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Abstract. In this paper we obtain some fixed point results for a class of nonexpansive single-valued map-
pings and a class of nonexpansive multi-valued mappings in the setting of a metric space. The contraction
mappings in Banach sense belong to the class of nonexpansive single-valued mappings considered herein.
These results are generalizations of the analogous ones in Khojasteh et al. [Abstr. Appl. Anal. 2014 (2014),
Article ID 325840].

1. Introduction

Let (X, d) be a metric space and f : X → X be a single-valued mapping on X. Then, f is a k-Lipschitz
mapping if d( f x, f y) ≤ kd(x, y) for all x, y ∈ X, where k ≥ 0. In particular, if k ∈ [0, 1[, f is called contraction
mapping, and if k = 1, f is called nonexpansive mapping. Now, it is well known that the contraction
mapping principle in [1], is one of the most important theorems in classical functional analysis and is
widely considered as the source of metric fixed point theory, where a point z ∈ X is a fixed point of f if
f z = z. In fact, the study of fixed points of mappings satisfying a certain metrical contractive condition
attracted many researchers, see for example [2, 3, 6, 11–13]. Also, the notion of nonexpansive mapping has
a crucial role in fixed point theory. In fact, various researchers investigated the theory of nonexpansive
mappings for establishing the existence of fixed points [4, 7, 10, 14]. In almost all papers authors used
some iteration techniques for obtaining theoretical results; in particular, we refer to the study of the Picard
sequence of initial point x0, say {xn}with xn = f nx0 = f xn−1 for all n ∈N. Also, for a lecture on nonexpansive
mappings and their properties, we refer to [5].

In this paper, inspired and motivated by Khojasteh et al. in [8], we give sufficient conditions for
establishing the existence of fixed points for single-valued and multi-valued nonexpansive mappings.
We point out that the class of nonexpansive mappings considered herein contains the class of Banach
contraction mappings. Also, some auxiliary facts on the convergence of Picard sequences and distance
between fixed points of single-valued mappings are proved, by using a binary relation. Clearly, our
theorems are generalizations of the results in [8] and many others. Some examples are given to support the
new theory.
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2. Preliminaries

Here we recall some notions and results on the theory of multi-valued mappings. Also we give some
auxiliary results useful for the proof of theorems in next sections.

Let (X, d) be a metric space and let CB(X) be the collection of all non-empty closed bounded subsets of
X. For A,B ∈ CB(X), define

H(A,B) = max{δ(A,B), δ(B,A)},

where

δ(A,B) = sup{d(a,B) : a ∈ A}, δ(B,A) = sup{d(b,A) : b ∈ B}

with

d(a,C) = inf{d(a, x) : x ∈ C}.

The function H : CB(X)×CB(X)→ [0,+∞[ is called the Pompeiu-Hausdorff metric induced by the metric d.
We recall the following properties.

Lemma 2.1. Let (X, d) be a metric space. For any A,B,C ∈ CB(X) and any x, y ∈ X, we have the following:

(i) d(x,B) ≤ d(x, b), for any b ∈ B;
(ii) δ(A,B) ≤ H(A,B);

(iii) d(x,B) ≤ H(A,B), for any x ∈ A;
(iv) H(A,A) = 0;
(v) H(A,B) = H(B,A);

(vi) H(A,C) ≤ H(A,B) + H(B,C);
(vii) d(x,A) ≤ d(x, y) + d(y,A).

Definition 2.2. Let (X, d) be a metric space and let T : X → CB(X) be a multi-valued mapping. A point z ∈ X is a
fixed point of T if z ∈ Tz.

The following theorem, proved by Nadler [9] is a generalization of contraction mapping principle, in
the case of a multi-valued mapping.

Theorem 2.3. Let (X, d) be a complete metric space and T : X→ CB(X) be a multi-valued mapping such that

H(Tx,Ty) ≤ kd(x, y),

for all x, y ∈ X, where k ∈ [0, 1[. Then T has a fixed point z ∈ X.

Lemma 2.4. If {an} is a nonincreasing sequence of nonnegative real numbers, then the sequence{ an + an+1

an + an+1 + 1

}
is nonincreasing too.

Proof. We note that

an + an+1

an + an+1 + 1
≥

an+1 + an+2

an+1 + an+2 + 1

if and only if

(an + an+1)(an+1 + an+2 + 1) ≥ (an+1 + an+2)(an + an+1 + 1).

Clearly, this holds since an ≥ an+2.
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Corollary 2.5. Let (X, d) be a metric space, f : X → X be a nonexpansive mapping and x0 ∈ X. If {xn} is a Picard
sequence of initial point x0, then the sequence{

d(xn−1, xn) + d(xn, xn+1)
d(xn−1, xn) + d(xn, xn+1) + 1

}
is nonincreasing.

Proof. Since f is nonexpansive, we have that d(xn−1, xn) ≥ d(xn, xn+1) for all n ∈N. Thus the statement holds
by Lemma 2.4.

3. Fixed Points for Single-Valued Mappings

We prove some results for single-valued mappings defined on a metric space endowed with an arbitrary
binary relation.
Let f : X → X be a mapping andM be a binary relation on X, that is,M is a subset of X × X. Then,M is
Banach f -invariant if ( f x, f 2x) ∈ Mwhenever (x, f x) ∈ M. Also, a subset Y of X is well ordered with respect
toM if for all x, y ∈ Y we have (x, y) ∈ M or (y, x) ∈ M.
Let Fix( f ) = {x ∈ X : x = f x} denote the set of all fixed points of f on X.

Theorem 3.1. Let (X, d) be a complete metric space endowed with a binary relationM on X and f : X → X be a
nonexpansive mapping such that

d( f x, f y) ≤
(

d(x, f y) + d(y, f x)
d(x, f x) + d(y, f y) + 1

+ k
)

d(x, y), (1)

for all (x, y) ∈ M, where k ∈ [0, 1[. Also assume that

(a) M is Banach f -invariant;

(b) if {xn} is a sequence in X such that (xn−1, xn) ∈ M for all n ∈N and xn → z ∈ X as n→ +∞, then (xn−1, z) ∈ M
for all n ∈N;

(c) Fix( f ) is well ordered with respect toM.

If there exists x0 ∈ X such that (x0, f x0) ∈ M and

d(x0, f x0) + d( f x0, f 2x0)
d(x0, f x0) + d( f x0, f 2x0) + 1

+ k < 1, (2)

then

(i) f has at least one fixed point z ∈ X;

(ii) the Picard sequence of initial point x0 ∈ X converges to a fixed point of f ;

(iii) if z,w ∈ X are two distinct fixed points of f , then d(z,w) ≥ (1 − k)/2.

Proof. Let x0 ∈ X be such that (x0, f x0) ∈ M and (2) holds, and let {xn} be a Picard sequence of initial point
x0. If xn−1 = xn for some n ∈ N, then xn−1 is a fixed point of f and the existence of a fixed point is proved.
Now, we suppose that xn−1 , xn for all n ∈N. From (x0, x1) = (x0, f x0) ∈ M, sinceM is Banach f -invariant,
we deduce (x1, x2) = ( f x0, f 2x0) ∈ M. This implies

(xn−1, xn) = ( f n−1x0, f nx0) ∈ M for all n ∈N.

By using the contractive condition (1) with x = xn−1 and y = xn, we get
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d(xn, xn+1) = d( f xn−1, f xn) ≤
(

d(xn−1, xn+1)
d(xn−1, xn) + d(xn, xn+1) + 1

+ k
)

d(xn−1, xn),

≤

(
d(xn−1, xn) + d(xn, xn+1)

d(xn−1, xn) + d(xn, xn+1) + 1
+ k

)
d(xn−1, xn), (3)

for all n ∈N.
From (3), by Corollary 2.5, we deduce

d(xn, xn+1) ≤
(

d(xn−1, xn) + d(xn, xn+1)
d(xn−1, xn) + d(xn, xn+1) + 1

+ k
)

d(xn−1, xn)

≤

(
d(x0, x1) + d(x1, x2)

d(x0, x1) + d(x1, x2) + 1
+ k

)
d(xn−1, xn)

= λ d(xn−1, xn) (4)

for all n ∈N, where

λ =
d(x0, x1) + d(x1, x2)

d(x0, x1) + d(x1, x2) + 1
+ k < 1.

Then, by (4), {xn} is a Cauchy sequence. Since X is a complete metric space, the sequence {xn} converges
to some z ∈ X. Now, we prove that z is a fixed point for f . By hypothesis (b), we deduce that (xn, z) ∈ M.
Then, using the contractive condition (1) with x = xn and y = z, we get

d(xn+1, f z) = d( f xn, f z) ≤
(

d(xn, f z) + d(z, f xn)
d(xn, f xn) + d(z, f z) + 1

+ k
)

d(xn, z)

=

(
d(xn, f z) + d(z, xn+1)

d(xn, xn+1) + d(z, f z) + 1
+ k

)
d(xn, z) (5)

for all n ∈N.
On taking limit as n→ +∞ on both sides of (5), we get d(z, f z) ≤ 0. This implies that d(z, f z) = 0, that is,

z = f z and hence z is a fixed point of f . Thus (i) and (ii) hold.
If w ∈ X, with z , w, is another fixed point of f , then by hypothesis (c) we can assume that (z,w) ∈ M

and hence, using (1) with x = z and y = w, we get

d(z,w) = d( f z, f w) ≤ (d(z, f w) + d(w, f z) + k)d(z,w).

This implies that d(z,w) ≥ (1 − k)/2, that is, (iii) holds.

In the following result we consider a weak contractive condition.

Theorem 3.2. Let (X, d) be a complete metric space endowed with a binary relationM on X and f : X → X be a
nonexpansive mapping such that

d( f x, f y) ≤
(

d(x, f y) + d(y, f x)
d(x, f x) + d(y, f y) + 1

+ k
)

d(x, y) + Ld(y, f x), (6)

for all (x, y) ∈ M, where k ∈ [0, 1[ and L is a nonnegative real number. Also assume that

(a) M is Banach f -invariant;

(b) if {xn} is a sequence in X such that (xn−1, xn) ∈ M for all n ∈N and xn → z ∈ X as n→ +∞, then (xn−1, z) ∈ M
for all n ∈N;
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(c) Fix( f ) is well ordered with respect toM.

If there exists x0 ∈ X such that (x0, f x0) ∈ M and (2) holds, then

(i) f has at least one fixed point z ∈ X;

(ii) the Picard sequence of initial point x0 ∈ X converges to a fixed point of f ;

(iii) if z,w ∈ X are two distinct fixed points of f , then d(z,w) ≥ max{ 1−k−L
2 , 0}.

Proof. Let x0 ∈ X be such that (x0, f x0) ∈ M and (2) holds, and let {xn} be a Picard sequence of initial point
x0. If xn−1 = xn for some n ∈ N, then xn−1 is a fixed point of f and the existence of a fixed point is proved.
Now, we suppose that xn−1 , xn for all n ∈N. From (x0, x1) = (x0, f x0) ∈ M, sinceM is Banach f -invariant,
we deduce that (x1, x2) = ( f x0, f 2x0) ∈ M. This implies

(xn−1, xn) = ( f n−1x0, f nx0) ∈ M for all n ∈N.

Using the contractive condition (6) with x = xn−1 and y = xn, we get

d(xn, xn+1) = d( f xn−1, f xn) ≤
(

d(xn−1, xn+1)
d(xn−1, xn) + d(xn, xn+1) + 1

+ k
)

d(xn−1, xn) + Ld(xn, xn),

≤

(
d(xn−1, xn) + d(xn, xn+1)

d(xn−1, xn) + d(xn, xn+1) + 1
+ k

)
d(xn−1, xn)

for all n ∈N.
Proceeding as in the proof of Theorem 3.1, we deduce that {xn} is a Cauchy sequence. Since X is a

complete metric space, the sequence {xn} converges to some z ∈ X. Now, we prove that z is a fixed point for
f . By hypothesis (b), we deduce that (xn, z) ∈ M. Using (6) with x = xn and y = z, we obtain

d(xn+1, f z) = d( f xn, f z)

≤

(
d(xn, f z) + d(z, f xn)

d(xn, f xn) + d(z, f z) + 1
+ k

)
d(xn, z) + Ld(z, f xn)

=

(
d(xn, f z) + d(z, xn+1)

d(xn, xn+1) + d(z, f z) + 1
+ k

)
d(xn, z) + Ld(z, xn+1) (7)

for all n ∈N.
On taking limit as n→ +∞ on both sides of (7), we get d(z, f z) ≤ 0. This implies that d(z, f z) = 0, that is,

z = f z and hence z is a fixed point of f . Thus (i) and (ii) hold.
If w ∈ X, with z , w, is another fixed point of f , then by hypothesis (c) we can assume that (z,w) ∈ M

and hence, using (6) with x = z and y = w, we get

d(z,w) = d( f z, f w) ≤ (d(z, f w) + d(w, f z) + k)d(z,w) + Ld(w, f z).

This implies that 1 ≤ 2d(z,w) + k + L, that is, (iii) holds.

4. Further Results for Single-Valued Mappings

4.1. Consequences in metric spaces

We get the following results by puttingM = X × X in Theorems 3.1 and 3.2.
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Theorem 4.1. Let (X, d) be a complete metric space and f : X→ X be a nonexpansive mapping such that

d( f x, f y) ≤
(

d(x, f y) + d(y, f x)
d(x, f x) + d(y, f y) + 1

+ k
)

d(x, y), (8)

for all x, y ∈ X, where k ∈ [0, 1[. If there exists x0 ∈ X such that

d(x0, f x0) + d( f x0, f 2x0)
d(x0, f x0) + d( f x0, f 2x0) + 1

+ k < 1, (9)

then

(i) f has at least one fixed point z ∈ X;

(ii) the Picard sequence of initial point x0 ∈ X converges to a fixed point of f ;

(iii) if z,w ∈ X are two distinct fixed points of f , then d(z,w) ≥ (1 − k)/2.

Proof. All conditions of Theorem 3.1 are satisfied with M = X × X and hence Theorem 4.1 follows from
Theorem 3.1.

Theorem 4.2. Let (X, d) be a complete metric space and f : X→ X be a nonexpansive mapping such that

d( f x, f y) ≤
(

d(x, f y) + d(y, f x)
d(x, f x) + d(y, f y) + 1

+ k
)

d(x, y) + Ld(y, f x),

for all x, y ∈ X, where k ∈ [0, 1[ and L is a nonnegative real number. If there exists x0 ∈ X such that (9) holds, then

(i) f has at least one fixed point z ∈ X;

(ii) the Picard sequence of initial point x0 ∈ X converges to a fixed point of f ;

(iii) if z,w ∈ X are two distinct fixed points of f , then d(z,w) ≥ max{ 1−k−L
2 , 0}.

Remark 4.3. Every contraction satisfies condition (8) and also condition (9) for some x0 ∈ X.

Remark 4.4. From Theorem 4.1, we obtain Theorem 1 of [8] if k = 0.

Example 4.5. Let X = [0, 1] ∪ [2,+∞[ and d : X × X→ [0,+∞[ defined by d(x, y) = |x − y|. Define f : X→ X by

f x =


1
2

+
1
2

x if x ∈ [0, 1],

1 +
1
2

x if x ∈ [2,+∞[.

Clearly, (X, d) is a complete metric space and f is a nonexpansive mapping.
Now, for all x, y ∈ [0, 1] or x, y ∈ [2,+∞[, we have

d( f x, f y) ≤
1
2

d(x, y).

If x ∈ [0, 1] and y ∈ [2,+∞[, then

d(x, f y) + d(y, f x)
d(x, f x) + d(y, f y) + 1

≥ 1
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and hence

d( f x, f y) = 1 +
1
2

y −
1
2
−

1
2

x ≤
(1

2
+

1
2

)
(y − x)

≤

(
d(x, f y) + d(y, f x)

d(x, f x) + d(y, f y) + 1
+

1
2

)
d(x, y).

Thus all the hypotheses of Theorem 4.1 are satisfied with k = 1/2 and x0 = 1/4. In this case f has two fixed points
x = 1 and x = 2. Note that f is not a contraction, in fact d( f 1, f 2) = d(1, 2).

Example 4.6. Let X = [0, 1] and d : X × X → [0,+∞[ defined by d(x, y) = |x − y|. Define f : X → X by f x = x.
Clearly, (X, d) is a complete metric space and f is a nonexpansive mapping. For all x, y ∈ X with x , y, we have

d( f x, f y) = |x − y| ≤
(
2|x − y| +

1
2

)
|x − y| +

1
2
|x − y|.

Thus all the hypotheses of Theorem 4.2 are satisfied with k = 1/2, L = 1/2 and x0 ∈ [0, 1]. In this case f has infinite
fixed points. Clearly, f is not a contraction.

4.2. Consequences in partially ordered metric spaces

Let (X, d) be a metric space and let (X,�) be a partially ordered set, then (X, d,�) is called a partially
ordered metric space. Also x, y ∈ X are called comparable if x � y or y � x holds. Further, a self-mapping
f : X → X is called nondecreasing if f x � f y, whenever x � y for all x, y ∈ X. Finally, (X, d,�) is called
regular if for every nondecreasing sequence {xn} in X convergent to some x ∈ X, we have xn � x for all
n ∈N.

Example 4.7. Let � be a partial order on X such that (X,�) is a partially ordered set. Then

M = {(x, y) ∈ X × X : x � y}

is a binary relation on X. Also if f : X→ X is a nondecreasing mapping, then the setM is Banach f -invariant.

Theorem 4.8. Let (X, d,�) be a partially ordered complete metric space and f : X → X be a nondecreasing
nonexpansive mapping such that

d( f x, f y) ≤
(

d(x, f y) + d(y, f x)
d(x, f x) + d(y, f y) + 1

+ k
)

d(x, y),

for all comparable x, y ∈ X, where k ∈ [0, 1[. Also assume that

(a) (X, d,�) is regular;

(b) Fix( f ) is well ordered.

If there exists x0 ∈ X such that x0 � f x0 and (9) holds, then

(i) f has at least one fixed point z ∈ X;

(ii) the Picard sequence of initial point x0 ∈ X converges to a fixed point of f ;

(iii) if z,w ∈ X are two distinct fixed points of f , then d(z,w) ≥ (1 − k)/2.

Proof. In view of Example 4.7, the proof can be completed on the lines of the proof of Theorem 3.1.

In the following result we consider a weak contractive condition.
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Theorem 4.9. Let (X, d,�) be a partially ordered complete metric space and f : X → X be a nondecreasing
nonexpansive mapping such that

d( f x, f y) ≤
(

d(x, f y) + d(y, f x)
d(x, f x) + d(y, f y) + 1

+ k
)

d(x, y) + Ld(y, f x),

for all comparable x, y ∈ X, where k ∈ [0, 1[ and L is a nonnegative real number. Also assume that

(a) (X, d,�) is regular;

(b) Fix( f ) is well ordered.

If there exists x0 ∈ X such that x0 � f x0 and (9) holds, then

(i) f has at least one fixed point z ∈ X;

(ii) the Picard sequence of initial point x0 ∈ X converges to a fixed point of f ;

(iii) if z,w ∈ X are two distinct fixed points of f , then d(z,w) ≥ max{ 1−k−L
2 , 0}.

Proof. Again, in view of Example 4.7, the proof can be completed proceeding as in the proofs of Theorems
3.1 and 3.2.

5. Fixed Points for Multi-Valued Mappings

We give a result of existence of fixed point for a class of multi-valued mappings. Let K(X) be the
collection of all non-empty compact subsets of X.

Theorem 5.1. Let (X,d) be a complete metric space and let T : X→ K(X) be a nonexpansive multi-valued mapping
such that

H(Tx,Ty) ≤
(

d(x,Ty) + d(y,Tx)
d(x,Tx) + d(y,Ty) + 1

+ k
)

d(x, y), (10)

for all x, y ∈ X, where k ∈ [0, 1[. If there exists x0 ∈ X such that

d(x0,Tx0) + d(x1,Tx1)
d(x0,Tx0) + d(x1,Tx1) + 1

+ k < 1 (11)

holds, where x1 ∈ Tx0 is such that d(x0, x1) = d(x0,Tx0), then T has at least one fixed point z ∈ X.

Proof. Let x0 ∈ X, since Tx0 is compact there exists x1 ∈ Tx0 such that d(x0, x1) = d(x0,Tx0). Clearly, if x0 = x1
or x1 ∈ Tx1, we deduce that x1 is a fixed point of T and so we can conclude the proof. Now, we assume
that x0 , x1, x1 < Tx1 and (11) holds. From d(x1,Tx1) > 0, it follows that H(Tx0,Tx1) > 0. Next, since Tx1 is
compact, there exists x2 ∈ Tx1 such that

d(x1, x2) = d(x1,Tx1).

By (11), then we get

d(x1, x2) = d(x1,Tx1) ≤ H(Tx0,Tx1)

≤

(
d(x0,Tx1)

d(x0,Tx0) + d(x1,Tx1) + 1
+ k

)
d(x0, x1)

≤

(
d(x0, x1) + d(x1, x2)

d(x0, x1) + d(x1, x2) + 1
+ k

)
d(x0, x1).
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Now, we suppose to have chosen x1, . . . , xn ∈ X such that xi+1 ∈ Txi, xi < Txi and

d(xi, xi+1) = d(xi,Txi) ≤
(

d(xi−1, xi) + d(xi, xi+1)
d(xi−1, xi) + d(xi, xi+1) + 1

+ k
)

d(xi−1, xi)

for all i = 1, . . . ,n − 1. Next, we choose xn+1 ∈ Txn such that d(xn, xn+1) = d(xn,Txn), this is possible since Txn
is compact.

Then

d(xn, xn+1) = d(xn,Txn) ≤ H(Txn−1,Txn)

≤

(
d(xn−1,Txn)

d(xn−1,Txn−1) + d(xn,Txn) + 1
+ k

)
d(xn−1, xn)

≤

(
d(xn−1, xn) + d(xn, xn+1)

d(xn−1, xn) + d(xn, xn+1) + 1
+ k

)
d(xn−1, xn). (12)

If xn+1 = xn, then xn is a fixed point of T and the proof is finished. If xn < Txn, iterating this procedure we
construct a sequence {xn} ⊂ X such that xn+1 ∈ Txn, xn < Txn and (12) holds for all n ∈ N. Proceeding as in
the proof of Theorem 3.1, we deduce that {xn} is a Cauchy sequence. Since X is a complete metric space, the
sequence {xn} converges to some z ∈ X. Now, we prove that z is a fixed point of T. Using (10) with x = xn
and y = z, we obtain

d(z,Tz) ≤ d(z, xn+1) + d(xn+1,Tz)
≤ d(z, xn+1) + H(Txn,Tz)

≤ d(z, xn+1) +

(
d(xn,Tz) + d(z,Txn)

d(xn,Txn) + d(z,Tz) + 1
+ k

)
d(xn, z)

≤ d(z, xn+1) +

(
d(xn, z) + d(z,Tz) + d(z, xn+1)

d(xn, xn+1) + d(z,Tz) + 1
+ k

)
d(xn, z)

for all n ∈N.
On taking limit as n→ +∞ on both sides, we get d(z,Tz) = 0. As Tz is closed,we obtain that z ∈ Tz, that

is, z is a fixed point of T.

Proceeding as in the proof of Theorem 5.1, one can prove the following theorem.

Theorem 5.2. Let (X,d) be a complete metric space and let T : X→ K(X) be a nonexpansive multi-valued mapping
such that

H(Tx,Ty) ≤
(

d(x,Ty) + d(y,Tx)
d(x,Tx) + d(y,Ty) + 1

+ k
)

d(x, y) + Ld(y,Tx),

for all x, y ∈ X, where k ∈ [0, 1[ and L is a nonnegative real number. If there exists x0 ∈ X such that (11) holds, then
T has at least one fixed point z ∈ X.

Example 5.3. Let X = [0, 1]∪ [2,+∞[ and d : X ×X→ [0,+∞[ defined by d(x, y) = |x − y|. Define T : X→ K(X)
by

Tx =


[(1 + x)/2, 1] if x ∈ [0, 1],

[2, (2 + x)/2] if x ∈ [2,+∞[.

Clearly, (X, d) is a complete metric space and T is a nonexpansive multi-valued mapping with compact values.
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Now, for all x, y ∈ [0, 1] or x, y ∈ [2,+∞[, we have

H(Tx,Ty) ≤
1
2

d(x, y).

If x ∈ [0, 1] and y ∈ [2,+∞[, then

d(x,Ty) + d(y,Tx)
d(x,Tx) + d(y,Ty) + 1

≥ 1

and hence

H(Tx,Ty) = max
{
2 −

1 + x
2

, 1 +
y
2
− 1

}
≤

(
1 +

1
2

)
(y − x)

≤

(
d(x,Ty) + d(y,Tx)

d(x,Tx) + d(y,Ty) + 1
+

1
2

)
d(x, y).

Thus all the hypotheses of Theorem 5.1 are satisfied with k = 1/2 and x0 = 1/4. In this case T has two fixed points
x = 1 and x = 2. Note that T is not a contraction, in fact H(T1,T2) = d(1, 2).
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3 (1922) 133–181.

[2] V. Berinde, Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, Preprint no. 3 (1993) 3–9.
[3] M. Cosentino, P. Salimi, P. Vetro, Fixed point results on metric-type spaces, Acta Mathematica Scientia. Series B. English Edition

34 (2014) 1237–1253.
[4] M. Edelstein, On Nonexpansive Mappings, Proceedings of the American Mathematical Society 15 (1964) 689–695.
[5] K. Goebel, W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990.
[6] L.-G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis

and Applications 332 (2007) 1468–1476.
[7] M.A. Khamsi, S. Reich, Nonexpansive mappings and semigroups in hyperconvex spaces, Mathematica Japonica 35 (1990)

467–471.
[8] F. Khojasteh, M. Abbas, S. Costache, Two new types of fixed point theorems in complete metric spaces, Abstract and Applied

Analysis 2014 (2014), Article ID 325840, 5 pages.
[9] S. B. Nadler Jr., Multi-valued contraction mappings, Pacific Journal of Mathematics 30 (1969) 475–488.

[10] S. Reich, I. Shafrir, The asymptotic behavior of firmly nonexpansive mappings, Proceedings of the American Mathematical
Society 101 (1987) 246–250.

[11] D. Reem, S. Reich, A. J. Zaslavski, Two Results in Metric Fixed Point Theory, Journal of Fixed Point Theory and Applications 1
(2007) 149–157.

[12] S. Reich, A. J. Zaslavski, A Fixed Point Theorem for Matkowski Contractions, Fixed Point Theory 8 (2007) 303–307.
[13] S. Reich, A. J. Zaslavski, A note on Rakotch contraction, Fixed Point Theory 9 (2008) 267–273.
[14] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, Journal of Mathemat-

ical Analysis and Applications 340 (2008) 1088–1095.


