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Invertible Harmonic and Harmonic Quasiconformal Mappings

Miodrag Mateljevića

aFaculty of Mathematics, University of Belgrade, Studentski Trg 16, Belgrade, Republic of Serbia

Abstract. Recently G. Alessandrini - V. Nesi and Kalaj generalized a classical result of H. Kneser (RKC-
Theorem). Using a new approach we get some new results related to RKC-Theorem and harmonic quasicon-
formal (HQC) mappings. We also review some results concerning bi-Lipschitz property for HQC-mappings
between Lyapunov domains and related results in planar case using some novelty.

1. Introduction

G. Alessandrini and V. Nesi prove necessary and sufficient criteria of invertibility for planar harmonic
mappings which generalize a classical result of H. Kneser, also known as the Radó-Kneser-Choquet theorem
(RKC-Theorem), cf. [1].

Let S1 denote the unit disk and let γ be a closed Jordan curve, and f0 : S1 onto
−→ tr(γ), where tr denotes

the trace of a curve. The basic question that they address in this paper is under which conditions on f0
we have that Poisson integral of f0, F = P[ f0] is a homeomorphism of the unit disk B onto D, where D
denotes the bounded open, simply connected set for which ∂D = γ. The fundamental result for this issue is
a classical theorem, first conjectured by T. Radó in 1926, which was proved immediately after by H. Kneser,
and subsequently rediscovered, with a different proof, by G. Choquet, cf. [1]. Let us recall the result.

Theorem 1.1 (H. Kneser). If D is convex, then F is a homeomorphism of B onto D.

We first state G. Alessandrini and V. Nesi results using their notation, [1].
Recall, let B := {(x; y) ∈ R2 : x2 + y2 < 1} denote the unit disk. Given a homeomorphism f0 from the

unit circle ∂B onto a simple closed curve γ ⊂ R2, let us consider the solution f ∈ C2(B;R2)∩ C(B;R2) to the
following Dirichlet problem

∆ f = 0 in B; f = f0 on ∂B . (1.1)

Following the notation in [1], denote by D f the derivative of f and note that det Df is Jacobian of f .
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Theorem 1.2 (Theorem AN1 [1]). Let f0 : ∂B→ γ ⊂ R2 be an orientation preserving diffeomorphism of class C1

onto a simple closed curve γ. Let D be the bounded domain such that ∂D = γ. Let f ∈ C2(B; R2) ∩ C(B; R2) be the
solution to (1.1) and assume, in addition, that f ∈ C1(B;R2). The mapping f is a diffeomorphism of B onto D if and
only if

det Df > 0 everywhere on ∂B. (1.2)

In order to compare this statement with Kneser’s Theorem, it is worth noticing that, when γ is convex,
(1.2) is automatically satisfied. Indeed it is proved, see Lemma 5.3 [1], that detD f > 0 always holds true on
the points of ∂B which are mapped through f0 on the part of γ which agrees with its convex hull, see also
Definition 5.1 [1]. As a consequence it is possible to refine the statement of Theorem 1.3 [1], by requiring
(1.2) on a suitable proper subset of ∂B. This is the content of Theorem 5.2 [1].

In [1], with next result the authors return to the original issue for homeomorphisms. Unfortunately,
in this case, the characterization of the parameterizations f0, which give rise to homeomorphic harmonic
mappings f = P[ f0], is less transparent. It involves the following classical notion of local homeomorphism.

Definition 1.1. Given P ∈ B, a mapping f ∈ C(B;R2) is a local homeomorphism at P if there exists a neighborhood
G of P such that U is one-to- one on G ∩ B.

Theorem 1.3 ([1], Theorem AN2). Let f0 : ∂B→ γ ⊂ R2 be an orientation preserving diffeomorphism of class C1

onto a simple closed curve γ. Let D be the bounded domain such that ∂D = γ. Let (i): f ∈ W1,2
loc (B;R2) ∩ C(B;R2)

be the solution to (1.1), and assume, in addition, that f ∈ C1(B;R2). The mapping f is a homeomorphism of
B onto D if and only if, for every P ∈ ∂B, the mapping f is a local homeomorphism at P.

By Exercise 2.9 in [7]: if u is continuous weak harmonic (subharmonic, superharmonic) then it is harmonic
(subharmonic, superharmonic). Hence if f satisfies the hypothesis (i), it is harmonic and therefore f = P[ f0].
We can restate the result if we set here f = P[ f0] instead of Sobolev hypthesis (i).

In view of a better appreciation of the strength and novelty of Theorem 1.2 we refer the reader to
Remark 1.5 [1]. Until the appearance [1], the so-called method of shear construction introduced by Clunie
and Sheil-Small has been known as the only other general means for construction of invertible harmonic
mappings, besides Kneser’s Theorem. In fact, it is shown in [1] that Theorem 1.2, and the arguments leading
to its proof, yield a new and extremely wide generalization of the shear construction. We refer the reader
to Theorem 7.3 and Corollary 7.4 in Section 7 [1], where the shear construction of Clunie and Sheil-Small is
reviewed and their new version is demonstrated.

Kalaj [14] also has extended the Rado-Choquet-Kneser theorem to mappings between the unit circle and
Lyapunov closed curves with Lipschitz boundary data and essentially positive Jacobian at the boundary
(but without restriction on the convexity of image domain). The proof is based on the above mentioned
extension of the Rado-Choquet-Kneser theorem by Alessandrini and Nesi and an approximation scheme is
used in it.

In [5, 25] we used so called E-function which is related to the boundary data of the radial derivative
of harmonic maps and the normal unit vector of the boundary of codomain (see Definition 2.4, Section 2).
Motivated by an approach described in Kalaj’s Studia paper[14] and using the continuity of E-function, the
author found a new proof of Kalaj result1), but had not published it officially at that time. A version of that
proof is outlined in this paper, cf. also [23, 28].

Recently Iwaniec, cf. [9], has also communicated an interesting analytic proof of Rado-Kneser-Choquet
theorem2); cf. also Iwaniec- Onninen [10] and see [27, 28] for more details.

While writing this paper, Kalaj put his new considerations on the arxiv [16] 3). In this manuscript,
Kalaj extends the version of Rado-Choquet-Kneser (G. Alessandrini - V. Nesi) theorem obtained in his

1)Roughly speaking around 2010
2)V. Manojlović informed me about Iwaniec’s lecture [9].
3)Mar 2015 arxiv paper
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Studia paper for the mappings with weak homeomorphic Lipschitz boundary data f and Dini’s smooth
boundary but without restriction on the convexity of image domain, provided that the Jacobian of F = P[ f ]
(Poisson integral of f ) is essentially positive at the boundary. The proof is based again on the extension of
Rado-Choquet-Kneser theorem by Alessandrini and Nesi and a new version of the approximation method
previously used in his Studia paper. Also an important fact here is that in this setting Kalaj proves that:
there is a continuous function T on T such that J(F, z) = |∂tF(z)|T(z) a.e. t ∈ [0, 2π], where z = eit and T
denotes the unit circle. 4)

G. Alessandrini - V. Nesi and Kalaj also have discussed connections between the subject related to
RKC-theorem and HQC mappings. Note that the subject related to HQC mappings was intensively studied
by the participants of Belgrade Analysis Seminar, see for example [17, 18, 25, 27–29] and the literature
cited there. In particular, in [28], we review some results from Božin-Mateljević manuscript [5] concerning
bi-Lipschitz property for HQC-mappings between Lyapunov domains in planar case. The main result in
[5] is:

Theorem 1.4. Let Ω and Ω1 be Jordan Lyapunov domains (i.e. inD1 class, see Definition 2.3 ), and let h : Ω→ Ω1
be a harmonic quasiconformal (q.c.) homeomorphism. Then h is bi-Lipschitz.

In view of a better appreciation of this result, we will give a few comments. Let D and G be Jordan domains
with Dini’s smooth boundaries and and let f : D→ G be a harmonic homeomorphism. In [15] it is proved
the following result: If f is quasiconformal, then f is Lipschitz. The method developed in [5, 28] shows
that it is by-Lipschitz. This extends some recent results, where stronger assumptions on the boundary
are imposed, and somehow it is optimal, since it coincides with the best known conditions for Lipschitz
behavior of conformal mappings in the plane and conformal parametrization of minimal surfaces (see for
instance Example 1).

It seems that using our approach outlined in this paper one can get further results, in particular local
versions of RKC-Theorem and of Kellogg and Warschawski theorem for harmonic maps.

The content of the paper is as follows. In Section 2 we give some definitions and notation we need in this
paper. In Section 3 we consider various characterizations of HQC (Theorems 3.1, 3.2, 3.3 and 3.5). Invertible
harmonic mappings are subject of Section 4 (Theorems 4.1, 4.3,4.4). We outline a proof of Theorem 1.4 in
Section 5.

2. Definitions and Notations

Throughout this paper, U (or D) will denote the unit disc {z : |z| < 1}, T the unit circle, {z : |z| = 1} and
we will use frequently notation z = reiθ or z = reiϕ.

By ∂θh and ∂rh (or sometimes by h′r and h′θ), h′x and h′y we denote partial derivatives with respect to θ
and r, x and y respectively. Let

Pr(t) =
1 − r2

1 − 2r cos(t) + r2

denote the Poisson kernel.
If ψ ∈ L1[0, 2π] and

h(z) =
1

2π

2π∫
0

Pr(θ − t)ψ(t) dt, (2.1)

then the function h = P[ψ] so defined is called Poisson integral of ψ.
If ψ is of bounded variation, define Tψ(x) as variation of ψ on [0, x], and let V(ψ) denote variation of ψ

on [0, 2π] (see, for example, [30] p.171).

4)It seems that the function T which appears in [16] is the function E defined in our paper [5] (see also [26]) and that there is some
overlaps of obtained results.
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Define
h∗(θ) = h∗(eiθ) = lim

r→1
h(reiθ)

when this limit exists.

Definition 2.1 (Cauchy and Hilbert transform). If ψ ∈ L1[0, 2π] (or L1[T]), then the Cauchy transform C(ψ) is
defined as

C(ψ)(z) =
1

2π

2π∫
0

ψ(t)eit

eit − z
dt (2.2)

with its kernel

K(z, t) =
eit

eit − z
.

While the Hilbert transform H(ψ) is defined as

H(ψ)(ϕ) = −
1

2π

π∫
0+

ψ(ϕ + t) − ψ(ϕ − t)
tan t/2

dt,

where we abuse notation by extending ψ to be 2π periodic, or consider it to be a function from L1(T). The following
property of the Hilbert transform is also sometimes taken as the definition:
If u = P[ψ] and v is the harmonic conjugate of u, then v∗ = H(ψ) a.e.

Note that, if ψ is 2π-periodic, absolutely continuous on [0, 2π] (and therefore ψ′ ∈ L1[0, 2π]), then

h′θ = P[ψ′]. (2.3)

Hence, since rh′r is the harmonic conjugate of h′θ, we find

rh′r = P[H(ψ′)] , (2.4)
(h′r)

∗(eiθ) = H(ψ′)(θ) a.e. (2.5)

It is clear that
K(z, t) + K(z, t) − 1 = Pr(θ − t) .

Recall, for f : U→ C, we define
f∗(θ) = f ∗(eiθ) = lim

r→1
f (reiθ)

when this limit exists. For f : T→ C, define f (θ) = f (eiθ) (we also use notation f∗ instead of f ).
If f is a bounded harmonic map defined on the unit discU, then f ∗ exists a.e., f ∗ is a bounded integrable

function defined on the unit circle T, and f has the following representation

f (z) = P[ f ∗](z) =
1

2π

2π∫
0

P(r, t − ϕ) f ∗(eit)dt, (2.6)

where z = reiϕ.
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Definition 2.2 (Quasiconformal mappings). A homeomorphism f : D 7→ G, where D and G are subdomains of
the complex plane C, is said to be K-quasiconformal (K-q.c or k-q.c), K ≥ 1, if f is absolutely continuous on a.e.
horizontal and a.e. vertical line in D and there is k ∈ [0, 1) such that

| fz̄| ≤ k| fz| a.e. on D, (2.7)

where K = 1+k
1−k , i.e. k = K−1

K+1 .
Note that the condition (2.7) can be written as

D f :=
Λ

λ
=
| fz| + | fz|
| fz| − | fz|

≤ K, (2.8)

where Λ = | fz| + | fz|, λ = | fz| − | fz| and K = 1+k
1−k , i.e. k = K−1

K+1 .

Note that if γ is 2π-periodic absolutely continuous on [0, 2π] (and therefore γ′ ∈ L1[0, 2π]) and h = P[γ],
then

(h′r)
∗(eiθ) = H(γ′)(θ) a.e.,

where H denotes the Hilbert transform.

Definition 2.3 (Lyapunov and Dini curves). If X is a topological space, a path in X is a continuous mapping γ of
a compact interval [α, β] ⊂ R (here α < β) into X. We call [α, β] the parameter interval of γ and denote the range of γ
by tr(γ). Thus γ is a mapping, and tr(γ) is the set of all points γ(t), for α ≤ t ≤ β. A curve Γ is a class of equivalent
paths. It is convenient to identify a curve with a path γ from the class. If X = C we say that curve Γ is planar.

Suppose that Γ is a planar curve and there is a rectifiable planar path γ which is representative of Γ. For t ∈ [α, β]
denote by s = s(t) = sγ(t) the length of the curve γt which is the restriction of γ on [α, t]. Then l = s(β) is the length of
γ and there exists a function 1 = γ̆ such that γ(x) = 1(s(x)) for all x ∈ [α, β]. We call γ̆ an arc-length parameterization
(natural parametrization) of γ and s = sγ an arc-length parameter function associated to γ. Note that an arc-length
parameterization γ̆ is independent of representative γ and we can denote it by Γ̆. Sometimes it is convenient to abuse
notation and identify a curve with its arc-length parameterization (natural parametrization) and to denote it by Γ(s).

Suppose γ is a rectifiable, oriented, differentiable planar curve given by its arc-length parameterization.
If γ is differentiable, then |1′(s)| = 1, s =

∫ s

0 |1
′(t)|dt, for all s ∈ [0, l] and γ′(x) = 1′(s(x))s′(x).

We say that a rectifiable planar curve Γ ∈ C1,µ, 0 < µ ≤ 1, if 1 = Γ̆ ∈ C1[0, l] and

sup
t,s∈[0,l]

|1′(t) − 1′(s)|
|t − s|µ

< ∞.

C1,µ curves are also known as Lyapunov (we say of order µ or µ-Lyapunov) curves.
Let f : [a, b]→ C be a continuous function. The modulus of continuity of f is ω f (t) = sup{| f (x) − f (y)| : x, y ∈

[a, b], |x − y| ≤ t}. The function f is called Dini-continuous if
∫

0+

ω(t)
t dt is finite. Here

∫
0+

ω(t)
t dt =

∫ δ
0
ω(t)

t dt for some
positive constant δ. A C1 Jordan curve γ with the length l = |γ|, is said to be Dini smooth if 1′ is Dini continuous.

We say that a bounded Jordan domain is Lyapunov (or inD1 class) respectively Dini if its boundary is Lyapunov
respectively Dini curve.

We also need definitions of so called E-function and related functions, which play important role in our
approach here.

Definition 2.4 (E-function). If γ is 2π-periodic and L1 on [0, 2π], recall by P[γ] we denote Poisson integral of γ.
Note that if γ is absolutely continuous on [0, 2π] (and therefore γ′ ∈ L1[0, 2π]) and h = P[γ], then

(h′r)
∗(eiθ) = H(γ′)(θ) a.e.,
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where H denotes the Hilbert transform. Let Γ be a curve of C1,µ class (Lyapunov curve of order µ) and γ : R→ tr(Γ)
be arbitrary topological (homeomorphic) parametrization of Γ. If γ is absolutely continuous we define s(ϕ) = sγ(ϕ) =
ϕ∫

0
|γ′(t)|dt. Sometimes it is convenient to abuse notation and to denote by Γ(s) natural parametrization.

For ϕ ∈ R , we define n = nγ(ϕ) = iΓ′
(
s(ϕ)

)
(normal vector at the point w = Γ(s) = γ(ϕ)) and

Rγ(ϕ, t) = (γ(t) − γ(ϕ),nγ(ϕ)).

For θ ∈ R and h = P[γ], define

Eγ(θ) =
(
(h′r)

∗(eiθ),nγ(θ)
)

=
(
H(γ′)(θ),nγ(θ)

)
a.e. (2.9)

υ(z, θ) = υγ(z, θ) =
(
rh′r(z),nγ(θ)

)
, z ∈ D . (2.10)

We also write E(γ) instead of Eγ. Note that υ∗(t, θ) =
(
H(γ′∗)(t),nγ(θ)

)
a.e. Define

eγ = eγ(θ, t) =
1

4π

(
γ(θ + t) − γ(θ),nγ(θ)

)
sin2(t/2)

.

Then the formula Eγ(θ) =
∫ π
−π

eγ(θ, t)dt plays an important role in the subject.
Define

E+
γ (θ) = E

µ

γ(θ) =
1

4π

∫ π

−π

∣∣∣γ(θ + t) − γ(θ)|1+µ

sin2(t/2)
dt,

Fγ(θ, η) =
∫ η
−η

eγ(θ, t) dt, G(θ, η) =
∫
−η

−π
e(θ, t) dt +

∫ π
η

e(θ, t) dt, η > 0.

In general h′r can not be extended to be continuous on U if h is a harmonic quasiconformal (abbreviated
HQC) mapping betweenU and a smooth domain. However E is continuous and (h′∗r ,nh) = E a.e. on T and
therefore the function E plays an important role in the subject. We also prove in [5] that E , 0.

3. HQC

3.1. Bi-Lipschitz property of HQC
Recall that harmonic quasiconformal (abbreviated by HQC) mappings are now very active area of

investigation (see for example [17, 18, 25, 27–29]). Let D1 (respectively D2) be the family of all Jordan
domains in the plane which are of class C1,µ (res C2,µ) for some 0 < µ < 1.

In [12] the following result is proved:
Theorem A. Let Ω and Ω1 be Jordan domains, let µ ∈ (0, 1], and let f : Ω → Ω1 be a harmonic

homeomorphism.
Then
(a) If f is q.c. and ∂Ω, ∂Ω1 ∈ D1, then f is Lipschitz;
(b) if f is q.c., ∂Ω, ∂Ω1 ∈ D1 and Ω1 is convex, then f is bi-Lipschitz; and
(c) if Ω is the unit disk, Ω1 is convex, and ∂Ω1 ∈ C1,µ, then f is quasiconformal if and only if its boundary
function is bi-Lipschitz and the Hilbert transform of its derivative is in L∞.
In [13] it is proved that the convexity hypothesis can be dropped if codomain is inD2:
(b1) if f is q.c., ∂Ω ∈ D1 and ∂Ω1 ∈ D2, then f is bi-Lipschitz.
Similar results were announced in [23]. These extend the results obtained in [11, 20, 29].

The proof of the part (a) of Theorem A in [12] is based on an application of Mori’s theorem on quasi-
conformal mappings, which has also been used in [29] in the case Ω1 = Ω = U, and Lemma 3.1 (below). In
[17], we prove a version of ”inner estimate” for quasi-conformal diffeomorphisms, which satisfies a certain
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estimate concerning their Laplacian. As an application of this estimate, we show that quasi-conformal
harmonic mappings between smooth domains (with respect to the approximately analytic metric), have
bounded partial derivatives; in particular, these mappings are Lipschitz. Our discussion in [17] includes
harmonic mappings with respect to (a) spherical and Euclidean metrics (which are approximately analytic)
as well as (b) the metric induced by the holomorphic quadratic differential.

We also need the following lemma in Section 4.

Lemma 3.1 ([12, 26]). Let Γ be a curve of class C1,µ and γ : T → tr(Γ) be arbitrary topological (homeomorphic)
parameterization of Γ. Then

|Rγ(ϕ, t)| ≤ A |γ((eiϕ) − γ(eit)|1+µ, (3.1)

where A = A(Γ).

For a rectifiable planar path γ let 1 = 1(s) be an arc-length parameterization. We define

K(s, t) = Re[1(t) − 1(s) · i1′(s)]

for (s, t) ∈ [0, l] × [0, l], where l is the length of γ.

Lemma 3.2 ([12, 28]). Let γ be a Jordan closed rectifiable curve, Γ : [0, l]→ tr(γ) be its natural parametrization and
let f : [0, 2π]→ tr(γ) be arbitrary topological parametrization of tr(γ). Suppose that γ is a C1,µ at w0 = Γ(s0), where
s0 = s f (ϕ0). Then

|K(s0, t)| ≤ Cγ(w0) min{|s0 − t|1+µ, (l − |s0 − t|)1+µ
} (3.2)

for all t and

|R f (ϕ0, x)| ≤ Cγ(w0) min{|s(ϕ0) − s(x)|1+µ, (l − |s(ϕ0) − s(x)|)1+µ
}, (3.3)

for all x, where recall s = s f is an arc-length parameter function associated to f and

Cγ(w0) =
1

1 + µ
sup

0≤t,s0≤`

|Γ′(t) − Γ′(s0)|
|t − s0|

µ .

More generally if Γ is Dini’s smooth Jordan curve, then |K(s0, t)| ≤ c|t − s0|ω(|t − s0|), where ω = ωΓ′ .

3.2. Cauchy and Hilbert transform of HQC
Every harmonic function h inD can be written in the form (i) h = f + 1̄, where f and 1 are holomorphic

functions inD. Then an easy calculation shows
∂θh(z) = i(z f ′(z) − z1′(z)), h′r = eiθ f ′ + eiθ1′, h′θ + irh′r = 2iz f ′ and therefore rh′r is the harmonic conjugate

of h′θ. We also use notation p = f ′, q = 1′, Λh = | f ′| + |1′|, λh = | f ′| − |1′| and µh = q/p.
Together with the form (i) we also use the following form:
(ii) There are analytic functions F1 and F2 onD such that Re h = Re F1 and Im h = Im F2.
Under the condition F1(0) = F2(0) = h(0) the form (ii) is unique and we find F1 = f + 1 and F2 = f − 1.
The form (i) is unique up to a constant. For example it is unique under the condition (iii): f (0) = h(0)

and 1(0) = 0. The decomposition (i) h = f + 1̄, which satisfies the condition (iii) we call normalized
decomposition and use notation ȟ for f and h̆ for 1.

It is clear that if f , 1 ∈ H1, then C(h∗) = f onU. Here H1 denotes Hardy class on the unit disk.
Let ln z = ln |z| + iθ be a branch of logaritam in H determined by 0 < θ < π and f = − i

2 ln z. Then
θ = f + f on H and in particular θ is bounded function on H while f is not bounded function on H. Set
A(z) = i 1+z

1−z , h(z) = θ(A(z)) and f ◦ A we get decomposition of h onU. Thus in general some known spaces
are not invariant under the operator h→ ȟ. However, h is Lipschitz if and only if f and 1 are Lipschitz (ie.
f ′, 1′ ∈ H∞).
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Theorem 3.1 ([28]). Suppose h is harmonic onU and h = f + 1̄ is normalized
decomposition. The following condition are equivalent.

1. h is Lipschitz onU
2. f and 1 are Lipschitz onU
3. f ′, 1′ ∈ H∞(U).
4. f ′∗ ∈ L∞[0, 2π] and 1′∗ ∈ L∞[0, 2π].

Note that characterization of HQC of the unit disk onto itself by Hilbert transformations of derivative of
boundary mapping first appears in Pavlović [29] and then it has been stated in Kalaj [12] and M. Mateljević,
Božin and M. Knežević [24, 25] for Lyapunov co-domains.

Theorem 3.2. Let h be a Lipschitz harmonic injective map of the unit disc and h∗ bi-Lipschitz. If ess inf{J(h, z) : z ∈
T} ≥ j0 > 0, then h is qc.

Since h is injective Lipschitz map, |µ| < 1 and |p| ≤M0 onU.

Using J∗ = |p∗|2 − |q∗|2 ≥ j0, we find |µ∗| ≤ k0, where k0 =
√

1 − j0/M2
0. An application of Maximum

Principle shows that |µ| ≤ k0 onU.

Theorem 3.3 ([25]). Suppose that D is a Lyapunov C1, α domain. Let h be a harmonic orientation preserving map of
the unit disc onto D and homeomorphism ofD onto D. The following conditions are equivalent

a1) h is K-qc mapping
a2) the boundary function h∗ is absolutely continuous, ess sup|h′∗| < +∞, Hh′∗ ∈ L∞ and s0 = ess inf|(Hh′∗, ih′∗)| >

0.

We only outline the proof of this theorem.

Proof. Put µ = µh. Clearly a2) implies ess inf|h′∗| > 0. We leave to the reader to check that

2zp∗ = H(h′∗) − ih′∗, 2zq∗ = H(h′∗) + ih′∗ J∗h = (h∗r, i h′∗) = (H(h′∗), i h′∗) ≥ 0

a.e. on T and Jh > 0 on D. Hence |µ| < 1 and Λ∗hλ
∗

h = J∗h ≥ s0 > 0. Similarly like in the proof of the main
characterization theorem a2) implies |µ∗|∞ = k < 1 and so we have a1). The converse is straightforward.

We need the following result related to convex codomains.

Theorem 3.4 ([22, 27]). Suppose that h is a Euclidean harmonic mapping from D onto a bounded convex domain
D = h(D), which contains the disc B(h(0); R0) . Then

(1) d(h(z), ∂D) ≥ (1 − |z|)R0/2, z ∈ D.
(2) Suppose that ω = h∗(eiθ) and h∗r = h′r(eiθ) exist at a point eiθ

∈ T, and there exists the unit inner normal
n = nω at ω = h∗(eiθ) with respect to ∂D.

Then E = (h∗r,nh∗ ) ≥ c0, where c0 =
R0

2
.

(3) In addition to the hypothesis stated in the item (2), suppose that h′∗ exists at the point eiθ. Then |Jh| = |(h∗r,N)| =∣∣∣(h∗r,n)
∣∣∣|N| ≥ c0|N|, where N = i h′∗ and the Jacobian is computed at the point eiθ with respect to the polar coordinates.

If in addition D is of C1,µ class and h qc, using the result that the function E is continuous , we find in [5]
that

(4) |E| ≥ c0.

Theorem 3.5 ([24, 25]). Suppose that Lyapunov C1, α domain D is convex and denote by γ positively oriented
boundary of D. Let h0 : T→ γ be an orientation preserving homeomorphism and h = P[h0].

The following conditions are then equivalent

(a) h is K-qc mapping.
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(b) h is bi-Lipschitz in the Euclidean metric.
(c) The boundary function h∗ is bi-Lipschitz in the Euclidean metric and the Cauchy transform C[h′∗] of its derivative

is in L∞.
(d) The boundary function h∗ is absolutely continuous, ess inf |h′∗| > 0 and the Cauchy transform C[h′∗] of its

derivative is in L∞.
(e) The boundary function h∗ is bi-Lipschitz in the Euclidean metric and the Hilbert transform H[h′∗] of its derivative

is in L∞.
(f) The boundary function h∗ is absolutely continuous, ess sup|h′∗| < +∞, ess inf |h′∗| > 0 and the Hilbert transform

H[h′∗] of its derivative is in L∞.

Note that, by our notation, here h0 = h∗ and h0 = h∗ .

Proof. By the fundamental theorem of Rado, Kneser and Choquet, h is an orientation preserving harmonic
mapping of the unit disc onto D.

If D is C1, α, it has been shown in [5] that (a) implies (b) even without hypothesis that D is a convex
domain. Note that an arbitrary bi-Lipschitz mapping is quasiconformal. Hence the conditions (a) and (b)
are equivalent.

The Hilbert transform of a derivative of HQC boundary function will be in L∞, and hence (a) implies
(e).

Recall, we use notation p = f ′, q = 1′, Λh = | f ′| + |1′|, λh = | f ′| − |1′|.
If h∗ is absolutely continuous, since h′θ(z) = i(z f ′(z) − z1′(z)), we find C[h′∗](z) = iz f ′(z). It follows that (a)

implies (c) and (d).
Since bi-Lipschitz condition implies absolute continuity, (c) implies (d) and (e).
Let us show that (d) implies (a).
Hypothesis C[h′∗] ∈ L∞ implies that f ′ ∈ L∞ and therefore since h is orientation preserving and | f ′| ≥ |1′|,

we find 1′ ∈ L∞.
This shows that Λh is bounded from above.
We will show that |p∗| is bounded from above, λ∗h = |p∗|(1 − |µ∗|) is bounded from below, and therefore

that (1 − |µ∗|) is bounded from below.
Let N = i h′∗ and N = n|N|.
Since D is a convex domain | f ′| and (h∗r,n) are bounded from below with positive constant (for an outline

of proof see [21, 22]).
Condition C[h′∗] ∈ L∞ implies that f ′ ∈ H∞. Hence, since | f ′| is bounded from below with positive

constant, it follows that Λh is bounded from above and below with two positive constants.
By assumption (d), |h′∗| is bounded essentially from below. Since, Jh = Λhλh and by Theorem 3.4

J∗h = (h∗r,N) = (h∗r,n)|N| ≥ c0|N|,

where n = nh∗ and N = n|N| and N = i h′∗, we conclude that λ∗h is bounded from above and below with two
positive constants. It follows from λ∗h = |p∗|(1 − |µ∗|), that (1 − |µ∗|) is bounded from below with positive
constant c1 and therefore k1 = (1 − c1) ≥ |µ∗|. By the maximum principle, ||µ||∞ ≤ k1.

Note that hypothesis (d) implies that |h′∗| is bounded from above and therefore the boundary functions
h∗ is bi-Lipschitz. Thus, we have that (a) and (b) follow from (d).

Lets prove that (f) implies (d). This will finish the proof, since (e) implies (f) and we have already
established that (d) implies (a).

Since the boundary function h∗ is absolutely continuous, recall that, by (2.3), we have

∂θh(z) = P[h′∗](z) = i(z f ′(z) − z1′(z)),

and, by (2.4), that its harmonic conjugate is

z f ′(z) + z1′(z) = rh′r(z) = P[H(h′∗)].
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Thus if h∗ is Lipschitz and H(h′∗) is bounded, then ∂θh and irh′r(z) are bounded onD so by adding these two
together we conclude that h′θ + irh′r = 2iz f ′ = 2C[h′∗] is bounded and therefore the Cauchy transform C[h′∗]
is bounded, and (d) follows.
Note that we have here | f ′| is bounded and therefore all partial derivatives of h are bounded, and

H(h′∗) = zp∗ + zq∗ a.e. on T,

where p = f ′ and q = 1′.

A version of the part (a) equivalent to (f) of the main characterization has been stated in [12] and for
homeomorphism of unit circle onto itself in [29].

Theorem 3.6 ([12]). Let f : T → γ be an orientation preserving homeomorphism of the unit circle onto the Jordan
convex curve γ = ∂Ω ∈ C1,µ.

Then h = P[ f ] is a quasiconformal mapping if and only if

0 < ess inf | f ′(ϕ)|, (3.4)

ess sup | f ′(ϕ)| < ∞, (3.5)

and

ess sup
ϕ
|H( f ′)(ϕ)| < ∞, (3.6)

where

H( f ′)(ϕ) = −
1

2π

π∫
0+

f ′(ϕ + t) − f ′(ϕ − t)
tan t/2

dt,

denotes the Hilbert transformations of f ′.

The hypothesis that f is absolutely continuous function was omitted in [12], but it seems to be needed to
justify the proof from that paper 5) Indeed, it is easy to find an example of a function f satisfying conditions
(3.4), (3.5) and (3.6), such that the corresponding harmonic map h = P[ f ] is not q.c., cf [4].

4. Invertible Harmonic Mappings

In this section, we extend some recent results of Alessandrini- Nesi and Kalaj concerning invertibility
for planar harmonic mappings. In particular, we prove:

Theorem 4.1 ([5, 28]). Let Γ be a curve of C1,µ class.
Suppose that

(a1) γ : T→ tr(Γ) is a Lipschitz mapping.
If (a1) holds then

(A1) Eγ and E
µ

γ are continuous.

If h = P[γ] and if we use definition (2.9) for Eh one can consider this result as a version of Kellogg and
Warschawski theorem for harmonic maps. Then
(I1) J∗h exists a.e. and there continuous function E such that J∗h(eit) = |γ′(t)|E(t) a.e. t ∈ [0, 2π].
(I2) If γ′ is continuous at t0, then Jh is continuous at z0 = eit0 .

5)As far as I remember in communication with Šarić and Anić, Mateljević first proved ACL property of boundary value of hqc
mapping between disk and a domain bounded with rectifiable boundary, [21, 23]; see also [29].
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Proof. Define χ(t, δ) = |γ∗(θ0 + δ + t) − γ∗(θ0 + δ)|1+µ
|t|−2. Since γ is L-Lipshitz, by Lemma 3.1, χ(t, δ) ≤

cL1+µ
|t|µ−1. Hence, by Lebesgue dominated theorem, E

µ

γ is continuous. Since γ is L-Lipshitz, by Lemma 3.1,
|e(θ, t)| ≤ |R(θ, θ + t)||t|−2/2 ≤ A2µL1+µ

|t|µ−1. Hence, for given ε > 0, there is δ1 > 0 such that |F(θ, δ1)| < ε/4,

for everyθ, where F(θ, δ) =
∫ δ
−δ

e(t, θ)dt. Let Iδ = {t : δ ≤ |t| ≤ π} and I = [−π, π]. Since e is continuous on Iδ×I,
it is uniformly continuous on Iδ × I. Hence, for given θ0, there is δ2 > 0 such that 2π|e(t, θ) − e(t, θ0)| ≤ ε/2
for t ∈ Iδ1 and |θ − θ0| ≤ δ2. More generally if Γ is Dini’s smooth Jordan curve, then we use |e(θ, t)| ≤
|R(θ, θ + t)||t|−2/2 ≤ Aω(|t|)/|t|.

Now we consider extended (2π-periodic) parameterizations which are convenient for Poisson’s trans-
formation.

Theorem 4.2 ([28]). Let Γ be a closed curve of C1,µ class (more generally Dini’s smooth Jordan curve).
Suppose

(a1) γ, γn : R→ Γ∗ are L-Lipschitz extended parameterization of Γ, hn = P[γn] and h = P[γ] ;
(a2) γn converges uniformly to γ on R .

Then
(A2) E(γn) converges uniformly to E(γ) on R.

We can extend Lemma 2.5 [14]:

Lemma 4.1. If (i1) s : R → R is M -Lipschitz homeomorphism (M- Lipschitz weak homeomorphism), such that
s(x + a) = s(x) + b for every x, then there exist a sequence of diffeomoprhisms sn : R→ R such that
(I) sn converges uniformly to s, sn is M-Lipschitz homeomorphism, sn(x + a) = sn(x) + b; and
(II) sn converges in Sobolev norm H1(0, a) to s and s′n(x) converges to s′(x) a.e.

We call sn a I-mollifier sequence for s if it satisfies (I). If in addition sn satisfies (II), we call it II-mollifier.

Proof. We outline a proof of this lemma. We introduce appropriate mollifiers: Fix a smooth function
ρ : R→ [0, 1] which is compactly supported in the interval [−1, 1] and satisfies

∫
R
ρ(z)dz = 1. For n consider

the mollifier ρn(t) := nρ(nt), ln = s ∗ ρn and sn(x) = n−1
n ln(x) + b

na x. We call sn a mollifier sequence for function
s. Then l′n(x) =

∫
R

s′(x − z/n)ρ(z)dz and l′n(x) ≥ 0 for every x ∈ R. Therefore s′n(x) ≥ b
na for every x ∈ R,

l′n(x) − s′(x) =
∫
R

(s′(x − z/n) − s′(x))ρ(z)dz.
Since s belongs Sobolev space H1(0, a), it is known that sn converges in Sobolev norm H1(0, a) to s .

In particular, s′n(x) converges to s′(x) in L2(0, a) and therefore there is a subsequence of s′n such that s′n(x)
converges to s′(x) a.e.

Remark 4.1. If a function s satisfies (i1), then s′ ∈ L∞ and its mollifier sequence sn satisfies (I) and in addition
(II’) sn converges in Sobolev norm H1(0, a) to s.
In particular, there is a subsequence of s′n(x) which converges to s′(x) a.e.

Theorem 4.3. [14, 16, 28]. Suppose that
(b1) Γ is a C1,µ smooth Jordan closed curve (more generally Dini’s smooth Jordan closed curve) and that D is the
domain bounded by Γ;
(b2) γ : T → ∂D is an orientation preserving weak homeomorphic Lipschitz mapping of the unit circle onto ∂D,
h = P[γ] and
(b3) j0 = essinf{Jh(eit) : t ∈ [0, 2π]} > 0 .
Then
(B1) the mapping h is a diffeomorphism ofU onto D and γ is bi-Lipschitz continuous.

Proof. Here we outline short and new proof of Nesi-Alessandrini and Kalaj result. It is convenient to
denote by Γ(s) natural parameterization of Γ. Let s = sγ be an arc-length parameter function associated to
γ. We can extend s to R such that s(x + 2π) = s(x) + l, where l is the length of Γ.Then γ(ϕ) = Γ(s(ϕ)) and
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Jh(eiτ) = s′(τ)E(τ). Since E is continuous e+ = max E is finite, e+s′(τ) ≥ s′(τ)E(τ) ≥ j0 and s′(τ) ≥ s0 > 0 a.e.,
where s0 = j0/e+ > 0. Note s′ ≥ 0 a.e. and s = ess sup s′ is finite positive; hence s E ≥ s′(τ)E(τ) ≥ j0 and E ≥ e

¯a.e. , where e
¯

= j0/s > 0. Since E is continuous then E ≥ e
¯

on R.
Suppose that sn is given by Lemma 4.1 such that sn(x + 2π) = sn(x) + l, x ∈ R, and that it satisfies only (I).

Define γn(ϕ) = Γ
(
sn(ϕ)

)
and hn = P[γn]. One can check that γn converges uniformly to γ onU and therefore

hn converges uniformly to h on U. Now, by Theorem 4.2, En converges uniformly to E. Hence for n > n0,
En ≥ e

¯
/2 on R and Jhn > 0 on T and hn satisfies Nesi- Alessandrini condition. Next we conclude that hn is a

diffeomorphism ofU onto D and therefore h is a diffeomorphism.

We call the sequence hn which appears in the above proof a I-mollifier sequence of harmonic functions
associated to γ (or to its arc-length parameter s). Recall by Lemma 4.1 we can choose sn such that it satisfies
(I) and (II); in particular it satisfies condition: (b1) s′n → s′ a.e.

A I-mollifier sequence of harmonic functions we call II-mollifier sequence if the corresponding sn satisfies
(I) and (b1). In this setting, we can prove Jhn converges a.e. on T. More precisely, we have:

Theorem 4.4. Suppose that γ is Lipschitz parametrization of Lyapunov closed Jordan curve and s = sγ an arc-length
parameter function associated to γ and that hn is a II-mollifier sequence of harmonic functions associated to γ. Then
Jhn (eiτ) = s′n(τ)En(τ)→ s′(τ)E(τ) a.e. on T.

Motivated by Theorem 4.3 Kalaj states the following conjecture.
Conjecture. Let f be a homeomorphism of the unit circle onto a rectifiable Jordan closed curve C and let
D be the domain bounded by C. The mapping w = P[ f ] is a diffeomorphism of U onto D if and only if
ess inf{Jw(z) : z ∈ T} ≥ 0.

As first step in trying to settle this conjecture we can ask:
Question. If, in Theorem 4.3, we relax the hypothesis (b3) with the hypothesis (b3′): j0 ≥ 0, whether (B1)
holds.

Using the Argument Principle, we can give a simple proof of the following result:

Theorem 4.5 ([28]). Let D and G are bounded Jordan domains. Suppose that h : D→ G is harmonic and continuous
on D, h|T is injective and partial derivatives have continuous extension to D. If Jh > 0 on ∂D, then (I1): h is a
harmonic difeomorphism ofD onto G.

5. Bi-Lipschitz Property for HQC between Lyapunov Domains

Let h be a harmonic quasiconformal map from the unit disk onto D in Lyapunov class D1. Examples
show that a q.c. harmonic function does not have necessarily a C1 extension to the boundary as in conformal
case. In [5] it is proved that the corresponding functions Eh∗ are continuous on the boundary and for fixed
θ0, υh∗ (z, θ0) is continuous in z at eiθ0 onD.

We can compute the quasihyperbolic metric k on C∗ by using the covering exp : C → C∗, where exp is
exponential function. Let z1, z2 ∈ C∗, z1 = r1eit1 , z2 = r2eit2 and θ = θ(z1, z2) ∈ [0, π] the measure of convex
angle between z1, z2. We use

k(z1, z2) =

√∣∣∣∣ ln r2

r1

∣∣∣∣2 + θ2.

This well-known formula is due to Martin and Osgood.
Let ` = `(z1) be line defined by 0 and z1. Then z2 belongs to one half-plane, say M, on which ` = `(z1)

divides C.
Locally denote by ln a branch of Log on M. Note that ln maps M conformally onto horizontal strip of

with π. Since w = ln z, we find the quasi-hyperbolic metric

|dw| =
|dz|
|z|
.
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Note that ρ(z) =
1
|z|

is the quasi-hyperbolic density for z ∈ C∗ and therefore

k(z1, z2) = |w1 − w2| = | ln z1 − ln z2|.

Let z1, z2 ∈ C∗, w1 = ln z1 = ln r1 + it1. Then z1 = r1eit1 ; there is t2 ∈ [t1, t1 + π) or t2 ∈ [t1 − π, t1) and
w2 = ln z2 = ln r2 + it2 . Hence

k(z1, z2) =

√∣∣∣∣ ln r2

r1

∣∣∣∣2 + (t2 − t1)2 ,

and therefore as a corollary of the Gehring-Osgood inequality, we have

Proposition 5.1. Let f be a K-qc mapping of the plane such that f (0) = 0, f (∞) = ∞ and α = K−1 . If z1, z2 ∈ C∗,
|z1| = |z2| and θ ∈ [0, π] (respectively θ∗ ∈ [0, π]) is the measure of convex angle between z1, z2 (respectively
f (z1), f (z2)), then

θ∗ ≤ c max{θα, θ},

where c = c(K). In particular, if θ ≤ 1, then θ∗ ≤ cθα.

We now discuss some results obtained in [5]. The results make use of Proposition 5.1, which is a corollary
of the Gehring-Osgood inequality [6], as we are going to explain. Recall the main result in [5] is:

Theorem 5.1. Let Ω and Ω1 be Jordan domains in D1, and let h : Ω → Ω1 be a harmonic q.c. homeomorphism.
Then h is bi-Lipschitz.

It seems that a new idea is used here. Let Ω1 be a C1,µ curve. We reduce proof to the case when Ω = H.
Suppose that h(0) = 0 ∈ Ω1. We show that there is a convex domain D ⊂ Ω1 inD1 such that γ0 = ∂D touch
the boundary of Ω1 at 0 and that the part of γ0 near 0 is a curve γ(c) = γ(c, µ). Since there is a qc extension
h1 of h to C, we can apply Proposition 5.1 to h1 : C∗ → C∗. This gives estimate for ar1γ1(z) for z near 0,
where γ1 = h−1(γ(c)), and we show that there exist constants c1 > 0 and µ1 such that the graph of the curve
h−1(γ(c)) is below of the graph of the curve γ(c1) = γ(c1, µ1). Therefore there is a domain D0 ⊂H inD1 such
that h(D0) ⊂ D. Finally, we combine the convexity type argument and noted continuity of functions E and
υ to finish the proof.

The next example which is shortly discussed in [8], shows that there is a conformal map of unit disk
onto C1 domain which is not bi-Lipschitz. Here we will give more details.

Example 1. (i) Let l = {iy : y ≤ 0} and ln z = ln |z| + iar1z defined on O = C \ l by −π/2 < ar1 < 3π/2. Set
ln 1

z = − ln z, w = A(z) = z ln 1
z , and U+

r = {z : |z| < r, y > 0}. For r small enough, A maps interval (0, r) onto
interval (0, r ln 1

r ), interval (−r, 0) onto arc γ1(x) = x ln 1
x = x ln 1

|x| − iπx, semicircle C+
r = {reit : 0 ≤ t ≤ π} onto a

curve close the semicircle of radius r ln 1
r . For r small enough A is univalent in U+

r . We can check that there is a smooth
domain D ⊂ U+

r such that interval (−r0, r0), r0 > 0, is a part of the boundary of D, D∗ = A(D) is C1 domain and A
is not bi-Lipschitz on D. Since A(z) tends 0 if z throughout O tends 0, we can set A(0) = 0. Thus A(1) = A(0) = 0,
and therefore r0 ∈ (0, 1). Let us outline that A(D) is C1 domain. Let c0(x) = −x ln |x| and C(x) = x ln 1

x , −1 < x < 1,
x , 0, C(0) = 0, and Γ(s) natural parameterization of C, where a branch of ln is defined by 0 ≤ arg z ≤ π and s
denotes length element; so for −1 < x < 0, C(x) = x(ln 1

|x| − iπ). Note that the restriction of Im C′ on (−1, 1) has
a jump discontinuity (or step discontinuity) at 0, c0 is odd function and therefore c′0(x) = −1 − ln |x| is even and
c′0(x) = |c′0(x)| → +∞ if x → 0. Then C′(x) = c′0(x) = ln 1

x − 1, x > 0, and C′(x) = c′0(x) − iπ = ln 1
x − 1 − iπ

for x ∈ (−1, 0). Therefore Γ′(s) = C′(x)/|C′(x)| = eiϕ(x), sinϕ(x) = −π/|C′(x)|. Hence, if x → 0−, |C′(x)| → ∞,
ϕ(x) → 0 and Γ′(s) → 1. Since Γ′(s) = 1 for x ∈ (0, r0) and therefore Γ′(s) is continuous for −r0 < x < r0. Set
s∗ = s∗(x) =

∫ x

0 |C
′(t)|dt and denote by x = x(s∗) the inverse function. Since

Γ′(|s∗(x)|) − 1 =
1∣∣∣ ln |x|∣∣∣ + o(

−iπ∣∣∣ ln |x|∣∣∣ ), x→ 0,
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and |s∗| = |s∗(x)| = |x|
∣∣∣ ln |x|∣∣∣ + o(|x|

∣∣∣ ln |x|∣∣∣) for x around 0, we find

1∣∣∣ ln |x|∣∣∣ ≥ 1

2
∣∣∣ln|s∗|∣∣∣

for s∗ around 0, where x = x(s∗). Hence we conclude that for s∗ near 0,

ωΓ′ (|s∗|) ≥
1

2
∣∣∣ln|s∗|∣∣∣

and therefore the boundary of D∗ is not Dini’s smooth curve.
(ii) Consider also

w =
z

ln 1
z

, w(0) = 0 .

Note ln 1
z = − ln z, w′(z) = −(ln z)−1 + (ln z)−2 and w′(z)→ 0 if z→ 0 throughoutH.

Finally, we give an illustrative example mentioned in the beginning of this section, and given in our previous
paper, [4].

Example 2 ([4]). Consider h :H→H, a harmonic function given by the following expression

h(z) = hφ(z) = Φ1(z) + icy + c1,

where c > 0, c1 ∈ R, Φ(z) =
∫ z

i φ(ζ)dζ, and Φ1 = Re Φ. Note that h′x(z) = Reφ(z) and h′y(z) = −Imφ(z) + ic.
Let φ(z) = 2 + e−i/z = 2 + e−y/|z|2 (cos x

|z|2 − i sin x
|z|2 ) and h = hφ. Then h′x(z) = Reφ(z) = 2 + e−y/|z|2 cos x

|z|2 .
Hence h′(x) = Reφ(x) = 2 + cos 1

x ; so h′ is not continuous at 0. In polar coordinates, h′y(z) = −Imφ(z) + ic =

e− sinθ/ρ sin(cosθ/ρ) + ic; hence h′y(z)→ sin(1/ρ) + ic when θ→ 0 for fixed ρ > 0.
Let G ⊂H be a smooth domain such that ∂G∩R = [−a, a], a > 0, φ be conformal mapping ofU onto G, φ(1) = 0,

z = φ(ζ), and h̆ = h ◦ φ. One can check that h̆r is not continuous at 1. However h̆′ is bi-Lipschitz.
We can give a more delicate example. Let φk(z) = 2 + ei/(xk−z) and xk, k ∈N, be a sequence of real numbers. Define

φ(z) = 2 +

∞∑
k=1

2−kφk(z) .

For example if xk is a sequence of all rational numbers, i.e. enumerating Q, then hy will have no continuous
extension to Q, where h = hφ.

These examples can also be translated to the unit disc.
Acknowledgement. The author expresses his gratitude to M. Svetlik for help during the preparation of

this manuscript.
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