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Some Relations in Non-Symmetric Affine Connection Spaces with
Regard to a Special almost Geodesic Mappings of the Third Type

Mica S. Stankovié?, Nenad O. Vesié®

?Faculty of Science and Mathematics Ni$§

Abstract. We investigate two kinds of special almost geodesic mappings of the third type in this paper.
We also find some relations for curvature tensors of almost geodesic mappings of the third type.

1. Introduction

A lot of research papers and monographs [1]-[30] are dedicated to the theory of geodesic mappings
of Riemannian spaces, affine connected ones and their generalizations. Sinyukov [22] and Mikes [1], [2]

[12], [13], [29] gave some other significant contributions to the study of almost geodesic mappings of affine
connected spaces.

Let GAn be an N-dimensional space with an affine connection L given with the aid of components Lj.k
in each local map V on a differentiable manifold. Generally, it is L;.k # L;'(]..

Generalizing conception of a geodesic mappings for Riemannian and affine connected spaces, Sinyukov
introduced [22] the following notations:

A curve | : ¥ = ¥(t) is an almost geodesic line if its tangential vector A"(f) = dx"/dt # 0 satisfies the
equations

—h _ - —h —h
A(z) = a(t)/\h + b(t)/\(l)/ A(l) = /\h

—h =h

1A Ao = At
where a(t) and b(t) are functions of a parameter ¢, and || denotes the covariant derivative with respect to the
connection in ZN. .

A mapping f of an affine connected space Ay onto a space Ay is an almost geodesic mapping if it any
geodesic line of the space Ay turns into an almost geodesic line of the space Ay.

Sinyukov [22] singled out the three types, 71, 712, 713, of almost geodesic mappings for spaces without
torsion. We investigate mappings of the type m3 for spaces with torsion in the present article. In the case of
a differentiable manifold with non-symmetric affine connection L;k, there exist two kinds of the covariant

derivative of a vector A" defined as follows:

h _ yh h h _ yh h
M = M+ LV Ay = Ay Ly .
1
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For this reason, in the case of a space with non-symmetric affine connection we can define two kinds of
almost geodesic lines on this space and we can also define two kinds of almost geodesic mappings between
two spaces.

There are five linearly independent curvature tensors into space GAy [16]. We are specially interested
in the following ones [30] in this paper:

ho_gh _qh arh _rayh .
11<ijk =Li; — Ly + LijLy — Ly Ly

1
ho_ h h
12<ijk —E (Li]’,k - Lz’k,j

Ky =L = Ly + LiLy, = LgLy; + 2L3 L ;

+L"

h ath ari ath \.
jik ~ L j + LijLar — LigLj — Ll )'

ki~aj

3 ijk ijk ki, j ki~ aj kj %i’ (11)
h _1 h h h h ath ath ath ath \.
Kik —§<Li]‘,k = Liyj + Ljix = Ly j + LiiLog + LijLy, — LiLa; — Lkz’Lja)’
1
h __(th _71h h _1h arh _gath arh _gagh ath
Kiy = Z(Li]./k L + Ly = Ly + LiL, — gLy, + LiLly LﬁLaj+ijL%i),

v

where ”,”” denotes prime derivative of a magnitude (affine connection coefficients in our case).
Curvature tensors (1.1) may be expressed in the form

ho_ph o qh _qh arh _qarh.
Ifijk—Rijk"'Lij,-k lec;/"‘LijLavk LyLay
\% \2

Vv

h _ ph _gagh ath .

Kijk = Rijx = LijLyge + Lyl
v oV A

K =Rt 4L +Lh -1 +1arh —2rerh;
3 ijk ijk 1v];k 1\1/(;] lv] %k 1\1/{ ay ]vk ai’ (12)

h _ph _garh _gagh.
I4<ijk = Rijk Lz]Lavk LchLaj’

v

\2
K =R~ Lpepn
5 ijk ik o ]vk i

where

ho_71h h h h
Ry = Lg,k — L + LﬁL% - L%Lﬂ. (1.3)
is Riemannnian-Christofel curvature tensor and ”;” denotes the covariant derivative of a magnitude with
respect to the affine connection of the associated space Ay of the space GAN.

2. Almost geodesic mappings of non-symmetric affine connected spaces

One can define four kinds of a covariant derivative [14], [15] in the space GAx with non-symmetric
affine connection L’].k. These four kinds of covariant derivative become two ones in the case of a vector A".

Signify by |, || a covariant derivative of the kind 8 (6 = 1,2) in GAy and GZN respectively. For example,
66

for a tensor uj. in GAy we have

i i i a_1a i
ajlm_a].,m+Lamaj L% a
1

i _ i i o _Ta i
e and @y, =a;, +L,.a7 =L a
2

jm mjar

A curve ¢ = {(t) is the first kind almost geodesic line if its tangential vector A"(t) = dx"/dt # 0 satisfies
the equations
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Th o= h | B\ Ak T _ b ja T _h a
fo =IO 0L Lo =AY de = daed® 1)

where ?(t) and ?(t) are functions of a parameter t. This curve is the second kind almost geodesic line if its

tangential vector A"(t) = dx"/dt # 0 satisfies the equations

I = h T\ h A _ 2k a b _ yh a
Ty =3OV + 0O, Xy =414 Ty = T 2.2)

where g(t) and é(t) are functions of a parameter ¢.

A mapping f of the space GAy onto a space with non-symmetric affine connection GAy is the first kind
almost geodesic mapping if any geodesic line of the space GAy turns into the first kind almost geodesic

line of the space GAy. This mapping is the second kind almost geodesic mapping if any geodesic line of

the space GAy turns into the second kind almost geodesic line of the space GAy.
We put

ho_ 7! h
where Li?j(x) and EZ(x) are connection coefficients of the space GAx and GAy, (N > 2). Magnitude Pf.‘]. is
deformation tensor. The following theorems are satistied [24]-[27]:

Theorem 2.1. A mapping f of the space GAy onto GAy is an almost geodesic mapping of the first kind if and only
if the deformation tensor Pf’]. satisfies the conditions

(Pgpy + PoaPpy)A* APAY = BN AP + 0" 2.4)
1

identically, where a and 117 are invariants.
Analogously it is satisfied the next one:

Theorem 2.2. A mapping f of the space GAy onto GAy is an almost geodesic mapping of the second kind if and
only if the deformation tensor Pf?]. satisfies the conditions

(P, + Pf’mng)/\“ APAY = zzapgﬂaa AP+ g)\h (2.5)

aply
2
identically, where a and b are invariant.
1 1

Almost geodesic mappings of the space Ay without torsion are investigated by Sinyukov in [22].
The third type almost geodesic mappings of the first kind is determined by a condition for the function lla(x; A)

from the equation (2.4):
o201

- 2.6
OesAE AO (2.6)

b=
1
where g.51¢ A% # 0. Then, deformation tensor P?j satisfies the following equation [25]

Phx) = 0] + ;8] +0ij(0)g" () + (). 27)
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Magnitude 511] in the equation (2.7) is an anti-symmetric tensor of the type (;) From (2.7) and (2.4) we have

(', + eIV = (gl + )N, 29
1
wherefrom
(Phlm + E}quoé = Vm(Ph + H6ﬁ1 : (2.9)
1

In the equation (2.9), magnitude vy, is a covariant vector, magnitude p is an invariant one and magnitude
E?j is an anti-symmetric tensor.

The equations (2.7) and (2.9) characterize the third type almost geodesic mapping of the first kind. We
denote that mapping as .

Almost geodesic mapping of the second kind of a space GAy into a space GAy is the third kind T3 if the
function 127(x; A) in (2.5) has the form

b 01010

OM—EA(S, (2.10)

b=

2
where is g,5A¢ A° # 0. Deformation tensor P?]. has the form (2.5) in this case. Analogously as in the case of
7{(3, we obtain it holds

P+ Enep’ = v + ). 2.11)
2

In this case, as in the previous one, a magnitude v,, is a covariant vector, magnitude u is an invariant one
and magnitude E?j is an antisymmetric tensor.

The equations (2.7) and (2.11) characterize the third type almost geodesic mapping of the first kind.
That mapping we denote as 3.

Let a mapping ms GAn — GAy has the property of reciprocity, i.e. let its inverse mapping be a mapping
of the type 7’;23 type also. Then, it is satisfied

Py = En®™ = Vg + 10}, 2.12)

where 7,, is a vector and fi is an invariant.
From this equation (see [25]) it follows the condition

Eon®” = O + POy, (2.13)
where
szvm_ﬂm"'aam@a+¢m; ﬁ:[vl_ﬂ+¢a(Pa'
Magnitude p in this equation is an invariant, and magnitude 6,, is a vector.

Suppose the conditions (2.13) are satisfied identically with respect to ¢". Then, there exists a special
class of almost geodesic mappings of the type 7“1'53. Basic equations which characterize mappings from this

class [25] has the form

—h ; B
Lij = Lj + 0] + ;0] +0ijg" + 60! - 6:0", (2.14)

@\ = @ + pSiy, (2.15)

1
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where magnitudes 0;, 1), are vectors and magnitude p is an invariant.
Basic equations which characterize almost geodesic mappings of the type 7;23 are

—h
Lij = Ll}-l]- + 17[}16? + 1/}15? + o,-]-qoh + 9]‘(5? - 61‘5’} , (2~16)

@'\ = Mn@" + P8y, 2.17)
2

where 0;, 7; are vectors and p is an invariant.

3. Curvature tensors and 7i3-mappings

Our purpose is discovering change formulas of curvature tensors under the almost geodesic mappings
of the types ’71?3 and ’7273. Let prove the following propositions at the start.

Proposition 3.1. Covariant derivative go’,}( of a vector @' from the space GA based on the connection of the associated
space Ay, in the case of (p’fk is
1

ol = pop + mg" — L . G.1)

Covariant derivative (p’j{ of a vector ¢ from the space GAy based on the connection of the associated space Ay,
. h .
in the case of ¢ is
2

@l = po} + g + Ly ™. 3.2)

Magnitudes p, 1; and qoi in the equations (3.1), (3.2) are an invariant, a covariant vector and a contravariant one,
respectively.

Proof. Validity of this proposition holds directly from the equations (2.15), (2.16) and the definition of the
covariant derivatives of the first and the second kind. O

Proposition 3.2. Let f : GAy — GAy be an almost geodesic mapping of the third type between spaces GAy and

— . . . . —h . .
GAN. Affine connection coefficients ij and L;; of these spaces satisfy the equation

—h
Lij;k = L?j;k + G,']';kqoh + GijT]k(ph - G,']'Lh (Pa + l,Di;k(Sl; + I]D]';kél; + G,']'péz + Qj;ké? - 91';]{5?. (3.3)

ak
A\

Proof. Covariant derivative of the equation (2.14) by x* with respect to the space Ay returns

—h
Lij;k = Lz}'lj;k + l/)i;ké? + l/)j;ké? + aij,.kqoh + Oi]'(Pz( + Qj;ké? — 9,';1((5?.
If we interchange the result (3.1) in this equation, we obtain
—h
Lije = Lijy + Yisd; + 9jud; + 0ijaep” + 03jpd) + 0t = 0Ll + 067 — 0307,

which proves this proposition. o
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Proposition 3.3. Let f : GANy — GAy be an almost geodesic mapping of the third type. Affine connection
coefficients Lh and L j of these spaces satisfy the equation

L; Lak = L“Lh + Lh O + L L0+ 0,610} — L, 0; — L0, — 6:64]. (3.4)

Proof. From the equation (2.14) we get

—=h
Lij = Lj; + 6,0} — 6,0

Based on the this result, we obtain

Z?]-Z —Lf;Lgk + L“ 0xdlt - L“Q o+ LZkG 0% + 000! — 00,09 — L’%keiéy — 0,610] + 6,6,00;

_Lj;L’;k L’l O — L“ eaah - L L0 + 0,610 — 66,6 — L, 6; — 6:645 + 6,6,0]
which, after ordering of this equation, proves the proposition. m|

The following lemma is useful in our research presented below.

Lemma 3.4. Let f : GAy — GAy be an almost geodesic mapping of the type ’71?3. Riemann-Christoffel curvature

tensor defined with respect to the connection coefficients LZ. =1 (Lf] + Li.’l.)

Rh _Lh

i = Liji — L+ LiLh, — LyLh (3.5)

ik, j ij"ak aj
. . —h — . .
of the associated space Ay and the corresponding one R of the space Ay satisfy the equation

Ri = Ry + (V57— i) = 030 + 9°90)) 8 = (i — Wit = 0(p + 9°0a)) 8 + (36— i) O

(3.6)
+ (Gz’j;k = Oikj + 1k0ij = 1j0ik + 0ijOkpP” = Gikajp(Pp) ¢ —ail pk(P + f’ikL,,]-(P”-
\2 \2

Proof. With respect to the equation (2.14) we have it holds

h h h I h
Li = Lﬁ+ 1701'6]- + llljjéi + 0ij¢

and

—h
Lg,k 1]k+¢,k6 +¢1]6 +al]k(p +Ul](pk,

which causes the equation

Fho  =h h h h h h h
Lije = Lij = L,]k ,k] + I,Uzké = Vi, j0p + Wik = Yi, )0 + (dijk = Ok, )@ + 0ij @ — Ok @’
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which proves this lemma. ]
If we denote expressions in brackets from the equation (3.6) as

Vij = Yi — Yigj — 0ij(p + 9" Pa)

N N (3.7)

Oijk = Ojjik — Oik;j T Oijllk — Oik1]j + 0ij0ka®P” — Oik0ja ",
this equation becomes

—

Rij = R?/k + 0] — H[Jik(s? — Pl — oip” — OiiLZVk(Pa + aikLZj(p“. (3.8)
Theorem 3.5. Let f : GAx — GAy be an almost geodesic mapping of the type 71%3. Curvature tensors 11<Zk and ?]k
satisfy the equation

Kf'}k ! ]k + %5’ z,luik(s? + llp[jk](sf’ + 0" — aijLﬁvk(p“ + aika;],(pa - L;;@aég + L%Qaéh 2L ]ke,, 3.9)
where

IP,']' = 17[),']' + Qi;j + 9{6]‘, (3.10)

1
and Py and o;j are given by (3.7).

Proof. Firstly, based on the equation (3.3), we obtain it holds

—h

Lij — L,k y Lf;k L%{; o+ (0 — 67) O — 013! + 050
Based on Proposition 3.3, we get

—a—h —a—h

I Ly - Li L= L?] LZk -1 Lh (L%Ga - e,-ek)(s? - (Lgea - eiej) & — 2L}, 6. (3.11)

The first of the equations in (1.2) is

" et — L“Lh

h _ ph h
Kj Rij + L zk] 1] ak

1ifk T Tjk 1]k

Based on it, after the involving of results obtained in this proof and result presented in Lemma 2.1, we

prove this theorem is valid. ]
Theorem 3.6. Let f : GAy — GAy be an almost geodesic mapping of the type n3 Curvature tensors Kh and KZ ”
satisfy the equation

Kf']k l ]k + lp,] lfiké’; + lzp[jk](sf' + 0" — 0ij ak(p + o‘lkLa](p"‘ + L“Q 8 - L“ 6,0] + 2L ]ke,, (3.12)
where

Yij = i — 0,0; (3.13)

2

and Wy and oy are given by (3.7).
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Proof. Based on the second of the equations (1.2) which is

h h arth ath
Kl]k Rl]k - Lz]Lak + szLa]’

the equation (3.1) and the result (3.11) we obtain it holds

Kfl]k = Kil]k (1,[),';]‘ - l]l)il][)]' - O‘i]'(p + (pal,[)a) + L?}-@a - 6,‘9/’) 52
= (Wis = i = 0o + 9"0) + L300 — 0:01) ],

+ (le;k - 1Pk;j) o) + (Gij-k = Oigj + Mk0ij = Nj0ik + 0ij0kaP” — Uikﬁja(P“) ¢"
— oL " + oyl ](p +2L" ]ke,,
which proves this theorem. O

Theorem 3.7. Let f : GAx — GAy be an almost geodesic mapping of the type 1t3. Curvature tensors Kh and K.

3ijk
satisfy the equation
Kf']k z]k + % lfz’ké'} + l#[ﬂclé? + il — Gifolvk(P“ +ouLly "
. . h X ! (3.14)
—20;0, + 2L;*k6a6 2L 0 +2L; Gk
where
Uij =i+ 0 + 6,0}, (3.15)
3
and Py and ojj are given by (3.7).
Proof. As we can conclude from the second and the third equation in (1.2), it holds
b gl h h h
Kl]k Kzl]k + Lz] x T le] - ZL?kLm
Based on the equation (3.4), we conclude it holds
—a—h
L‘ka%i = L;*kL?y — 00,0 + Ginéh - L‘]"keaéh + Lh 0; — Lh Ok + L L0);. (3.16)

It also holds

—h —h

h h . st _p.. sh_ . .sh
Lijx + Ly, = Ll]k+Li5;].+(9,;k+9k;])6i 050! — OO,
\2

which combined with 12<Zk and the equation (3.16) proves this theorem. m]
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Theorem 3.8. Let f : GAy — GAy be an almost geodesic mapping of the type s. Curvature tensors I4<fl and KZ "

satisfy the equation

K?]k l]k + ¢,, ¢z‘k5? + IP[fklé?
(3.17)
+ 0" — oL ak(p +oxL” ](p + L”‘Q S+ Z(L“Q +0; Qk)é —20,0,8! - 2L§?].9k - 2ng9,,

where
Vij = gij + 6,0, (3.18)
4

and ;j and o given by (3.7).

Proof. After the symmetrization without division of the equation (3.4) by indices j and k, we obtain

L L k+L,kL _Lf;L’;k+L“Lh ( g{@awiek)é (L“Q +99)5h+29 9k6h+2L’16k+2L 0;.

Based on the equation

h h h h
Kz]k R1]k - LZLak - LaL
(the forth one in the equation 1.2) and the last obtained one we conclude the equation (3.17) is valid. O

After involving of (3.16) in the fifth equation in (1.2) we have the next theorem:

Theorem 3.9. Let f : GAy — GAy be an almost geodesic mapping of the type ms. Curvature tensors Kh and K"

5ijk
satisfy the equation
Ky =K+ % llfiké? + lP[fk]éf' + Gijk(Ph — oLy " +0i kLh »"
. ) . (3.19)
+ 2L‘]Xk6 of = 2L]k6 + L Gk 2 zke,,
where
1
lil]ij = l/}l] + 5616], (320)
5

and ;j and o given by (3.7).

Proof. The validity of this theorem holds directly from the equation (1.2), the fifth one which is

h h ath
Kz]k Rt]k - EL]kLaz’

and the equation (3.16). O
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Based on the equation (3.2), we obtain Riemann-Christofel curvature tensor R?jk of the associated space
Ay of a space GAy after application of an almost geodesic mapping 7}}, satisfies the equation

Rige = R + (3 — 9ty — 03j(p + 0°0a)) 8 = (i — it — 0p + " 9e)) 8" + (01 — ) 0

(3.21)
+ (Gij;k = Oik;j + Mk0ij = 10k + 0ijOkaP” = Oik0 jap )(P + UijLavk(P - GikLaj(P .

As result of the equation (3.21), we obtain it holds

Kf’]k ! ]k + ¢,, lfl-ké’; + llp[jk](sﬁ’ + oy + GijLI%k(p“ — oL A L;;.ea(sj; + L%Qaéh 2L’;k9,, (3.22)

thjk = KZ" + léJl](SZ - lé)iké? + lf[jk]é? + ai]-kqoh + O',']'LZVk(p O'lkLa](p + L“G 6h L;\};Qaé? + ZL?in, (323)

b7 h
Kzl]k 1]k+11b’]6
— Pad + Yot + oipg” + oyl 9" — auLl @ — 20,08 + 2L% 0,67 — 2L1 0, + 2L".0 (3.24)
31k i 3[]k] i ik i a\‘/k(p ik %](P i;jOk jvk a0; iV l\}, k
th]k = ?jk + i} = Yadl + Y]
4 4 4 (3.25)
+ o + oLl Ly + L5600} +2(L00 + 016k ] - 20,68} - 21110, - 2140 '
zﬂc(P 01] oék(P — Oik ](P k j jYk0O; ij k lzc jr
Th _— h
Kz]k 1]k+l:l]1]6
(3.26)

- 1}[)}1‘1{5? + lﬁ[]‘k]é? + oijkqoh + Oj]'Lka(pa ,kLa]q) + 5 ]kG ZL?kQ + Lh 6k —Lh 6

for v, ij, 0 defined as above.
r
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