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Limit Formulas Related to the p-Gamma and
p-Polygamma Functions at Their Singularities
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Abstract. In this paper, we mainly give much simple proof to Theorem 1.1 and (1.6) of Theorem 1.2 posed
in the paper ” F. Qi, Limit formulas for ratios between derivatives of the gamma and digamma functions at
their singularities, Filomat 27 (2013) 601-604.”

1. Introduction

The Euler gamma function Γ(x) is defined for Rez > 0 by Γ(z) =
∫
∞

0 tz−1e−zdt. The digamma (or psi)
function is defined as the logarithmic derivative of Euler’s gamma function for positive real numbers z, that
is ψ(z) = d

dz ln Γ(z) =
Γ′(z)
Γ(z) . Moreover, Euler also gave another equivalent definition for the Γ(z) (see [1][15]),

Γp(z) =
p!pz

z(z + 1) . . . (z + p)
=

pz

z(1 + z
1 ) . . . (1 + z

p )
, (1)

where p is a positive integer, and

lim
p→∞

Γp(z) = Γ(z). (2)

The p-analogue of the psi function is defined as the logarithmic derivative of the Γp function in [5], that is,

ψp(z) =
d
dz

ln Γp(z) =
Γ′p(z)

Γp(z)
. (3)

The function ψp defined in (3) has the following series representation

ψp(z) = ln p −
p∑

k=0

1
z + k

(4)
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in [6]. Its derivatives are given by

ψ(i)
p (z) =

p∑
k=0

(−1)i−1i!
(z + k)i+1

. (5)

In [8] and [9], the limit formulas

lim
z→−k

Γ(nz)
Γ(qz)

= (−1)(n−q)k q
n

(qk)!
(nk)!

(6)

and

lim
z→−k

ψ(nz)
ψ(qz)

=
q
n

(7)

for any non-negative integer k and all positive integers n and q were established by A. Prabhu and H. M.
Srivastava. Later, by using explicit formula for the n-th derivative of the cotangent function, F. Qi obtained
the following formulas

lim
z→−k

ψ(i)(nz)
ψ(i)(qz)

=
( q

n

)i+1
(8)

and

lim
z→−k

Γ(i)(nz)
Γ(i)(qz)

= (−1)(n−q)k
( q

n

)i+1 (qk)!
(nk)!

(9)

for any non-negative integer k and all positive integers n and q in [10][11] and [12]. İ. Ege, and E. Yýldýrým
got some equalities of the Γp(z) for 0 < p < 1 by the neutrix and neutrix limit in [3]. In addition, V. B.
Krasniqi, H. M. Srivastava and S. S. Dragomir obtained some properties related to convexity, log-convexity
and complete monotonicity by defined (p, q)−gamma and (p, q)−psi functions in [7]. In particular, the
(p, q)−gamma function coincides with the classical p−gamma function Γp(z) when q→ 1. For more results,
we refer the reader to the papers [16]-[17].

It is easily known that the p-gamma function Γp(z) is single valued and analytic over the entire complex
plane, except for the points z = 0,−1,−2, . . . ,−p. Motivated by limit formulas (1.6)-(1.9), we present some
limit formulas related to ratios of derivatives of the p−gamma function.

2. Main Results

Theorem 2.1. For every positive integer n, we have

lim
z→0

Γp(nz)
Γp(z)

=
1
n
. (10)

Proof. By a simple computation we have

lim
z→0

Γp(nz)
Γp(z)

= lim
z→0

p!pnz

nz(nz + 1) . . . (nz + p)
z(z + 1) . . . (z + p)

p!pz

= lim
z→0

p(n−1)z(z + 1) . . . (z + p)
n(nz + 1) . . . (nz + p)

=
1
n
.

The proof is completed.
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Remark 2.2. Let p→∞ at the both sides of the limit equality (10), we obtain Theorem 1 in [8].

Theorem 2.3. For any non-negative integer k and all positive integers n, q satisfying nk = m ≤ p, qk = l ≤ p, the
following equality holds

lim
z→−k

Γp(nz)
Γp(qz)

= (−1)l−m
( q

n

)2 pl−m(l − 1)!(p − l)!
(m − 1)!(p −m)!

. (11)

Proof. Using expression of the function Γp(z), it follows that

lim
z→−k

Γp(nz)
Γp(qz)

= lim
z→−k

p!pnz

nz(nz + 1) . . . (nz + p)
qz(qz + 1) . . . (qz + p)

p!pqz

= lim
z→−k

qp(n−q)z

n
(qz + 1) . . . (qz + l − 1)(qz + l)(qz + l + 1) . . . (qz + p)

(nz + 1) . . . (nz + m − 1)(nz + m)(nz + m + 1) . . . (nz + p)

=
qp(n−q)(−k)

n
lim
z→−k

(qz + 1) . . . (qz + l − 1)q(z + k)(qz + l + 1) . . . (qz + p)
(nz + 1) . . . (nz + m − 1)n(z + k)(nz + m + 1) . . . (nz + p)

= (−1)l−m
( q

n

)2 pl−m(l − 1)!(p − l)!
(m − 1)!(p −m)!

.

Remark 2.4. It is obvious that the following limit equality holds

lim
p→∞

pl−m(p − l)!
(p −m)!

= 1. (12)

In fact, without loss of generality, we suppose q ≤ n. Applying Stirling’s formula n! ∼
√

2πnnne−n, we have

lim
p→∞

pl−m(p − l)!
(p −m)!

= lim
p→∞

pl−m
√

2π(p − l)(p − l)(p−l)e−(p−l)√
2π(p −m)(p −m)(p−m)e−(p−m)

= lim
p→∞

1
em−l

√
p − l

p −m

(
p − l

p −m

)p−m (
p − l

p

)m−l

= 1.

Let p→∞ at the both sides of the limit equality (11), we obtain limit formula (6).

Remark 2.5. Taking k = 0 and q = 1, the formula (11) becomes (10). In fact,

lim
z→0

Γp(nz)
Γp(z)

= (−1)0−0
(1

n

)2 m
l

p0−00!(p − 0)!
0!(p − 0)!

=
1
n

where nk = m, qk = l.

Theorem 2.6. For any non-negative integer k and all positive integers n, q satisfying nk = m ≤ p, qk = l ≤ p, it
holds

lim
z→−k

ψ(i)
p (nz)

ψ(i)
p (qz)

=
( q

n

)i+1
. (13)
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Proof. An easy computation results in

lim
z→−k

ψ(i)
p (nz)

ψ(i)
p (qz)

= lim
z→−k

p∑
k=0

(−1)i−1i!
(nz+k)i+1

p∑
k=0

(−1)i−1i!
(qz+k)i+1

= lim
z→−k

(−1)i−1i!
(nz)i+1 + . . . + (−1)i−1i!

(nz+m)i+1 +
(−1)i−1i!

(nz+m+1)i+1 + . . . + (−1)i−1i!
(nz+p)i+1

(−1)i−1i!
(qz)i+1 + . . . + (−1)i−1i!

(qz+l−1)i+1 +
(−1)i−1i!
(qz+l)i+1 + . . . + (−1)i−1i!

(qz+p)i+1

= lim
z→−k

(
(−1)i−1i!
(nz)i+1 + . . . + (−1)i−1i!

(nz+m)i+1 +
(−1)i−1i!

(nz+m+1)i+1 + . . . + (−1)i−1i!
(nz+p)i+1

)
(z + k)i+1(

(−1)i−1i!
(qz)i+1 + . . . + (−1)i−1i!

(qz+l−1)i+1 +
(−1)i−1i!
(qz+l)i+1 + . . . + (−1)i−1i!

(qz+p)i+1

)
(z + k)i+1

=
( q

n

)i+1

where we use (5).

Remark 2.7. Taking the limit both sides of the limit equality (13) as p→∞, we obtain Theorem 1.1 in [10]. If adding
up i = 0, we can get (1.2) in [11].

Remark 2.8. We give simply new proofs of (6)-(8) by limit formulas related to ratios of derivatives of the p−gamma
function Γp(z).

Finally, we pose a conjecture.

Conjecture 2.9. For any non-negative integer k and all positive integers n > 2, q satisfying nk = m ≤ p, qk = l ≤ p,
then

lim
z→−k

Γ(i)
p (nz)

Γ(i)
p (qz)

= (−1)l−m
( q

n

)i+2 pl−m(l − 1)!(p − l)!
(m − 1)!(p −m)!

. (14)

Acknowledgments The authors appreciate the referee for his(her) helpful and valuable comments
on this manuscript.

References

[1] M. Abramowitz, I. A. Stegun, (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,
National Bureau of Standards, Washington, 1970.

[2] H. Alzer, Sharp bounds for the ratio of q-gamma functions, Math. Nachr. 222 (2001) 365–376.
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