X such that
p(xo,x0) = 0. Since E(G) contains the loop (xo, xo), it follows that the constant mapping T = xq preserves the edges
of G, and since p(xo, xo) = 0, (IC2) holds trivially for any arbitrary ¢ € ® and a € (0,1). Therefore, T is an integral
type p-G-contraction. In particular, each constant mapping on X is an integral type p-G-contraction if and only if
p(x,x) =0forall x € X.

Example 2.4. Let (X, d) be a metric space and T : X — X a mapping satisfying

d(Tx,Ty) ()
f pHdt <a fd pt)dt (x,y € X),
0 0

where ¢ € O and a € (0,1). If we consider X as a uniform space with the uniformity induced by the metric d, then
T is an integral type d-Go-contraction, where Gy is the complete graph with the vertices set X, that is, V(Go) = X
and E(Go) = X x X. The existence and uniqueness of fixed point for these kind of contractions were considered by
Branciari in [9].

Example 2.5. Let < and p be a partial order and an E-distance on a uniform space X, respectively, and consider the
poset graphs G and G, by

V(G) =X and EGy)={xyeXxX:x=<y),
and
V(G) =X and E(G)={(xy)eXxX:x<yvy=al

Then integral type p-Gi-contractions are precisely the ordered integral type p-contractions, that is, nondecreasing
mappings T : X — X which satisfy (IC2) for all x, y € X with x < y and for some ¢ € P and a € (0,1). And integral
type p-Ga-contractions are those mappings T : X — X which are order preserving and satisfy (IC2) for all comparable
x,y € X and for some ¢ € @ and o € (0, 1).

Remark 2.6. Let T be a mapping from an arbitrary uniform space X into itself. If X is endowed with the complete
graph Gy, then the set Cr coincides with X.

If <'is a partial order on X and X is endowed with either G or Gy, then a point x € X belongs to Cr if and only
if T"x is comparable to T™x for all m,n > 0. In particular, if T is monotone, then each x € X satisfying x < Tx or
Tx < x belongs to Cr.

Example 2.7. Let p be any arbitrary E-distance on a uniform space X endowed with a graph G and define a function
@ : [0,4+00) — [0, +00) by the rule (p(t) = tﬁ forall t > 0, where > 0 is constant. It is clear that ¢ is Lebesgue-
integrable on [0, +o0) and fo p®)dt = 1+ﬁ ! which is positive and finite for all € > 0, that is, ¢ € ®. Now, let a
mapping T : X — X satisfy p(Tx, Ty) < ap(x, y) forall x, y € X with (x,y) € E(G), where o € (0, 1). Then T satisfies
(IC2) for the function ¢ defined as above and the number o*F € (0,1). In fact, if x, y € X and (x, y) € E(G), then

p(Tx,Ty) 1+ 1+ p(x,y)
_ p(Tx, Ty) 144 ple,y) P 1+8
fo p(dt = ————— g sat =t | p(Hdt.

Therefore, our contraction generalizes Banach’s contraction with E-distances in uncountably many ways. In particular,
if T is a Banach G-p-contraction (i.e., the Banach contraction in uniform spaces endowed with an E-distance and a
graph), then T is an integral type p-G-contraction for uncountably many functions ¢ € ®.

To prove the existence of a fixed point for an integral type p—a—contraction, we need the following two
lemmas:
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Lemma 2.8. Let p be an E-distance on a uniform space X endowed with a graph G and T : X — X be an integral
type p-G-contraction. Then p(T"x, T"y) — 0asn — oo, for all x, y € X with (x,y) € E(G).
Proof. Letx,y € Xbesuchthat(x, y) € E(G). According to Lemma 2.1, it suffices to show that fop(T"x'T”y) pt)dt —

0, where ¢ € @ is as in (IC2). To this end, note that because T preserves the edges of G, we have
(T"x, T"y) € E(G) for all n > 0, and so by (IC2), we find

p(T"x,T"y) p(T"'x, T ) p(xy)
f pHdt < a f p)dt<---<a”" f pMdt  (n=>1),
0 0 0

wherea € (0,1)isasin (IC2). Since, by (92), fop(x'y) @(t)dt is finite (even possibly zero), it follows immediately
that [ (ndt - 0. O

Lemma 2.9. Let p be an E-distance on a uniform space X endowed with a graph G and T : X — X be an integral
type p-G-contraction. Then the sequence {T"x} is p-Cauchy for all x € Cr.

Proof. Suppose on the contrary that {T"x} is not p-Cauchy for some x € Cr. Then there exist an ¢ > 0 and
positive integers my and 1y such that

me>me >k and  p(T™x, T"x) > ¢ k=1,2,....

If the integer ny is kept fixed for sufficiently large indices k (say, k > ko), then using Lemma 2.8, one may
assume without loss of generality that m > 1y is the smallest integer with p(T™x, T"x) > ¢, that is,

p(T" x, T x) < ¢ (k > ko).
Hence we have

e < p(T™x, Tx)
< p(T™x, T x) + p(T™ x, T"x)
< p(T™x, T" x) + ¢

for each k > k. Since x € Cr, it follows that (Tx, x) € E(G) and by Lemma 2.8, we have p(T™x, T 1x) — 0.
Thus, letting k — oo yields p(T™x, T"x) — ¢. On the other hand, we have

p(T’“k“x, T+ 1x) < p(ka“x, T™x) + p(T™x, T"x) + p(T™x, T+ 1x)
forall k > 1. Letting k — oo, since (Tx, x), (x, Tx) € E(a), it follows by Lemma 2.8 that

lim sup p(T"*'x, T"*!x) < e.

k—o0

Moreover, the inequality
p(T™* o, T x) > p(T™x, T"x) — p(T™x, T"* x) — p(T" x, T"x)
holds for all k > 1. Thus, similarly we have
1i£2g1fp(ka“x, T"Hyx) > e.
Hence, p(T"*1x, T"*1x) — ¢. By passing to two subsequences with the same choice function if necessary,

one may assume without loss of generality that both {p(T"*x, T"x)} and {p(T"*'x, T"<*1x)} are monotone.
Therefore, using Lemma 2.1 twice, we have

p(kaH x,T”k“x) P(ka x,T”k x)

f p(t)dt = lim p(t)dt < a lim p(t)dt = af e(t)dt,
0 k—o0 0 k—oo 0 0

where ¢ € ® and a € (0, 1) are as in (IC2). Therefore, f; @(t)dt = 0, which is a contradiction. Consequently,
the sequence {T"x} is p-Cauchy for all x € Cr. O
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In 1971 Ciri¢ [10] introduced the following two notions (see also [11]).

Definition 2.10 ([10]). Let (X, 7) be a topological space and T : X — X be an operator. The operator T is said to be
orbitally continuous if T"x — p, then T(T"x) — Tpas i — oo.

Definition 2.11 ([10]). Let (X, d) be a metric space and T : X — X be an operator. The metric space (X, d) is said to
be T-orbitally complete if any Cauchy sequence of the form {T"x}*,, x € X, converges in X.

Jachymski [12, Definition 2.4] generalized these notions by introducing the notion of an orbitally G-
continuous mapping in metric spaces endowed with a graph G.

Now we shall generalize the above notion of orbitally continuity to orbitally p-G-continuity.

Definition 2.12. Let p be an E-distance on a uniform space X endowed with a graph G and T be a mapping from X
into itself. We say that

i) T is orbitally p-G-continuous on X if for all x,y € X and all sequences {a,} of positive integers with
(T*x, T x) € E(G) forn =1,2,..., T"x N y asn — oo, implies T(T" x) LN Tyasn — oo.

ii) T is a p-Picard operator if T has a unique fixed point u € X and T"x SN uforallx € X.

iii) T is a weakly p-Picard operator if {T"x} is p-convergent to a fixed point of T for all x € X.

Example 2.13. Let X be any arbitrary uniform space with more than one point equipped with an E-distance p. Choose
a nonempty proper subset A of X and pick a and b from A and A°, respectively. Then the mapping T : X — X defined
by Tx =aifx € A, and Tx = b if x ¢ A is a weakly p-Picard operator which fails to be p-Picard. In fact, we have
Fix(T) = {a, b}. Therefore, a weakly p-Picard operator is not necessarily p-Picard.

Now, we are ready to prove our main theorems. The first result guarantees the existence of a fixed point
when an integral type p-G-contraction is orbitally p-G-continuous on X or the triple (X, p, G) has a certain
property.

Theorem 2.14. Let p be an E-distance on a separated uniform space X endowed with a graph G such that X is

p-complete, and T : X — X be an integral type p-G-contraction. Then T |c, is a weakly p-Picard operator if one of
the following statements holds:

i) T is orbitally p—a—continuous on X;

ii) The triple (X, p, G) satisfies the following property:

(+) If a sequence {x,} in X is p-convergent to an x € X and satisfies (X, Xy+1) € E(é)for alln > 1, then there
exists a subsequence {x,, } of {x,} such that (x,,,x) € E(G) forall k > 1.

In particular, having been held (i) or (i), Fix(T) # 0 if and only if Cr # 0.

Proof. If Cr = 0, then there is nothing to prove. Otherwise, note first that since T preserves the edges
of E, it follows that Cr is T-invariant, that is, T maps Cr into itself. Now, let x € Cr be given. Then
(T"x, T"*'x) € E(G) for all n > 0. Moreover, by Lemma 2.9, the sequence {T"x} is p-Cauchy in X, and because
X is p-complete, there exists a u € X (depends on x) such that T"x 2

To prove the existence of a fixed point for T, suppose first that T is orbitally p-a-continuous. Then

Ty 25 Ty and because X is separated, Lemma 1.2 ensures that Tu = u, that is, u is a fixed point for T.
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On the other hand, if Property (+) holds, then {T"x} contains a subsequence {T"x} such that (T"x, u) € E (5)
for all k > 1. Since p(T"x,u) — 0, by passing to a subsequence if necessary, one may assume without loss
of generality that {p(T"x, 1)} is monotone. Hence by Lemma 2.1, we have

p(T™ L, Tu) (T x,11)
f pH)dt < azf et)dt =0 as k— oo,
0 0

where a € (0,1) is as in (IC2). Using Lemma 2.1 once more, one obtains p(T"*'x, Tu) — 0 and since X is
separated, Lemma 1.2 guarantees that Tu = u, that is, u is a fixed point for T.
Finally, u € Fix(T) € Cr, and so T |c, is a weakly p-Picard operator. []

Setting G = Gg in Theorem 2.14, we have the following result, which is a generalization of [9, Theorem
2.1] to uniform spaces equipped with an E-distance.

Corollary 2.15. Let p be an E-distance on a separated uniform space X such that X is p-complete. Let T : X — X
satisfy

p(Tx,Ty) P(ry)
f p(t)dt < af p(t)dt (x,y € X),
0 0

where ¢ € ® and a € (0,1). Then T is a p-Picard operator.

Proof. By Theorem 2.14, the mapping T is a weakly p-Picard operator. To complete the proof, it suffices to
show that T has a unique fixed point. To this end, let x and y be two fixed points for T. Then

p(x,y) p(Tx,Ty) p(x,y)
f (p(t)dt:f (p(t)dtSaf (t)dt,
0 0 0

which is impossible unless p(x, y) = 0. Similarly, one can show that p(x, x) = 0 and since X is separated, it
follows by Lemma 1.2 thatx = y. O

Because a = E; = Gy, setting G = Gy or G = G; in Theorem 2.14, we obtain the ordered version of
Branciari’s result as follows:

Corollary 2.16. Let p be an E-distance on a partially ordered separated uniform space X such that X is p-complete
and a mapping T : X — X satisfy

p(Tx,Ty) p(x,Y)
f e(Hdt < ozf p)dt
0 0

for all comparable elements x and y of X, where ¢ € ® and o € (0,1). Assume that there exists an x € X such that
T™x and T"x are comparable for all m,n > 0. Then T is a weakly p-Picard operator if one of the following statements
holds:

- T is orbitally p-Gy-continuous on X;
- X satisfies the following property:

If a sequence {x,} in X with successive comparable terms is p-convergent to an x € X, then x is comparable
to x, foralln > 1.

Next, we are going to prove two theorems on uniqueness of the fixed points for integral type p—a—
contractions.
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Theorem 2.17. Let p be an E-distance on a separated uniform space X endowed with a graph G such that X is
p-complete, and let T : X — X be an integral type p-G-contraction such that the function ¢ in (IC2) satisfies

+b b
f Q(t)dt < f p(hdt + f p(hdt (1)
0 0 0

foralla,b > 0. If G is weakly connected and Cr is nonempty, then there exists a unique u € X such that T"x LNy
forall x € X. In particular, T is a p-Picard operator if and only if Fix(T) is nonempty.

Proof. Let x and y be two arbitrary elements of X. Since G is weakly connected, there exists a path (x;)Y

in G from x to y. Since T preserves the edges of E, it follows that (T"x;_1, T"x;) € E(a) for all n > 0 and
i=1,...,N. Therefore, by (1) and (IC2) we have

p(T"x,T"y) Y p(T"xio1,T7x)
f p(hdt < f p(t)dt
0 0
N ~p(T"xi, T'x)
< f p(Hdt
N (T xisg, T xy)
< a f p(tdt
L,

i=1

. N D(Xi-1,%i)
< a Z f o(t)dt
i=1 Y0

for all n > 0, where ¢ € ® and « € (0, 1) are as in (IC2). Since, by (92), Zf\il fop(x’*l'xi) @(t)dt is finite (possibly
zero), it follows immediately that fop(T ) @(t)dt — 0. Hence by Lemma 2.1, p(T"x, T"y) — 0.

Now, pick a point x € Cr. By Lemma 2.9, the sequence {T"x} is p-Cauchy in X and since X is p-complete,
there exists a u € X such that T"x - u. If y is an arbitrary point in X, then

0<p(T"y,u) <p(T"y, T"x) + p(T"x,u) - 0 as n— co.

So T"y L5 u. The uniqueness of u follows immediately from Lemma 1.2. [

Theorem 2.18. Let p be an E-distance on a separated uniform space X endowed with a graph Gand T : X — X be

an integral type p—E—contmction. If the subgraph of G with the vertices Fix(T) is weakly connected, then T has at
most one fixed point in X.

Proof. Let x and y be two fixed points for T. Then there exists a path (x;)Y, in G from x to y such that

X1,...,xn-1 € Fix(T). Since E (5) contains all loops, we can assume without loss of generality that the length
of this path, that is, the integer N is even. Now, by (IC2) we have

p(Xi-1,Xi) p(Txi-1,Tx;) D(Xi-1,X;)
f pt)dt = f pt)dt < ozf p(t)dt i=1,...,N,
0 0 0

(xi-1,%i

where ¢ € ® and «a € (0, 1), which is impossible unless fop ) @(t)dt = 0 or equivalently, p(x;_1,x;) = O for

i=1,...,N. Because E(a) is symmetric, a similar argument yields p(x;, x;-1) = 0 fori =1,...,N. Since N is
even, using Lemma 1.2 finitely many times, we get x = xp = x, = --- = x5 = y. Consequently, T has at most
one fixed pointin X. [
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Remark 2.19. Theorem 2.18 guarantees that in a separated uniform space X endowed with a graph G and an E-

distance p, if (x,y) € E(G), then both x and y cannot be a fixed point for any integral type p-G-contraction T. In
other words, each weakly connected component of G intersects Fix(T) in at most one point. So in partially ordered
separated uniform spaces equipped with an E-distance p, no ordered integral type p-contraction has two comparable
fixed points.

Remark 2.20. Since the Riemann integral (proper and improper) is subsumed in the Lebesgue integral, it follows
that one may replace Lebesgue-integrability with Riemann-integrability of ¢ on [0, +0c0) in (P1), where the value
of the integral on [0, +00) is allowed to be co. Facing with Riemann integrals, we should assume that the function
@ is bounded. Therefore, all of the results of this paper can be restated and reproved for Riemann integrals instead
of Lebesgue integrals. A similar remark holds for Riemann-Stieltjes integrable functions with respect to any fixed
nondecreasing function on [0, 4+00).
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